
The Journal of Systems and Software 124 (2017) 39–55

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

On building a cloud-based mobile testing infrastructure service system

Chuanqi Tao
a , b , ∗, Jerry Gao

c , d

a Computer Science and Engineering Department, Nanjing University of Science and Technology, PR China
b State Key Laboratory for Novel Software Technology, Nanjing University, PR China
c Computer Engineering Department, San Jose State University, USA
d Taiyuan University of Technology, Taiyuan, PR China

a r t i c l e i n f o

Article history:

Received 16 April 2016

Revised 22 August 2016

Accepted 8 November 2016

Available online 9 November 2016

Keywords:

Mobile testing as a service

Cloud-based infrastructure -as-a-service

Mobile application testing

a b s t r a c t

With the rapid advance of mobile computing, cloud computing and wireless network, there is a signif-

icant increasing number of mobile subscriptions. This brings new business requirements and demands

in mobile testing service, and causes new issues and challenges. In this paper, informative discussions

about cloud-based mobile testing-as-a-service (mobile TaaS) are offered, including the essential con-

cepts, focuses, test process, and the expected testing infrastructures. To address the need of infrastruc-

ture level service for mobile TaaS, this paper presents a developed system known as MTaaS to provide an

infrastructure-as-a-service (IaaS) for mobile testing, in order to indicate the feasibility and effectiveness

of cloud-based mobile testing service. In addition, the paper presents a comparison among cloud-based

mobile TaaS approaches and several best practices in industry are discussed. Finally, the primary issues,

challenges, and needs existed in current mobile TaaS are analyzed.

© 2016 Elsevier Inc. All rights reserved.

I

w

s

i

T

p

t

$

M

s

b

c

l

a

(

2

2

e

e

2

A

e

G

c

m

t

s

c

m

p

i

s

n

i

e

a

h

m

i

a

B

t

2

e

h

0

ntroduction

With the rapid advance of mobile computing technology and

ireless networking, there is a significant increase of mobile sub-

criptions. This brings new business requirements and demands

n mobile software testing, and causes new issues and challenges.

he growing mobile market needs more and better testing ap-

roaches for mobile apps. A report from ABI Research predicted

he growth of test automation will push the revenues close to

800 million by the end of 2017 (https://www.abiresearch.com).

obile app vendors have encountered the following critical is-

ues. Testing mobile apps and web applications on different mo-

ile platforms and browsers on various devices becomes very

ostly and tedious due to the fast upgrading of mobile devices,

arge-scale mobile use access, rapid updates of mobile platforms

nd technologies, and fast upgrading mobile application services

 Ridene and Barbier, 2011; Anand et al., 2012; Amalfitano et al.,

012; Satoh, 2004; Bo et al., 2007; Hargassner et al., 2008; Satoh,

012; Muccini et al., 2012, Gao et al., 2013) . According to Yang

t al. (2010) , Riungu et al. (2010) , Ridene and Barbier (2011) , Gao

t al. (2011) , Gao et al. (2014) , Tao and Gao (2014) , Aktouf et al.,

015, Buyya et al. (2009) , Tsai et al., 2011, Anand et al. (2012) ,

malfitano et al. (2012) , Satoh (2004) , Bo et al. (2007) , Hargassner

t al. (2008) , Satoh (2012) , Muccini et al., 2012, Gao et al. (2013)
∗ Correspondence author.

E-mail addresses: taochuanqi@njust.edu.cn (C. Tao), jerry.gao@sjsu.edu (J. Gao).

i

p

s

ttp://dx.doi.org/10.1016/j.jss.2016.11.016

164-1212/© 2016 Elsevier Inc. All rights reserved.
ao et al. (2012) , Bai et al. (2013) , testing-as-a-service (TaaS) in a

loud infrastructure is considered as a new business and service

odel. A TaaS provider undertakes software testing project activi-

ies and tasks for under-test web-based software (or an application

ystem) in a cloud infrastructure, and delivers them as a service for

ustomers.

Cloud-based mobile TaaS offers a new business and service

odel for diverse mobile software validation services using the

ay-as-you-test model to achieve cost-sharing and cost-reduction

n mobile computing resources, networks, cloud computing and

torage infrastructures. Therefore, cloud-based mobile TaaS is

eeded to resolve major issues in mobile application testing. These

ssues include: a) high costs in current mobile testing practice and

nvironments; b) lack of testing support and tools for mobile scal-

bility test; c) high mobile testing complexity and harness due to

igh diversity in mobile devices, platforms, browsers, and environ-

ents.

Although there are a number of published papers addressing

ssues, challenges and needs in mobile testing (services) (Gao et

l., 2011; Gao et al., 2014; Tao and Gao, 2014; Aktouf et al., 2015;

uyya et al., 2009; Tsai et al., 2011; Anand et al., 2012; Amalfi-

ano et al., 2012; Satoh, 2004; Bo et al., 2007; Hargassner et al.,

008; Satoh, 2012; Muccini et al., 2012; Gao et al., 2013; Gao

t al., 2012) , seldom publications discuss the challenges and needs

n cloud-based mobile TaaS, especially at infrastructure level. In

revious work (Gao et al., 2013; Gao et al., 2012) , we mentioned

ome testing issues such as testing models, testing automation

http://dx.doi.org/10.1016/j.jss.2016.11.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.11.016&domain=pdf
https://www.abiresearch.com
mailto:taochuanqi@njust.edu.cn
mailto:jerry.gao@sjsu.edu
http://dx.doi.org/10.1016/j.jss.2016.11.016

40 C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55

2

c

f

T

c

s

i

i

b

–

m

o

n

s

q

t

i

S

l

v

s

r

t

s

T

m

t

t

p

t

l

b

d

n

t

r

a

b

2

a

t

c

b
approaches in mobile testing and mobile TaaS. However, there are

more challenges existed in testing criteria and standards, large-

scale test automation and mobile TaaS. There are a lack of well-

defined infrastructures and approaches which allow both mobile

application vendors and users to access mobile TaaS services. In

order to accommodate this, a suitable testing infrastructure is re-

quired which allows end users to submit on-demand service re-

quests for mobile TaaS resources in order to form an infrastructure

for mobile testing. This will include a large number of mobile de-

vices, mobile emulators, mobile hubs, and computing server ma-

chines. Generally, an ideal mobile TaaS infrastructure must provide

auto-provision, diversity support, and elastic scalability.

This paper focuses on mobile IaaS. To address the need for in-

frastructure service for mobile TaaS, an IaaS system MTaaS is de-

veloped to support the feasibility of mobile TaaS in practice. In

addition, this paper provides informative perspectives on cloud-

based mobile TaaS from service providers including the new fea-

tures, current approaches and infrastructures, as well as issues,

challenges, and needs.

The paper is structured as follows. The essential concepts, new

requirements, and test process are presented in the next section.

The testing infrastructures are introduced, and the current industry

practices are compared in Section 3 . A developed system for cloud-

based mobile IaaS is presented in Section 4 . The primary issues,

challenges, and needs are discussed in Section 5 . Conclusions are

summarized in the end.

Understanding cloud based mobile testing-as-a -service

The term of “mobile testing” has been used to refer to differ-

ent types of testing for mobile application testing, mobile device

testing, wireless-based application testing, and mobile APP testing.

In previous work, we initially defined mobile testing-as-a-service

(Mobile TaaS) in cloud as follows (Gao et al., 2014).

“Mobile Testing as a Service (known as Mobile TaaS) provides on-

demand testing services for mobile applications and/or SaaS to sup-

port software validation and quality engineering processes by leverag-

ing a cloud-based scalable mobile testing environment to assure pre-

defined given QoS requirements and service-level-agreements (SLAs) ”.

Here, mobile TaaS refers to a new testing service model and

business model, as well as cloud-based testing infrastructure and

platforms by leveraging cloud computing resources. Though some

conventional testing features can be carried on in cloud-based mo-

bile TaaS, most of them need to be addressed in cloud-based back-

ground due to the new features in cloud such as large-scale and

on-demand.

