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ABSTRACT
The importance to our society of emergency network communica-
tions cannot be underestimated. The loss of communication and
network systems in a state of emergency denies victims of disaster
and city emergency response teams critical information about the
crisis. It is essential to restore communication systems and service
in order to ensure continuous and efficient emergency operations.
This paper presents a cloud-based cost-effective emergency network
management system to provide dynamic network services. We have
developed a network application to enable users to access the Inter-
net during an emergency. The application is ready to immediately
restore lost connectivity through economical embedded systems and
UAVs. We implement our prototypes based on Resin.io, a framework
that utilizes Linux containers on IoT(Internet of Things) devices to
deploy applications. We evaluate our systems on Raspberry Pi, a
popular embedded system. We demonstrate the feasibility of our
proposed system, showing that it is an economical infrastructure that
it can successfully be used for an emergency network to replace a
demolished network infrastructure.
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1 INTRODUCTION
First responders to disasters need a complete picture of the com-
munitys status in order to accurately assess the condition of the
inhabitants and organize available resources to save lives, protect the
environment, and prevent further damage in the community. In local
emergency situations, this information is collected through calls to
public safety answering point (9-1-1), city employee radio communi-
cations (fire, law, public works, transportation, building inspectors),
and monitoring by the media and social media. However, in major
disasters, these normal community services will be interrupted, in-
cluding cell phone service, Internet connectivity, and utilities. In
such circumstances, novel systems must be available to substitute for
the lost connectivity, to allow residents to contact the public safety
answering point, and to allow the Emergency Operations Center to
collect and aggregate critical information across sectors to ensure
that lifesaving operations are conducted expeditiously.

Satellites provide a reliable communication infrastructure, mak-
ing them extremely important in crises. Communication providers
like Inmarsat [5] and Delorme [25] offer global communication
services through satellites. However, satellites are not only very
expensive to maintain, but also have inherent limitations in terms of
signal blockage. Currently the cellular network infrastructure is the
most widely used method of voice and data communication. Cellular
communications offer the advantages of mobility and flexibility, but
cellular infrastructure is prone to be damaged during crisis situations
like earthquakes, hurricanes, floods, or wildfires. This means that
people may be injured or die if they are unable to contact emergency
services in time. For instance, thousands of cellular towers went
out of service for days during hurricane Katrina [2]. During such
circumstances, cellular companies like AT&T have a disaster recov-
ery team standing by [4]. Once the network goes down, a mobile
cellular tower is driven to the emergency zone and a complementary
network is accessed to provide people connectivity until the main
communication backbone is restored. Use of smartphones using
these backup connections during outages is hampered, however, be-
cause the towers are limited in the number of calls that can be routed.
Hence, we need to have a distributed network infrastructure that will
satisfy all the needs that arise during an emergency, providing an
emergency network that is easy to manage and deploy.

This paper proposes a cloud-based emergency network manage-
ment system by using embedded systems to prepare for emergencies.
First, we build up an infrastructure to bring up network capable
devices. We utilizes the Resin.io Cloud service to automatically and
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easily deploy our network application regardless of the heteroge-
neous hardware specifications in embedded systems. Second, we
design a management system to maintain and monitor our infrastruc-
ture for an emergency. The proposed system includes a device man-
ager, a connectivity manager, and a location manager. The device
manager deploys economical embedded systems that are prepared
in advance of an emergency and installed meeting all requirements
to function in a crisis. The connectivity manager keeps checking to
verify whether the pre-deployed systems are able to connect users to
the Internet. Lastly, the location manager tracks the devices based
on real-time GPS information and monitors the current status of
network infrastructure to share the information in real time. Our
proposed system enables users to send rescue or safety messages
through pre-configured hotspot devices when facing a natural disas-
ter or other emergency that takes out communication services. We
implemented our prototypes for the proposed systems and evaluated
it by using the embedded systems, showing that we have designed a
cost-effective network infrastructure by using economical embedded
systems. The infrastructure is based on virtualization and the Resin
OS for embedded systems and functions independently of different
hardware specifications.

Our first contribution is that we proposed a framework to combine
inexpensive embedded systems and UAVs into building up a network
infrastructure for an emergency. Second, we developed a hotspot
application and deployed it on any embedded systems by using
the Resin OS and the containerization technique. Third, we evalu-
ated our proposed framework with the real embedded systems and
showed the feasibility of the proposed system through experiments.

The rest of the paper is organized as follows. Section 2 presents
our proposed system and shows evaluation results in Section 3. We
overview the previous work in Section 5 and discuss our future work
with a conclusion in Section 6 and Section 7.

2 THE PROPOSED WORK
The tree architecture for the wireless Internet has resulted in a sin-
gle point of failure in crises like the devastation that occurred in
Red Hook during Hurricane Sandy in 2011 [3, 12]. Satellite com-
munications are very expensive for normal users and experience
limitations in terms of signal blockage. This paper presents a dy-
namic network service for emergency networks, deploying hotspot
applications into low-priced embedded devices to provide Internet
access in emergency zones.

2.1 System Architecture
This section presents our system architecture for monitoring and
managing devices, connections, and locations, as shown in Figure 1.
It consists of the device management, connectivity management,
and location management needed to create emergency networks.
The device management module determines the location for deploy-
ing embedded systems and installs hotpot software on the systems
to create networks. The connectivity management module keeps
polling network connectivity between two devices. The location
management module records the exact location of current devices
including embedded systems and unmanned aerial vehicle (UAVs).

2.1.1 Device Management. The device manager identifies
where the deployment of embedded systems is needed. To locate

each device, all the procedures must be able to be initiated automati-
cally and updated easily from a remote, centralized point. We divide
the emergency network into zones. We assume that each zone has
pre-deployed embedded devices sufficient to serve as hotspots or
relay nodes for data communications in emergencies.

Embedded systems are inherently heterogeneous with various
types of devices, making it is a challenge to remotely install all
necessary programs on all of the devices; however, the Rein.io Cloud
service enables a nearly seamless remote and automatic management
and updating of software on such heterogeneous device platforms.
We designed a hotspot application to successfully build emergency
networks using the platform-independent Resin.io software. In other
words, to make ready-to-use embedded devices, a base OS image
from the Resin.io service is installed on each device, after which
a Docker container is created on top of the base image in order to
install our network application. The device manager readies any
device in two steps, as described below in detail. We target any
embedded devices and unmanned aerial vehicles (UAVs).

(1) The first step is to install the Resin.io base image from the
Resin.io Cloud Service: The Resin.io is a framework that makes
it easy to deploy, maintain, and update the application or code on
various types of devices [22]. It gives us a platform to employ
Docker containerization technology on embedded devices. Using
the Resin.io, users install a customized Yocto OS on their devices.
This base OS with the Docker container enables us to utilize any
software on any device. The Docker container is pre-installed and
configured to function within the low memory constraints of the
embedded devices. The Resin.io base OS image provides a platform
for deploying any application in the form of Docker images [13, 22].

(2) The second step is to install Docker:To give a uniform run-
ning environment for an application, we use the Docker tool to
package the application with all its dependencies. A Dockerfile [13]
is written to first install and configure the runtime environment of
the application. A docker image is built from the Dockerfile in the
administrator local repository and is uploaded to a remote repository.
The device manager downloads the docker image from the remote
repository and runs it in his/her local device to get the application
running inside a docker container. This container has its own de-
pendencies but shares the kernel with the host operating system
[13].

2.1.2 Connectivity Management. The connectivity manager
instantaneously creates a backup network that can be used in emer-
gencies. It mainly focuses on monitoring and controlling a network
created by the pre-deployed devices. A graph G consists of ver-
tices and edges. The vertices represent each device, and the edge
represents the connection between two devices. A network can be
expressed as G = {V , E} where |V | is the set of devices and E is
the set of available connections. We define a connectivity in that
two devices, vi and ej (i or j is a device.), are able to connect over
a connection ei j through a network utility like Ping. To ready pre-
deployed devices for use in an emergency, we need to install our
hopspot application on the devices in advance of the emergency.