2.1. Motivations and new requirements

Why do we need cloud-based mobile TaaS? The fast grow-

ing cloud-based mobile applications and the popularity of mo-

bile cloud computing bring new needs and motivations. In previ-

ous work, we identified five primary reasons of mobile TaaS (Gao

et al., 2014). They include: a) high costs on mobile test infrastruc-

tures; b) frequent changes and upgrades on test platforms and de-

vices; c) complex mobile user interfaces; d) large-scale on mobile test

service, test simulation, and virtualization ; e) multi-tenancy of mobile

applications . In addition, cloud-based mobile TaaS has four new re-

quirements from the perspective of service as follows.

- It requires mobile infrastructure-as-a-service (IaaS) on cloud. It

enables on-demand service for diverse mobile clouds, emu-

lation service, test connectivity, TaaS servers mobile devices,

hubs, etc.

- It requires mobile platform-as-a-service (PaaS) on cloud for

users to perform mobile testing in terms of their needs, such
as self-defined testing platform, test environment configuration,

test script automation running, etc.

- It requires mobile testing service tools as software-as-a-service

(SaaS) on cloud. Those SaaS applications can support cloud-

based mobile testing at anytime and anywhere.

- It requires test service management, such as mobile resources

manager, mobile environment manager, mobile test automation

manager, mobile emulation manager, etc.

.2. The test features of cloud-based mobile TaaS

According to our research survey and practical experience,

loud-based mobile TaaS primarily includes eight types of testing

eatures. Five of the features are specified for cloud-based mobile

aaS. Three of them are focused in both general mobile testing and

loud-based testing. The features are listed as follows.

Elastic scalable mobile test infrastructure – This refers to the

tudy of solutions on how to build elastic and scalable cloud-based

nfrastructure supporting automatic provision on mobile comput-

ng resources, such as mobile devices, emulators, platforms and

rowsers.

Mobile resource sharing, crossing platforms, and seamless accesses

This refers to test platform that enables to construct and set up a

obile test environment to meet diverse needs and requirements

n mobile devices, including mobile platforms, browsers, and con-

ectivity.

Large-scale on-demand mobile test services – This refers to the

ervice techniques responding to on-demand mobile testing re-

uests in mobile testing environments, test-ware, and test execu-

ion and control.

Multi-tenancy and customization support – This refers to test-

ng multi-tenanted functions, behaviors, and QoS requirements for

aaS multi-tenancy. In addition, mobile TaaS supports customizable

arge-scale data load, traffic load, and user accesses with test ser-

ice.

Contracting, utilization, billing and reporting – This refers to the

ervice business model, pre-defined utility model, and cost met-

ics. Mobile testing clients will be charged using the pay-as-you-

est utility model for their used mobile computing and testing re-

ources on cloud.

Control and configuration of mobile test environments (general) –

his refers to provide the required common-ware to support auto-

atic mobile test management, test control, and testing interac-

ions underlying mobile cloud. Diverse computing resources and

est-wares can be selected, configured, and provisioned (or de-

rovisioned) dynamically.

Easy to test large-scale interoperation ability, mobility and connec-

ivity (general) – This refers to some distinguish mobile features on

arge-scale cloud. Mobility testing verifies the quality of location-

ased system functions, data, and behaviors. Connectivity involves

iverse mobile wireless networks which support the connectivity

eeds of mobile applications. Connectivity also affects the applica-

ion performance and interoperability.

Test tracking, monitoring and coverage analysis (general) – This

efers to tracking, monitoring, and coverage analysis techniques

nd solutions for mobile test operations at different levels for mo-

ile apps and mobile web applications.

.3. The test process of cloud-based mobile TaaS

Fig. 1 shows a test process (function testing) for mobile TaaS

nd conventional mobile testing. Compared to conventional mobile

esting, the test process of cloud-based mobile TaaS primarily fo-

uses on typical features such as tenant-based testing and scala-

ility testing. Please note the testing activities in the dashed frame

C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55 41

Fig. 1. A comparison of test process for cloud-based mobile TaaS and traditional mobile testing.

a

b

a

i

l

s

t

i

s

u

k

t

b

i

3

n

d

t

t

t

a

T

f

m

b

l

F

m

c

e

m

p

i

a

d

t

p

i

o

p

(

b

a

t

m

p

t

b

b

v

t

c

u

p

u

c

c

t

m

a

2

p

c

t

t

(

re shared by both sides. The testing process for cloud-based mo-

ile TaaS shown in Fig. 1 includes the following five steps.

Step 1- Setting up mobile test infrastructure and environment

nd on cloud, including test control and run, tracking and monitor,

nteractions with TaaS server as well as its underlying mobile emu-

ation cloud (or device cloud). This paper focuses on infrastructure

ervice.

Step 2- Tenant-based system function testing includes diverse

enant-based service functions and features, such as function test-

ng, GUI-based testing, behavior testing, and etc.

Step 3- Tenant-based system testing checks multi-tenancy, QoS,

calability, and etc.

Step 4- Mobile feature testing targets at mobile feature testing,

sability testing, compatibility testing, and etc.

Step 5- Tenant-based continuous testing focuses on how to

eep continuous validation for mobile system, including recovery

esting, live upgrading testing, live regression testing, and etc.

In addition, compared to conventional mobile testing, cloud-

ased mobile TaaS has a number of new characteristics as shown

n Table 1 .

. Infrastructures for cloud-based mobile TaaS

Since the conventional testing approaches cannot deal with the

ew requirements and features, mobile TaaS encountered many

ifficulties, such as large-scale testing services and on-demand

esting needs. Thus, we need new approaches and infrastruc-

ures based on cloud to address the special features. This sec-

ion presents and compares the current different infrastructure

pproaches. As shown in Fig. 2 , there are three different mobile

aaS infrastructures on cloud instances. Here we discuss these in-

rastructures respectively.o Emulation-based or simulation-based

obile testing infrastructure on clouds – In this form, mobile-

ased applications or SaaS instances on a cloud are validated using

arge-scale mobile emulators or simulators on cloud as shown in

ig. 2 (a). This mobile cloud needs to support configuring diverse

obile emulators with different configurations. In addition, this

loud is required to have several key components, such as mobile
mulation controller and test connection manager.o Crowd-based

obile testing infrastructure on clouds – In this form, mobile ap-

lication servers on a cloud are validated using Ad-hoc mobile test-

ng environment and TaaS infrastructure based on crowd sourcing

s shown in Fig. 2 (b). This approach does not need costs on mobile

evices. In addition, it is easy to support large-scale compatibility

esting and usability tests crossing diverse mobile devices. Some

ractitioners already applied the crowd-based testing approaches

nto businesses.o Device cloud-based mobile testing infrastructure

n clouds - In this form, real mobile devices are purchased, de-

loyed, and used to validate mobile-based software applications

including mobile APPs and mobile Web applications) and mo-

ile SaaS as shown in Fig. 2 (c). Unlike other mobile devices, they

re structured, connected, configured, and set up to meet mobile

esting service needs according to on-demand test service require-

ents.

The comparison among these three mobile TaaS approaches is

resented in Table 2 .

Currently, there are more and more industry practices on how

o provide testing services for mobile applications based on (mo-

ile) cloud. For instance, TestDroid by Bitbar offers on-demand mo-

ile testing services on thousands of real Android and iOS de-

ices (http://testdroid.com/) based on self-developed cloud infras-

ructure. It can get agile mobile development and testing pro-

ess with continuous integration. Another well-known company

Test is based on the idea that crowdsourcing is a critical com-

lement for testing web and mobile app in the lab (http://www.

test.com/company). It was designed as a testing community in-

luding courses, forums, tool reviews, etc., in order to provide

ustomers with an end-to-end service offering, such as func-

ional, usability and load testing for both IOS and android-based

obile system. Testin is currently another growing cloud-based

pp auto-testing service provider (http://mtestin.com/). Recently in

015, the company released the crowd sourcing testing service

latform in order to meet the demand of large-sca le testing in

loud . Yiceyun developed by neusoft provides device cloud test au-

omation services for android-based mobile systems. It supports

he opensource framework of Robotium, Athrun, and Guerrilla

http://www.yiceyun.com). P erfectomobile provides MobileCloud

http://testdroid.com/
http://www.utest.com/company

42 C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55

Table 1

A comparison between conventional mobile testing and cloud-based mobile TaaS.

Conventional mobile testing Cloud-based mobile testing as a service

Primary objectives Validate the quality of mobile APPs on mobile operation

environments of specified mobile devices or from different

web browsers.