When the device starts up after configuring the Resin OS, it
connects to the Rein.io Cloud server [22] to fetch the hotspot appli-
cation. The hotspot is a gateway application to allow users to access
the Internet in an emergency situation. We set up this application
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Figure 1: A system level view of the architecture

to be available to any devices through the Git repository [11] on
the Resin.io Cloud server. Therefore, if the application contains a
Dockerfile, the hotspot application can be automatically installed
on the device by using the command specified in our implemented
Dockerfile [13].

The connectivity manager first creates a hotspot for a commu-
nication on the device to make a connection between two devices.
One device is connected to the Internet and the other is connected
to another device to create a small network. A small network G can
be created in a zone to let users access the Internet for data transfer
in an emergency. The connectivity manager keeps communicating
with the Cloud server to get information about device availability,
GPS information, and network information. In an emergency, the
connectivity manager keeps checking the connectivity for hop-by-
hop communications among devices through Ping. If it detects a
link failure from the back-up network topology, a drone is sent to
make up the link failure so that users maintain access to the Internet.
The drones are managed by a drone monitor that we developed in
our previous work [19], a cloud-based UAV real-time monitoring
and management system. While monitoring the connection, the link
failure will be covered by the drones with the hotspot application
on the drones. The drone enables users to communicate with other
users or the Internet in an emergency.

2.1.3 Location Management. The location management mod-
ule keeps updating through a device tracker that we previously devel-
oped [19]. The device tracker uses UAVs to send GPS information

about the pre-deployed embedded systems to keep tracking their ex-
act locations. Using Mapbox 1, an interactive map visualizes active
device paths and current devices or UAV locations, allowing us to
track exact locations in an emergency zone. With the help of the
drones, it is easy to monitor any emergency zone. Through the GPS
information provided by the UAVs, we can check the connectivity of
any pre-deployed emergency devices. If some devices are not work-
ing, the drones can replace the out-of-order devices. To compensate
for a link failure, we need to send a UAVto the midpoint between
two working devices nearest to the broken devices. In other words,
if Vi is out of order, we select the two nearest available working de-
vices likeVi−1 andVi+1. Note that the location ofVi is (Xk , Yl ,Zm )
where k and l and m are the GPS latitude and longitude information.
We dispatch a UAV to the geographic midpoint location2 between
Vi−1 and Vi+1. By doing so, we can still create a network so that
users can access the Internet with the pre-deployed devices.

3 EVALUATION
3.1 Implementation
To provide Internet access to users in emergencies, we implement
a platform-independent hotspot application for dynamic network
provision based on the Resin.io Cloud service. The application is au-
tomatically installed into an embedded device through the Resin.io

1https://www.mapbox.com
2http://www.geomidpoint.com
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framework. First, we need to install the base OS image and the ap-
plication through Resin.io over the normal network interface. After
installing the application in the device, the device serves as a hotspot
to create a network. To allow users to access the Internet, at least
one device needs two network interfaces. One is used to connect to
the Internet and the other is used to provide Internet access to users
through an emergency network.

We implement a hotspot application based on the Network Man-
ager library to activate the connection [21]. By using the Network-
Manager API [20], a Python script enables a Linux device to act as
a hotspot. The script is run from the docker file, which packages
all the dependencies needed to run this script in the embedded de-
vice. The Dockerfile should specify one available network interface
when starting the script. The script obtains the connection name
(i.e. SSID) and searches for available interfaces with Internet access.
Finally, the script bridges the two connections by activating network
interfaces to enable a device to act as a hotspot. The device will be a
Wi-Fi hotspot since we currently handle only Wi-Fi.

Once these devices are deployed with the access point connection
name and configuration, the connectivity manager takes care of the
handover of user devices [26] through the Resin.io framework. In
other words, Wi-Fi features (i.e. IEEE 802.11 series) connect a user
device to the Internet through the first available hotspot device. If the
user is mobile and the user device gets out of range of the hotspot,
then the user can access the next available hotspot device through
disassociation and broadcasting.