Provide on-demand testing services on cloud; Leverage a scalable

mobile testing environment To assure pre-defined given QoS and SLAs.

Testing focuses Diverse software errors in its structures, functions, behaviors,

user interfaces, and connections to the external systems;

System non-functional requirements such as performances,

reliability, availability, vertical scalability, security, and etc.

Multi-tenancy, customization, and configurability; Mobile SaaS

scalability; Connectivity to its external contexts; Interoperability and

portability

Testing execution Offline testing in a test laboratory before a product delivery. Offline testing in a private cloud-based test environment; On-demand

test execution in a cloud-based virtual test environment; Continuous

testing for SaaS in/on/over clouds.

Testing environment A pre-configured test environment in a test laboratory with

purchased hardware/software and tools.

A scalable mobile test environment based on cloud with diverse

computing resources and tools; Supporting web browsers on different

mobile platforms and devices.

Testing process Enterprise-oriented test processes for each project. Crowdsourcing based process; Well-defined TaaS processes by TaaS

vendors; Emphasis on tenant-based testing, service component testing,

etc.

Testing techniques Apply selected well-known white-box and black-box testing

techniques at the component level (or unit level) and the

system level.

Required innovative continuous testing techniques; New testing

solutions to deal with multi-tenancy and elasticity.

Testing tools Use limited testing solutions and tools with the purchased

licenses.

On-demand usage of diverse test tools with shared licenses in a cloud

environment based on pay-as-you-use.

Project cost Required hardware/software (license) costs in a test lab, plus

engineering costs.

Based on a pre-defined SLA; Pay-as-you-test service costs.

Fig. 2. Samples of mobile TaaS infrastructure on cloud instance.

I

(

s

w

n

v

q

t

W

K

t

h

d

l

m

t

b

w

i

4

a

b

m

a

f

i

m

l

a

t

f

e

4

i

p
nteractive, MobileCloud Automation, and MobileCloud Monitoring

http://www.perfectomobile.com/).

Here two industrial cases of best practices in mobile TaaS are

hown. Humana, a fortune-100 health and well-being company

ith more than 40,0 0 0 associates provides consumers and busi-

esses with access to information via mobile channels across their

arious health care operations in all 50 U.S. states. Humana re-

uired a solution for testing mobile apps and websites, to ensure

heir members continued reliable access to healthcare information.

ith the support of DeviceAnywhere mobile testing platform from

eynote, Humana has set up a local dedicated testing environment

o cover all of mobile channels. With this test environment the

ealthcare provider can run manual and automated tests on 50 live

evices, including iOS, Android, and Blackberry platforms. In the

ast thanksgiving, some businesses performed very well with their

obile apps. Internet Retailer cited Catchpoint data that pointed

o the five native mobile apps that provided users with excellent

uying experiences on Black Friday. At No. 1 comes Foot Locker

ith search times as fast as 0.133 seconds with performance test-

ng from Perfecto (http://blog.perfectomobile.com).

. A developed cloud based mobile TaaS system (MTaaS)

We are developing a mobile TaaS system, including both IaaS

nd PaaS pieces. Currently, we have developed a cloud-based mo-

ile TaaS system (MTaaS) as infrastructure-as-a-service (IaaS) for

obile app testing known as IaaS piece. The PaaS piece (such

s test automation platform) is still under work. MTaaS supports

or several key infrastructure services such as resource provision-

ng, monitoring and billing services. To provide mobile IaaS, MTaaS

anages massive resources and has responsibility of provision, al-

ocation, and charging. Server, emulator, device, and mobile hub

re the key resources in MTaaS. This section describes the infras-

ructure of MTaaS, the detailed system design, the provided service

unctions, and resource allocation algorithms. In addition, system

valuation is discussed in the end of this section.

.1. Infrastructure of MTaaS system

The developed system MTaaS provides IaaS for mobile test-

ng with setting up a mobile infrastructure, which supports

rovisioning, management, monitoring and billing services. The

http://blog.perfectomobile.com

C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55 43

Table 2

Comparisons of cloud-based mobile TaaS approaches.

Perspectives/ Different

approaches

Emulation-based testing on clouds Mobile testing in crowdsourcing Device cloud-based mobile testing

Mobile TaaS service model Emulation-based mobile TaaS service

model

Crowdsourcing-based service model Remote mobile TaaS service model

Business models and billing Pay-as-you-use for device emulators and

other testing services

Crowdsourcing cost models Pay-as-you-use for remote devices and

other testing services

Mobile testing environment Emulation-based mobile taas

infrastructure

Ad-hoc mobile testing environment, and

TaaS Infrastructure

Shared Mobile TaaS infrastructure

Mobile devices costs Only use emulators, no device costs No costs on mobile devices since it uses

mobile devices from crowded testers

Device rental costs

Mobile end-to-end

transaction testing

Emulation-based end-to-end transaction

testing

end-to-end transaction testing in

crowdsourcing

Large-scale device oriented end-to-end

transaction testing

Mobile usability testing No coverage on real mobile user

experience

Easy to support usability testing Scalable test coverage on real mobile

devices

Mobility testing No reallocation service testing, Using

emulators only

Easy to performlocation service testing

by crowded testers

Limited location service testing

QoS Testing for scalability,

performance, reliability and

availability

Emulation-based QoS testing at the

limited scale

Ad-hoc QoS testing using crowdsourcing;

low testing quality risk; an uncertain

validation schedule

Large-scale QoS testing

Mobile Security testing Emulation based security testing only Ad-hoc security testing with risk problem Diverse device based security testing

Mobile app function and gui

testing

Emulation-based Testing, hard to test

functions related to real device

Ad-hoc mobile testing based on No. of

users

Diverse device based function testing

Fig. 3. The architecture of MTaaS.

a

i

i

b

a

m

a

c

(

F

t

a

r

s

M

a

b

t

q

c

t

s

p

t

(

a

o

t

m

w
pproach to the infrastructure is based on device cloud as

ntroduced in Section 3 . Emulation cloud is also supported

n MTaaS. The system aims to provide an on-demand mo-

ile infrastructure for mobile app testing clients’ access to

ny mobile infrastructure such as mobile devices, emulators,

obile hubs and server machines, in order to deploy, host

nd test mobile applications. The primary system clients in-

lude Admin, users (such as testers), TaaS tools or applications

They configure the provided IaaS resources for future testing).

ig. 3 shows the infrastructure of MTaaS. There are four layers in

he architecture, including dashboard, infrastructure controller, virtu-

lization, and physical layer.

The dashboard layer provides a detailed view of the available

esources to MTaaS clients. Also, a graphical representation is pre-

ented to facilitate users to monitor their resources running in

TaaS.
The controller layer consists of several key components, such

s monitor, billing, infrastructure management, etc. For instance,

illing is the fundamental feature for service providers to operate

his infrastructure. Consumers can set up their payment account,

uery the bills, and make payments. Various cloud systems or tools

an be used. In MTaaS, we adopt OpenStack as cloud-based infras-

ructure management support. OpenStack is a well-known open-

ource cloud operating system for managing large pools of com-

ute, storage and networking resources throughout a data cen-

er, managed through a UI dashboard or via the OpenStack API

 Openstack documentation 2016). There are several interactions

mong the internal APIs and external APIs. We have developed our

wn APIs, which use RESTful web services to interact with the sys-

em. For multiple requests, the resource allocation and manage-

ent engine employs a load balancer algorithm to distribute the

orkload among multiple hosts spread across different clouds. Our

44 C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55

Fig. 4. The two-level virtualization design in MTaaS.

Fig. 5. Cloud-based infrastructure of MTaaS.

d

s

fl

4

I

u

i

c

a

f

t

I

c

s

a

i

r

m

c

‘

v

o

i

i

t

s

s

a

c

d

s

d

t

s

s

d

s

d

m

c

e

approach aims to achieve load balancing of clouds with minimum

resource starvation and maximum resource utilization by the means

of optimized resource provisioning .

The virtualization layer separates physical infrastructures to cre-

ate various dedicated resources. It is the fundamental technology

that powers cloud computing (Mann, 2015). Relying on virtualiza-

tion technology, a host on a physical machine can start multiple

virtual resources. A large number of virtual resources are the basis

for IaaS. Due to the various performances, the used virtual solu-

tions are different, resulting in cloud computing resources in het-

erogeneous characteristics.

We proposed a two-level virtualization solution for mobile

cloud. Level one is in front of OpenStack regions, and level two

is in front of Virtual Machines. Fig. 4 shows the sample of two-

level virtualization design. As shown in the Figure, Load balancer

is a crucial component inside of IaaS since massive requests from

customers need to be handled, distributed, and processed. Imaging

multiple regions available, load balancer at this level distributes

users’ requests to different regions, as shown in Fig. 4 (a). Load bal-

ancer running at level one works closely with OpenStack Controller

node that commands the whole functionality of scheduling jobs in

each region. The interface between load balancer and controller is

based on RESTful APIs which provide plentiful runtime informa-

tion of system. Behind level one load balancer, another important

node is virtual machines distributor. It functions load balancing as

level two shown in Fig. 4 (b). Virtual machine is the fundamental

resources in each region, and the host of all the virtual mobile de-

vices. When user requests are forwarded to one particular region

where the virtual machine load balancer is running, they are dis-

tributed further to different virtual machines.

The physical layer represents the physical resources such as mo-

bile devices, servers, emulators, and hubs of our own or donated

by providers.

Fig. 5 presents the cloud-based infrastructure in MTaaS. The re-

mote mobile emulation cloud and mobile device cloud are both

adopted to support large-scale mobile testing. The IaaS server han-
les diverse on-demand testing services. The IaaS management

erver controls the infrastructure service process and business

ow.

.2. MTaaS system design

This subsection describes the system design primarily in user

nterface, database, algorithms, and MTaaS connectivity.

User interface design: Various types of clients like admin ,

sers, or applications (TaaS tools) can access the system. Depend-

ng on the user type, Visualization is presented to the user. Admin

an have access to run time graph visualization. The request gener-

tion UI presents the user to specify resources to the requests. This

urther is handled by proxy server. The billing UI is made available

o user as soon as resources are granted to/ registered by users.

n short, users interact with the UI through web browser. A user

an perform various relevant actions on UI such as requesting re-

ources through request loader module. The incoming requests are

ccepted by a proxy server (‘Load balancing server’). This server

s Node.js server. The navigation flow diagram shown in Fig. 6 rep-

esents the flow between web pages and explains the to and fro

ovement in UI application. The main page is home page. Users

an navigate from home page to ‘request generator’ or ‘billing’ or

resource usage’ pages. The additional run time graph page is also

isible, pictorially representing resource status from admin’s point

f view.

Logic and algorithms design: In MTaaS, resource management

s an important part in controller, mainly including load balanc-

ng and resource allocation. The incoming requests are firstly dis-

ributed to a load balancer port based on diverse load balancing

trategies. They are directed to servers depending on the chosen

trategy. Then, the physical and virtualized resources need to be

llocated. In mobile device cloud, there are multiple cloud data

enters across various locations. Based on the requests’ static or

ynamic nature, various types of resource allocation algorithms to

upport the nature of requests are needed. Thereby request han-

ling, resource allocation, and load balancing go hand in hand in

he system. The detailed strategies and adopted algorithms for re-

ource allocation are discussed in Section 4.4 .

Database design: The system is facilitated by HTML 5 – local

torage feature as it allows fast access to data. At initialization, the

ata is fetched from My SQL and stored in HTML5. Then all the

torage and retrieval is performed through HTML 5. The database

esign has been made taking into account normalization rules to

inimize redundancy. The design facilitates minimal storage space

onstraint and is optimized to enable faster date access and recov-

ry. A sample piece of data in the application is shown below.

Server {

’Server Name’: ’Test Server 3 ′ ,

C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55 45

Fig. 6. The navigation flow of UI.

s

i

u

p

w

A

G

i

w

p

C

c

a

i

C

t

S

h

4

t

b

N

p

d

m

m

t

q

f

e

Table 3

Samples of designed RESTful APIs.

RESTful API calls API functions

POST Create cloud

POST Create host

POST Create resource allocation request

GET Get cloud by name

DELETE Delete server

POST Setup cloud

POST Request loader

f

r

p

o

s

b

t

c

D

n

q

u

B

r

o

o

p

u

U

a

b

e

t

s

t

a

a

s

’ IP Address’: ’ 10.0.0.2 ′ ,
’Image Name’: ’cirros-0.3.2 × 86_64-uec’,

’Location’: ’China’,

’Status’: ’Active’,

’Date Created’: ’6/20/2016 ′ ,
’ Availability’: ’ Unavailable’}

It is related to server information at a given point of time in

ystem. The data is stored in local storage and can be fetched from

t.

MTaaS connectivity design: A set of RESTful APIs have been

sed to establish communications between user interface and ap-

lication logic layer. The clients from any browser can interact

ith the system. The interactions are carried out through RESTful

PI calls (GET, PUT, POST, and DELETE). When the method type is

ET, data associated and pertaining to desired target as designed

s fetched. We have developed our own APIs, which use RESTful

eb services to interact with the system. Partial designed APIs are

resented in Table 3 with a sample request for each. For instance,

reate Cloud is a POST method to create a cloud in a particular lo-

ation. Create Resource Allocation Request is a POST method to cre-

te a request for resource allocation to one of the resource types,

.e., Mobile Device, Mobile Hub, Emulator, and Server Machine. Get

loud By Name is a GET method, which retrieves a cloud and hosts

hat are present along with usage statistics of the cloud, and Delete

erver is a POST method, which deletes a particular instance of

ost.

.3. Service functions of MTaaS

The developed MTaaS system provides several service func-

ions, including request generator, resource provisioning, dash-

oard monitoring, mobile network connectivity, and billing service.

ext, those service functions are explained respectively.

Request loader service: The request loader generates multi-

le mobile-enabled service requests. The incoming mobile requests

emand diverse mobile cloud resources such as mobile devices,

obile hub, emulators and server machines to form a virtualized

obile testing infrastructure. MTaaS provides a convenient way

o manage these emulator resources with operations of creating,

uerying, and deleting. Users can create a new emulator with a

ew clicks. Before submitting, users can modify the parameters of

mulators to satisfy their test requirements. Request loader service
unction facilities our testing needs through a number of generated

equests.

Resource provisioning and management service: This com-

onent allows an administrator to apply different load balancing

ptimization algorithms as part of optimized resource allocation

trategy to deliver selected mobile testing infrastructure requested

y users to form a mobile cloud testing environment. In addition

o Mobile Devices, Mobile Hubs, Emulators and Server Machines,

omponents such as Mobile Hub Manager, Emulator Manager, and

evice Manager are also provided. They control and manage a

umber of configurable mobile devices and emulators. Users can

uery, choose, and terminate resources.

MTaaS provides a nice virtual device screen function by which

sers can manipulate their remote emulators as same as local ones.

esides virtual devices screen feature, users also can log into their

emote emulators via standard SSH tools. Devices are another kind

f essential resources provided by MTaaS, since most mobile devel-

pers need to verify some features with real smart devices. MTaaS

rovides the same interface by which users can connect the pop-

lar test tools and mobile app IDE to their devices in the cloud.

sers can quickly create any model of devices that they need in

 minute with MTaaS, and don’t need to spend a huge money to

uy them. Fig. 7 shows the screenshot of configured and selected

mulators and physical devices. The left screenshot in Fig. 7 shows

he requested emulators, including their name, OS type and ver-

ion, RAM, and status. The right screenshot presents the informa-

ion of requested physical mobile devices. In addition, in MTaaS,

 user can wishfully lease resources, and in turn gain monetary

dvantage for that. Users can provide resource donations such as

ervers, devices, and hubs.

46 C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55

Fig. 7. Screenshot of emulator and physical devices.

Fig. 8. Connecting MTaaS to network by using hub.

S

m

t

a

t

p

F

i

t

f

o

c

t

t

b

p

c

F

d

q

p

i

i

u

Mobile network connectivity service: Mobile hub provides

network connectivity for both emulators and devices. Most of

the mobile apps are internet-based and very sensitive to network

bandwidth, latency, and throughput. Mobile hub can satisfy these

kinds of mobile app with multiple choices of network connection

like wifi, cellular , etc. Each bub is combined with several mobile de-

vices or emulators. As shown in Fig. 8 users can create, query, and

delete mobile hub according to their requirements. Once a mobile

hub is created, users can attach both emulators and devices to this

hub so that all those equipment get network connection.