    Resin.io Cloud

Hotspots

Figure 2: Test Environment

4 EXPERIMENTAL RESULTS
The test environment consists of the Resin.io Cloud, five Raspberry
Pi-3 model B [1] devices, a laptop (Acer aspire e5-575G), a Net-
gear N600 router and an Internet connection, as shown in Figure 2.
Instead of real UAVs, we used the Raspberry Pi for our basic experi-
ments. We will test with real UAVs and mobile embedded boards
in future work instead of using only embedded boards. The laptop
has 8GB of RAM and an Intel Core i5-6200U CPU @ 2.30GHz pro-
cessor. The router supports dual band Wi-Fi and 802.11n protocol
and an Internet speed of up to 350 Mbps. The Internet connection

downloads up to 75Mbps and uploads up to 35 Mbps. The Raspberry
Pi system consists of a 1GB RAM and a 1.2 GHZ quad-core ARM
Cortex A53 processor.

Our experiments evaluates the performance metrics of the pro-
posed system in terms of CPU, memory, and disk usage. We also
tested network performance by using download and upload speeds
of the hotspot device that we designed. We implemented a Python
script by using flask API [23] to provide a web application and
psutil [18] to obtain the memory and CPU usage. Once the script
was deployed in the device, the web server ran on port 5000 on the
Raspberry Pi. In order for external devices to send GET requests
to the devices, we exposed the Docker container 5000 port on port
80 to access the Resin.io server. To measure the performance of the
entire setup, we tested internet connectivity using five user mobile
phones. In order to note changes in performance, the devices were
programmed to connect to the hotspot one at a time during minutes
6, 12, 22, 29 and 38.

Figure 3: Memory usage of the hotspot devices

Figure 3 shows the memory usage of the hotspot devices. We
connected one mobile phone to the hotspot device after five minutes
and an additional phone was connected after several minutes: no
one used the hotspot device during the first five minutes; at six
minutes, one phone was connected; after forty five minutes, all five
mobile devices were connected. Each time a user mobile phone got
connected to the hotspot device, there was a considerable increase
in memory usage, as shown in Figure 3. For example, the memory
usage for the Raspberry Pi #1 spiked at 6 minutes, and so on. When
three mobile phones were first connected to the hotspot, only the
Raspberry Pi #1 was used and the rest of the devices were still
idle. However, the memory usage of the Raspberry Pi #1 decreased
after four user mobile phones were connected to the hotspot. The
workload (i.e. the number of user mobile phones using the hotspot)
was distributed into various hotspot devices. Thus, the workload of
the Raspberry Pi #1 was divided among other Raspberry PI devices,
thereby increasing the memory usage of those devices.

Figure 4 shows the CPU usage of hotspot devices according to the
number of user mobile phones connected to the hotspot. Similar to
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Figure 4: CPU usage of the hotspot devices

Figure 5: Download speeds of the hotspot devices

memory usage, the CPU usage showed noticeable spikes whenever
user mobile devices got connected to the hotspot devices. CPU usage
ranged from 4% to 8.8% depending on the number of users: the more
users, the higher the CPU usage. However, the disk usage of the
hotspot devices was not affected by the number of users, but rather
remained constant. The majority of the disk is used by the Resin OS
and a small portion was used by the deployed application. The disk
usage of all five devices was 4.2 % of the total 16 Gigabytes.

Figure 5 and Figure 6 show the download and upload speeds of
the hotspot devices. Since the hotspot devices access the network
through a common router, their speeds are divided equally among
them. Download speeds of a device ranged from 12 - 28 Mbps at
any point in time and upload speeds varied from 5.2 - 6.2 Mbps.
Due to the limitation of the number of available mobile phones, we
couldn’t evaluate our hotspot on a large scale. In future work, we

Figure 6: Upload speeds of the hotspot devices

will evaluate the proposed system with a large number of users and
different devices.

5 RELATED WORK
WiFi technology has grown exponentially along with other technolo-
gies over the past decade. WiFi is a wireless networking technology
based on 802.11 standards [27]. Wi-Fi operates on the 2.4GHz unli-
censed band. It is a readily available technology in a wide variety
of electronic devices. Smartphones and wearable devices like smart
watches frequently use Wi-Fi to access the Internet. People have
constant access to these smart devices. One of the most significant
additions to 802.11 protocols is the ability for user devices to be mo-
bile. For instance, users utilize WiFi service provided by businessed
to access the Internet to make a VoIP call. The device’s Wi-Fi radio
will automatically search for access points to connect to provide
a seamless handover [17]. This process is referred to as roaming.
When the users device gets out of the range of one access point, the
devices Wi-Fi radio will issue disassociation frames to this access
point. It will then broadcast probe requests to scan for available
access points and then re-associate [17, 26].