Through resource provisioning and network connectivity, the

result of requested infrastructure is configured. Fig. 9 shows a sam-

ple runtime graph of the infrastructure configuration in dashboard .

A hub is connected to Test Server 1 with several mobile devices of

Android OS in Location of USA. Fig. 9 also shows the configured

clients’ infrastructure needs through real physical resources plus

software controlling and defining.

Billing service: With this module, a business cost model is im-

plemented with billing metrics to determine the costs for users

based on their service request types. In MTaaS, we propose a sys-

tematic cost model for mobile testing IaaS, PaaS, and SaaS. For

IaaS, the primary cost factor includes the number of CPU cores,

the amount of RAM and disk storage, as well as the mobile re-

source usage. For PaaS level, the cost factors are the test environ-

ment, usage time, and configurable testing platform. For SaaS level,
aaS testing tools, cost sharing, and license are considered as the

ain cost factors. Billing service function provides a fundamen-

al support for service providers to operate MTaaS. Both users and

dministrator can leverage this feature. Administrator manages all

he user payment accounts and bills. Users can choose their billing

lan within “pay as hour go” or “month flat rate” . As shown in

ig. 10 , a billing query function facilitates users to view all the bills

n history.

Mobile monitoring service: The UI dashboard provides moni-

oring and reporting functions including resource usage across dif-

erent clouds, usage index per cloud, the utilization and availability

f CPU cores, RAM and disk storage. For each virtual resource when

reated, the system will instantiate a VM monitor object for real-

ime monitoring of the indicators of the VM parameters at run-

ime for a single request in order to get access to the VM load

alance information. Besides monitoring resources, dashboard also

rovides a quick start for users who firstly log into MTaaS. Users

an pick-and-choose different plans based on their requirements.

ig. 11 shows the screenshot of the monitoring services in MTaaS

ashboard. There are some emulator plans and device plans re-

uested from users. Here Emulator plan A, Emulator plan B, Device

lan A, and Device plan B are available. Through the use of highly

nteractive D3 JS library in java script, we provided graph visual-

zation to all clients to know the current status of overall resources

sed.

C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55 47

Fig. 9. The dashboard runtime graph of infrastructure configuration.

Fig. 10. A service billing screenshot.

4

i

r

a

i

l

S

h

d

i

o

4

.4. Resource allocation in MTaaS

Resource allocation has a significant impact in cloud comput-

ng, especially in pay-per-use deployments where the number of

esources is charged to application providers. The issue here is to

llocate proper resources to perform the computation with min-

mal time and infrastructure cost. Proper resources are to be se-

ected for specific applications in IaaS (Zhan et al., 2015; Manvi and

hyam, 2014; Yehuda et al., 2014; Do and Rotter, 2012) . In MTaaS,

m
ow to utilize the traditional resource allocation algorithms to ad-

ress the new needs in mobile device cloud effectively raises new

ssues and challenges. In the following subsections, the issues, res-

lutions, and proposed algorithm are discussed in detail.

.4.1. Issues and resolutions

Issues:

A lot of differences are exited between conventional cloud and

obile device cloud. The conventional cloud focuses on computing

48 C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55

Fig. 11. Dashboard UI of monitoring service.

Fig. 12. Overview of hybrid algorithm.

4

r

s

i

s

t

i

d

p

r
and storage while mobile resources and connectivity are paid more

attention in mobile device cloud. For instance, the primary new re-

sources in mobile cloud are mobile devices and hubs. In addition,

mobile network connectivity is performed through various wire-

less solutions, such as 2 G, 3 G, wifi, cellular, etc. All these features

bring new issues for cloud-based mobile TaaS.

In MTaaS, cloud computing infrastructure services are a collec-

tion of resources, cloud resources diversity and heterogeneity. Cur-

rent device cloud can be provided by large business companies.

Thus, we assume that the devices are from three parts: users’ de-

vices, test lab provided devices, and devices in MTaaS. First of all,

basic service resources can be divided according to geographical

area. A region is shown in the resource layer structure. Each re-

gion contains a DC (data center), and each DC is considered as a

cluster system, with multiple physical machines. The diversity of

devices and users lead to location issue for resource allocation.

According to our survey, there are a number of published algo-

rithms applied in resource allocation in cloud computing (Mann,

2015; Zhan et al., 2015; Manvi and Shyam, 2014; Yehuda et al.,

2014; Do and Rotter, 2012), such as FCFS, Round Robin, GA, ACO,

PSO, etc. However, diverse mobile resources, different locations,

and large-scale requests lead to the need of revised or new algo-

rithms in MTaaS. The nature of incoming requests in MTaaS can

be static or dynamic. The pre-booking or planed requests are static

while the on-demand or real-time requests are dynamic. The pur-

pose of applied algorithms for static requests aims at optimization,

and for dynamic requests the on-demand features need to be ad-

dressed. Thus, diverse algorithms need to be selected to deal with

the static and dynamic natures of different requests.

Resolutions:

To meet the demand of various requests, we need to take ad-

vantage of the available algorithms. In MTaaS, we proposed a Hy-

brid Algorithm for resource allocation. Round Robin algorithm and

Random Algorithm are selected for dynamic requests while Ant

Colony Optimization is selected for static optimization. For large-

scale requests, we adopt request peeking to deal with request pri-

ority issue. In addition, a Location Aware Algorithm is proposed

to deal with the location issue. The overall goal of Hybrid Algo-

rithm aims to improve the system performance while reducing

costs due to wireless connectivity, communication, and diverse lo-

cations. Next, the proposed Hybrid Algorithm is discussed in detail.
n

.4.2. The proposed hybrid algorithm

Fig. 12 shows the overview of the algorithm. The key step is

equest peeking, location aware, and algorithm selection. The three

teps are described below in detail.

Step 1: Request peeking . An approach to request optimization

s implemented through request peeking. At any point of time, the

et of request(s) reside in a request queue after submission. On

urning on this feature, the requests are served on basis of prior-

ty. The priority can be based on request duration time, urgency

egree, service cost, request level, and etc. Fig. 13 presents the

rocess of request peeking. Once the requests are accepted, the

equests in queue are sorted according to the priority rules. The

umber of peeking can be set in terms of practical needs.

C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55 49

Fig. 13. The process of request peeking .

u

f

o

m

c

c

c

l

c

f

v

f

s

b

o

t

t

r

t

a

q

O

t

r

t

a

t

(

i

Algorithm 1. Location aware algorithm for MTaaS.

Input : undetermined request queue

Output : request scheduling policy

1: FOR request IN Arr do

//compute nearest cloud center for each request in queue

2: Get coordinates of cloud centers list;

3: Users_location = compute_location(request);

//current request user’s location

4: WHLIE list ! = NULL

5: Current_center = list.pop;

6: Cloud_location = compute_location(Current_center);

7: Distance = compute_distance(users_location,cloud_location);

//compute the nearest cloud center

8: IF distance < min_distance THEN

9: nearest_cloud = Current_center;

10: min_distance = distance;

11: END IF

12: END WHILE

13: Allocate request to Current_center;

//assign each request to the nearest center

14: END FOR

o

c

t

d

r

a

B

q

h

d

T

t

t

t

a

w

t

d

r

4

4

s

o

m

t

l

t

t

m

w

a

e

r

e

Step 2: Location aware. In reality, a cloud computing system

sually consists of some data centers which are distributed in dif-

erent geographical areas. These data centers connect with each

ther by dedicated network with high reliability and high trans-

ission rate. Compared to traditionally centralized internet data

enter (IDC), users in different regions can access to the close data

enters in MDC environments. The services for users requested

an be provided by data centers nearby, as it can reduce access

atency and network load. Meanwhile, location aware improves

ommunication efficiency and supports to reduce network costs

or some high-bandwidth applications. Therefore, for serving di-

erse nature of requests, we proposed Location aware algorithm

or MTaaS. The pseudo codes for Location-aware algorithm are pre-

ented in Algorithm 1 . In the algorithm, resources are distributed

ased on the location distance between user and data center. In

ur implementation, test center and user regions are the key loca-

ion factors. Firstly, the users’ location distance is calculated, and

hen the nearest cloud data center is computed. Finally, the users’

equests are allocated to the center.

Step 3: Algorithm selection . In order to continuously optimize

he performance of the implemented system, we analyze several

lgorithms for resource allocation. As we discussed, once the re-

uests are submitted by user, they are received by proxy server.

ne of the algorithms picked for requests come into considera-

ion then. We have selected three typical resource allocation algo-

ithms. These are used for serving dynamic as well as static na-

ure of requests. The first algorithm is Round Robin (RR). In RR

lgorithm, time slices are assigned to each process in equal por-

ions and in circular order, handling all processes without priority

also known as cyclic executive) (Hirenkumar, 2015). RR schedul-

ng is simple, easy to implement, and starvation-free. The second
ne is Random Algorithm, which is a commonly-used resource allo-

ation strategy. In MTaaS, mobile hubs and devices are combined

ogether. The complexity of nodes is not high. Thus, RR or Ran-

om Algorithm is suitable for resource allocation. The third algo-

ithm is Ant Colony Optimization (ACO), which is inspired from the

nt colonies that work together in foraging behavior (Dorgio and

irattari, 2010).

Our algorithm selection process is as follows. When the user

uest is dynamic, we select simple RR or Random Algorithm to

andle on-demand needs. When the user quest is static and pre-

efined, ACO is selected for optimization of resource allocation.

he detailed comparison of diverse algorithms for resource alloca-

ions are not discussed in this paper. In the future work, we plan

o perform several comparison experimental studies to investigate

he application effect.

In summary, the hybrid algorithm based on the three steps

bove is described in Algorithm 2 below. At first, Algorithm 2 deals

ith request peeking (lines 1–14) according to the setting rules;

hen, Location-Aware Algorithm is performed (lines 15–20); later,

ifferent algorithms are selected in terms of static and dynamic

equest nature (lines 21–27).

.5. System evaluation

.5.1. System testing

We performed both function and performance testing of MTaaS

ystem. For scenario-based function testing, we designed a total

f 29 test scenarios for dashboard, emulator management, device

anagement, hub management, and billing management. All the

est cases have been executed and passed. For example, Table 4

ists the five passed test cases for the emulator management func-

ion.

For performance testing, we mainly used the average response

ime and error ratios as the two indexes to demonstrate the perfor-

ance with the tool JMeter . For instance, the typical five scenarios

e chose are as follows. The testing results for the five scenarios

re shown in Tables 5 –9 respectively. They are as follows.

Scenario 1: Consecutively increase user number from 0 to 10 0 0,

ach user sends the request to get the responding emulators with

unning status.

Scenario 2: A user request to launch 20 emulators at one time.

Scenario 3: Consecutively increase user number from 0 to 20,

ach user sends the request to launch 5 hubs.

50 C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55

Algorithm 2. Hybrid algorithm for MTaaS.

Input : undetermined request queue

Output : request scheduling policy

1: Arr = []

2: FOR request IN request list do

//perform request peeking on request queue

3: IF server.job > maximumjob or server.load > maximumload

4: WHILE len(Arr) < max length do

5: request_duration = request.getduration();

6: request_level = request.getlevel();

7: Arr.append (request_duration,request_level);

//assignment for each request

8: END WHILE

9: Arr.Sort(); //sort by some policy

10: WHILE server.request < max request do

11: Send request to server;

12: ELSE pass;

13: END IF

14: END FOR

15: FOR request IN Arr do

16: perform Algorithm 1; // Location aware algorithm

17: Requestlist = [];

18: FOR get request from server do

19: Requestlist.append (get request from server);

20: END FOR

21: FOR Requestlist ! = NULL do

22: IF Requestlist[i]. expectedtime < d

23: IF Requestlist[i]. nature is static

24: Apply Requestlist[i] and Requestlist[i + 1] to round robin

25: and random;

26: END IF

27: ELSE Apply Requestlist[i] to ACO;

28: END IF

29: Delete Requestlist[i];

30: END FOR

Table 4

Partial function testing results.

Test case Description Result

Func_emulator_01 Create a emulator Pass

Func_emulator_02 Query emulators Pass

Func_emulator_03 Delete a emulator Pass

Func_emulator_04 View screen of a remote emulator Pass

Func_emulator_05 Connect to a remote emulator via SSH Pass

Table 5

Testing results of scenario 1.

Function Get emulators of each user

APIs /emulators

Method GET

Users Consecutively from 0 to 10 0 0 in 5 min

Avg. requests 18 per sec.

Avg. response time 10 ms

Error ratio 1 .08%

Table 6

Testing results of scenario 2.

Function Launch emulators

APIs /emulators

Method POST

Users 1

No. of Emulators 20

Avg. response time 300 ms

Error ratio 2 .17%

Table 7

Testing results of scenario 3.

Function Launch hubs

APIs /hubs

Method POST

Users Consecutively from 0 to 20 in 1.5 min

No. of hubs 100

Avg. response time 270 ms

Error ratio 1 .21%

Table 8

Testing results of scenario 4.

Function Get hubs

APIs /hubs

Method GET

Users Consecutively from 0 to 10 0 0 in 1.5 min

Avg. requests 20 per sec.

Avg. response time 125 ms

Error ratio 4 .68%

Table 9

Testing results of scenario 5.

Function Get emulators & hubs

APIs /emulators, /hubs

Method GET

Users Consecutively from 0 to 10 0 0 in 1.5 min

Avg. requests 20 per sec.

Avg. response time 200 ms

Error ratio 4 .83%

p

l

2

o

t

s

e

(

n

t

i

h

s

c

b

4

m

i

i

m

a

c

Scenario 4: Consecutively increase user number from 0 to 10 0 0,

each user sends the request to get the responding hubs with run-

ning status.

Scenario 5: Consecutively increase user number from 0 to 10 0 0,

each user sends the request to get the responding emulators and

hubs with running status.

Fig. 14 (a)–(e) presents the testing results of the five scenarios

in a curve graph respectively. The left vertical axis represents the

number of VU (virtual users). The right two vertical axis shows RT

(response time) and the number of Hits. The horizontal axis repre-

sents the testing time. Fig. 14 (a) shows the testing results of Sce-

nario 1. As shown in the graph, the RT value keeps stable during

the 5 min, and the average RT value is 10 ms. The number of Hits/s

Total is fluctuant around 20 each second. Obvious Hits Errors ap-
ear six times in the duration. The value of error ratio is 1.08% as

isted in Table 5 . In Scenario 2, RT value is fluctuant from around

0 0 ms to 40 0 ms most of the time as shown in Fig. 14 (b). Obvi-

us Hits Errors happen three times in the duration. In Scenario 3,

he number of Hits/s Total is one almost all the time in Scenario 3

hown in Fig. 14 (c). Obvious Hits Errors only appears one time. The

rror ratio is 1.21% in a low level. The performance of Scenario 4

shown in Fig. 14 (d)) and Scenario 5 (shown in Fig. 14 (e)) shows

o significant difference as the test case is similar.

In summary, the RT value is less than 300 ms for all of these

ested scenarios. Thus, according to the testing results, the system

s doing well in performance for RT. The error ratio is relatively

igher when the number of virtual users is increasing to 10 0 0 in a

hort time, such as 1.5 mins in Scenario 4 and 5. The testing results

ould support us to find more issues of the system performance

ottleneck.

.5.2. A comparative study between MTaaS and other systems

Currently, there are not any open-source implementations for

obile TaaS according to our survey. Various online mobile test-

ng platforms are available nowadays. However, their functional-

ty is limited since they only provide one or few of the testing

echanisms. The related business players such as Perfecto Mobile

nd uTest (introduced in Section 3) provide partial features such as

ross platform testing, test simulation, and crowdsourcing testing.