By forming a mesh network using WiFi devices, we are able to
create resilient and self-configuring networks that solve many of
the problems related to ad hoc communications [15]. WiFi mesh
networks have been used to help UAVs in search and rescue op-
erations [8, 16]. In a traditional communication network, clients
rely on a base station or other external communication facilities
that are not the best to use when a crisis hits the area. When the
network infrastructure in a crisis hit zone is damaged, a wireless ad
hoc network will have to be established in this zone. The nodes in
this network need to be interconnected in order to provide effective
emergency communications, with monitoring of a variety of factors
including traffic load. As an additional functionality, by establish-
ing a distributed Wi-Fi network using embedded devices, it is also
possible to use sensors to collect essential information within the
emergency zone. Such a distributed network has been used to collect
surrounding information to carefully monitor a museum [24].
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UAV technology has advanced dramatically along with its many
possible applications in life for monitoring, marketing, and envi-
ronmental tools. Moreover, UAVs have also been useful in emer-
gencies [9, 10, 16]. Gao and et.al. utilized UAVs to create a relay
network for a UAV-based search and rescue project [16]. They in-
cluded functions like positioning, message pushing, and adjusting
flight path. In addition to the aerial network, the authors also propose
a self-organizing mobile ad hoc network on the ground. Paul Bupe
and et.al proposed a method to deploy a large fleet of drones oper-
ating autonomously for temporary emergency communications [7].
UAVs were also used in collecting sensor data including images to
identify victims and their location [6, 9, 10, 14].

6 DISCUSSION AND FUTURE WORK
The current Rein.IO supports various embedded devices, including
a family of Raspberry Pi, a family of BeagleBone, several Samsung
Artik devices, and Intel Edison, which are the most popular embed-
ded devices for the Internet of Things (IoT). It also supports various
types of system architectures like ARM and i386 and several Unix-
based operating systems like Ubuntu, Fedora, and Debian. UAV
devices need to be incorporated since UAVs are the most promising
devices for our future emergency infrastructure; however, the devel-
opment of the Resin.io base image for UAVs is outside of the scope
of this paper. Instead, we were able to use Raspberry Pi to represent
the UAVs that we intend to use in our emergency system.

Many research challenges still remain in order to obtain the most
efficient handling of emergency communication networks and ensure
nonstop user access to the Internet. Embedded boards are very
inexpensive devices, but are powerful enough to create a network in
emergencies. There are many remaining problems to solve: (1) How
many devices are required to cover a specific emergency zone?, (2)
Where is the best location of the device?, (3) What is the optimal
range of UAVs to cover an emergency zone?, and (4) How fast can
dynamic mobility connections and mobile emergency services be
automatically validated?

In future work, we will address these remaining challenges. We
will enable Wi-Fi based mesh networks for emergencies based on
our infrastructure. To enable interaction and connectivity between
emergency teams, victims, and communities, we enable multi-modal
communication of an edge device to inter-operate with multiple
existing network standards and segments. To achieve this, we will
work on various types of network communications, such as Blue-
tooth and radio communication. In addition, UAVs are the most
promising devices to be used for an emergency. We will design our
own cost-effective UAVs.

7 CONCLUSION
In emergency and disaster scenarios, if the existing network infras-
tructure goes down, it is vital to have emergency network com-
munications restored immediately. This paper presents a way to
dynamically deploy a distributed Wi-Fi infrastructure using low cost
embedded devices and providing network services on the go. To
establish a distributed Wi-Fi infrastructure during disaster scenarios,
we developed a hotspot application that can be used on any and all
devices. We have used Resin.io as a platform for accessing embed-
ded devices through the Internet and for pushing our application or

updates. It offers a model for deploying network services quickly
regardless of hardware specifications. By implementing this project,
the time that it takes to deploy a temporary network infrastructure in
a crisis-hit area can be greatly reduced. We implemented our pro-
totype and evaluated it on a fleet of Raspberry pi devices. We have
explained the effectiveness of our proposed system by performing
experiments and illustrating the results.
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