C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55 51

Fig. 14. Performance testing results of MTaaS system.

t

t

t

M

p

o

t

v

c

c

T

w

w

t

t

t

o

o

r

a

t

u

o

o

v

t

a

c

m
Different from the current business tools, the developed sys-

em in this paper aims to provide infrastructure-as-a- service for

esters, tools, applications, etc., in order to form the backbone for

he different types of tests that are part of mobile TaaS. Our system

TaaS could form an integral piece of mobile TaaS on which ap-

lication services such as testing tools and methods can be based

n. The request generator of MTaaS will be the basis for genera-

ion of diverse tests and the resource allocation and provisioning

ia hybrid intelligent algorithms. They will be used to automati-

ally allocate resources per demand basis on the MTaaS system. A

omparison to the existing major players is presented in Table 10 .

he main difference between existing players and MTaaS is that

e developed infrastructure service for mobile TaaS. In addition,

e adopt device cloud and emulation cloud as the major infras-

ructure approach. MTaaS is a more accessible option compared to

he current market offerings. Most of the current systems require
y
hat users join a community and network to find human testers in

rder to test applications.

Our service aims to automate the median between the devel-

per and the tester to provide access to the smart phones and the

esources to test an application, in order to eliminate the need for

 network of human testers due to our automation of black box

ests that we are developing.

In addition, we aim to perform testing on actual cell phones

nlike many other mobile application testing services depending

n emulators to generate test results. Applications may work well

n emulators but then may crash when tested on an actual de-

ice. In order to quickly send out multiple smart phone devices for

esting, our platform and network of smartphones will be readily

vailable at any time. Since the operations are scalable without in-

urring a large cost, MTaaS can meet virtually any amount of de-

ands for service. If the demand for the service ever did rise be-

ond what our current test devices were able to process, we could

52 C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55

Table 10

A comparison to the existing major players.

Major players Testin Yiceyun PerfectoMobile uTest TestDroid Our system (MTaaS)

Infrastructure

approach

Crowdsourcing Crowdsourcing Emulation cloud Crowdsourcing Emulation cloud Device cloud,

emulation cloud,

support crowdsourcing

users

Real devices yes, 40 0 0 + Yes, 200 + Yes, 200 + no Yes, 400 + Yes, by users, providers,

and donated reources

Auto-test No No Yes No Yes Yes

Deploy method Central control plus

user device

User device Continuous quality

Lab

User device Centers in US and

Europe

Device cloud

OS type iOS, android Android iOS, android iOS, android iOS, android iOS, android

Testing focuses Install/uninstall,

compatibility,

function,

performance

Adaption, traverse,

performance

Remote,

performance,

monitoring

Global testing

community

Function,

performance

On-demand, scalable

testing,

Service type PaaS PaaS PaaS PaaS PaaS IaaS

Test community Yes No No Yes No No

24/7/365 service Yes No No No No Yes

Security testing No No No Yes No No

t

h

p

i

I

r

c

p

c

p

s

s

5

i

G

2

b

s

p

m

s

t

c

f

t

t

t

b

t

t

b

f

p

T

d

t

e
offer for more smartphone owners to earn money by turning their

old phones into test devices as resource donation.

Moreover, MTaaS supports crowdsourcing mobile cloud based

testing. Through the platform, clients are able to remotely connect

app developers to devices (smartphones) that are located virtually

anywhere in the world as long as the devices are powered on and

connected to the platform via the internet. Though this type of

crowdsourcing testing already exists in some way, they require a

network of people to manually run the tests on the devices that

are connected to the platform. Besides IaaS, we are currently de-

veloping test automation approaches in order to reduce the de-

mand for a knowledgeable human tester to manually run tests on

the device. Along with that, we are developing an app that anyone

with a smartphone can download that will connect their phone

to our platform as a test device and become part of our network.

Once the devices are connected, the developers can remotely in-

stall their app on any number of devices in our network, and run

automated tests. Once the tests are concluded, our platform will

uninstall the app, and then send a bug report back to the app de-

veloper so they can determine what they need to do in order to

get their app working properly on that particular device. Through-

out this process, the owner of the device does not have to do any-

thing other than leave it on and connected to the internet with our

app running.

Automating the human element of mobile testing (as well as

purchasing a warehouse of phones) results in significant cost sav-

ings. MTaaS aims to solve the problem of smaller app developers

not having sufficient access to a variety of different physical test

devices to test their new apps on. Additionally, our service would

be an alternative for bigger app developers to purchasing and run-

ning their own testing lab, and as a way to outsource their mobile

testing needs for cost savings.

4.6. The limitations of current MTaaS

The current MTaaS system suffers from several limitations as

follows.

The developed system in this paper only focuses on IaaS level,

i.e., on-demand infrastructure service of test resources (device, em-

ulators, hubs, TaaS servers) for mobile app testing. To provide a

complete mobile TaaS system, PaaS-level service need to be devel-

oped. Currently, we are working on test automation approaches for

mobile apps, including test environment setting, test models, and

test methods.
Regarding security issue, user access control is considered in

he system. Nevertheless, mobile resource security needs to be en-

anced in the future. As the initial version of mobile IaaS, we

rimarily focus on features such as service infrastructure, virtual-

zation solution, implemented functions and system performance.

n market applications, cloud services encounter a number of the

isks associated with security and privacy. There are several se-

urity issues that need to be addressed, such as the security and

rivacy of user’s data stored on cloud server(s), security threats

aused by multiple virtual machines, and intrusion detection. We

lan to address some security issues in the future work. More is-

ues and challenges in mobile TaaS will be discussed in the next

ection.

. Issues, challenges, and needs in mobile TaaS

Although there are a number of published papers addressing

ssues, challenges and needs in testing services (Gao et al., 2011;

ao et al., 2014) and mobile testing (Gao et al., 2013; Gao et al.,

012), no publications discusses the challenges and needs in mo-

ile testing-as-a-service on cloud. In previous work, we addressed

ome testing issues, such as testing models, testing automation ap-

roaches in mobile testing and mobile TaaS. However, there are

ore challenges existed in testing criteria and standards, large-

cale test script automation and cloud-based Mobile TaaS. This sec-

ion summarized several current issues.

Issue #1: Lack of well-defined infrastructures and approaches on

loud which allow both mobile application vendors and users to access

or mobile TaaS services.

Since cloud-based mobile TaaS is a new topic among software

esting, mobile computing, and software testing service communi-

ies, now we are at the earlier stage. As more people recognize

he importance of its business opportunities and needs, more mo-

ile device clouds (such as sensor device clouds and mobile device

est clouds) will be developed to support mobile TaaS cloud infras-

ructures and services. In addition, with the population of crowd-

ased application, how to construct effective service infrastructure

or crowd-based mobile users and crowed-souring server is still a

roblem.

Need #1: More study and research results on cloud-based mobile

aaS infrastructures and mobile testing environments supporting on-

emand elastic mobile testing resources and offering unified mobile

est automation services.

Since mobile scalability is one important QoS evaluation param-

ter, engineers must validate it using both emulation-based and

C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55 53

d

a

m

m

m

c

c

p

o

s

m

p

t

w

v

c

c

d

w

c

v

b

s

d

i

s

c

m

i

i

t

m

c

c

6

T

t

s

e

f

p

c

w

g

g

t

b

m

f

u

t

a

a

A

d

O

o

u

R

A

A

A

B

B

B

D

D

G

G

G

G

H

H

M

M

M

O

R

R

S

S
evice-based testing approaches. To support this, engineers need to

n elastic cloud-based mobile test infrastructure based on a remote

obile device cloud and mobile virtualization. Hence, a desirable

obile TaaS infrastructure is needed to support auto-provision of

obile testing resources with elastic scalability.

Issue #2: Lack of standards in mobile test environments, billing

harges, tools, and test automation for mobile testing services on

loud.

As pointed out in Gao et al. (2012), engineers have found this

roblem in mobile test automation even though there are numer-

us available mobile test tools since they used different interfaces,

cripting languages, and diverse technologies. Thus, setting up a

obile test environment for multiple applications across various

latforms is tedious, time-consuming, and expensive. Moreover,

he frequent updates and changes in mobile device and platforms

orsen this situation.

Need #2: Developing well-defined standards for mobile TaaS ser-

ice on cloud in different areas.

Several types of standards are needed. The first is a standard

loud-based mobile test environment which can be easily defined,

onfigured, deployed, and executed. And the other refers to stan-

ard testing service protocols and APIs supporting test services,

hich includes the followings.

- Standard TaaS interactions between mobile device clouds and

the mobile TaaS server.

- Standard reusable mobile test platform with well-defined com-

mon testing services on mobile devices.

- Standard tool control interactions/interfaces between mobile

test tools and under-test mobile applications.

- A standard mobile connectivity control service protocol for mo-

bile device clouds to support and control mobile connection for

each mobile device.

Issue #3 : There is a lack of well-defined test models and coverage

riteria to address distinct needs in cloud-based mobile testing.

The existing test models did not address and present di-

erse mobile environment contexts (such as mobile platforms, web

rowsers, mobile technologies, different native APIs, and device-

pecific gesture, and related configurations on different devices),

iverse network connectivity and related contexts, testing scalabil-

ty and mobility, usability and security. These problems need to be

olved in cloud-based mobile TaaS.

Need #3 : Well-defined test models and criteria to address the spe-

ial features in mobile applications.

Recently, several researchers attempt to address this need in

obile testing. For example, a semantic tree model is proposed

n Tao and Gao (2014) to present diverse testing environments

n mobile testing. The approach in Aktouf et al. (2015) aims to

est location-based function service using a dynamic graph-based

odel. However, there is still a demand for more test models and

overage criteria to address the special features, such as mobility,

ross-platform, and crowdsourcing.

. Conclusions

This paper presents the design and development of a mobile

aaS system known as MTaaS as infrastructure-as-a-service. The sys-

em supports mobile TaaS by providing mobile instances such as

erver machines, mobile hubs, devices and emulators for testing

nvironment and applications. The evaluation results indicate the

easibility and effectiveness of the system. In addition, the paper

rovides the detailed perspectives on the current mobile TaaS, in-

luding the test features, infrastructures, industrial practices, as

ell as issues and challenges. Moreover, a comparative study is

iven to indicate the advantage of the developed system.
As the fast increase of mobile app deployments on devices, en-

ineers need more quality validation research and test automa-

ion tools to cope with the discussed issues and challenges. Mo-

ile TaaS is an effective approach to on-demand and large-scale

obile testing through providing services like infrastructures, plat-

orms, and applications. Mobile test automation solutions are also

rgently needed to meet current and future demands in mobile

esting. Besides the developed MTaaS system for mobile TaaS, we

re currently developing a test automation platform as platform-as-

-service based on IaaS as another important piece of mobile TaaS.

cknowledgment

This paper is supported by the National Natural Science Foun-

ation of China under Grant No. 61402229 and No. 61502233 ; the

pen Fund of the State Key Laboratory for Novel Software Technol-

gy (KFKT2015B10), and the Postdoctoral Fund of Jiangsu Province

nder Grant No. 1401043B.

eferences

ktouf, O.E.K. , Zhang, T. , Gao, J. , Uehara, T. , 2015. Testing location-based function
services for mobile applications. In: Accepted in Proceedings of The First Inter-

national Workshop on Mobile Cloud TaaS (MCTaaS 2015) .
malfitano, D. , et al. , 2012. Using GUI ripping for automated testing of android ap-

plications. In: Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 258–261 .

nand, S. , et al. , 2012. Automated concolic testing of smartphone apps. In: Proceed-
ings of the ACM SIGSOFT International Symposium on the Foundations of Soft-

ware Engineering, pp. 1–11 .

ai, X.Y. , Li, M.Y. , Tsai, W.T. , Gao, J. , 2013. Vee@Cloud: the virtual test lab on the
cloud. In: Proceedings of the Workshop on Automation of Software Test (AST),

pp. 15–18 .
o, J. , Xiang, L. , Gao, X.P. , 2007. MobileTest: a tool supporting automatic black box

test for software on smart mobile devices. In: Proceedings of the International
Workshop on Automation of Software Test .

uyya, R. , et al. , 2009. Modeling and simulation of scalable cloud computing envi-

ronments and the cloudsim toolkit: challenges and opportunities. In: Proceed-
ings of International Conference on the High Performance Computing & Simu-

lation (HPCS), pp. 1–11 .
o, T.V. , Rotter, C. , 2012. Comparison of scheduling schemes for on-demand IaaS

requests. J. Syst. Softw. 85, 1400–1408 .
orgio, M. , Birattari, M. , 2010. Ant colony optimization. In: Encyclopedia of Machine

learning. Springer, US, pp. 36–39 .

ao, J. , et al. , 2012. A cloud-based TaaS infrastructure with tools for SaaS vali-
dation, performance and scalability evaluation. In: Proceedings of IEEE Inter-

national Conference on Cloud Computing Technology and Science (CloudCom),
pp. 464–471 .

ao, J. , et al. , 2013. Mobile application testing: a tutorial. IEEE Comput. 47 (2),
46–55 .

ao, J. , Bai, X.Y. , Tsai, W.T. , Uhere, T. , 2011. Cloud testing - issues, challenges, needs

and practice”, software engineering. Int. J. (SEIJ) 1 (1), 9–22 .
ao, J. , Tsai, W.T. , Paul, R. , Bai, X.Y. , 2014. Mobile testing-as-a- service (mobile taas)-

-infrastructures, issues, solutions and needs. In: Proceedings of IEEE Interna-
tional Symposium on High Assurance Systems Engineering (HASE)„ pp. 158–167 .

argassner, W. , et al. , 2008. A script-based testbed for mobile software frameworks.
In: Proceedings of International Conference on Software Testing, Verification,

and Validation, pp. 448–457 .

irenkumar, B.H. , 2015. An overview of load balancing techniques in cloud comput-
ing environments. Int. J. Comput. Appl. 4 (1), 9874–9881 .

ann, Z.A. , 2015. Allocation of virtual machines in cloud data centers—a survey of
problem models and optimization algorithms. ACM Comput. Surv. 48 (1), 1–34

Article 11 .
anvi, S.S. , Shyam, G.K. , 2014. Resource management for infrastructure as a service

(IaaS) in cloud computing: a survey. J. Netw. Comput. Appl. 41, 424–440 .

uccini, H. , Francesco, A.D. , Esposito, P. , 2012. Software testing of mobile applica-
tions: challenges and future research directions. In: Proceedings of International

Workshop on Automatic Software Test Automation, pp. 29–35 .
penstack documentation . http://docs.openstack.org/ .

idene, Y. , Barbier, F. , 2011. A model-driven approach for automating mobile ap-
plications testing. In: Proceedings of the 5th European Conference on Software

Architecture, pp. 1–7 .
iungu, L.M. , Taipale, O. , Smolander, K. , 2010. Software testing as an online Service:

observations from practice. In: Proceedings of International Conference on Soft-

ware Testing, Verification, and Validation Workshops (ICSTW), pp. 418–423 .
atoh, I. , 2004. Software testing for wireless mobile computing. IEEE Wireless Com-

mun. 11 (5), 58–64 .
atoh, I. , 2012. A testing framework for mobile computing software. IEEE Trans.

Softw. Eng. 29 (12), 1112–1121 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0024
http://docs.openstack.org/
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0031

54 C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55

T

Y

Z

Tao, C.Q. , Gao, J. , 2014. Modeling mobile application test platform and environment:
testing criteria and complexity analysis. In: Proceedings of the 2014 Workshop

on Joining AcadeMiA and Industry Contributions to Test Automation and Mod-
el-Based Testing, pp. 28–33 .

sai, W.T. , Hang, Y. , Shao, Q.H. , 2011. Testing the scalability of SaaS applications.
In: Proceedings of IEEE International Conference on Service-Oriented Computing

and Applications (SOCA), pp. 1–4 .
Yang, Y. , Onita, C. , Zhang, X. , Dhaliwal, J. , 2010. TESTQUAL: conceptualizing software
testing as a service. e-Service J. 7 (2), 46–65 .

ehuda, OA.B , Yehuda, M.B. , Schuster, A. , Dan, T. , 2014. The rise of RaaS: the re-
sourceas-as-a-Service cloud. Commun. ACM 57 (7), 76–84 .

han, Z.H. , Liu, X.F. , Gong, Y.J. , Zhang, J. , Chung, H.S. , Li, Y. , 2015. Cloud computing
resource scheduling and a survey of its evolutionary approaches. 47 (4), Article

63:1–33 .

http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039

C. Tao, J. Gao / The Journal of Systems and Software 124 (2017) 39–55 55

C Nanjing University of Science and Technolgy in Nanjing, China. His research areas include
m n testing. Contact him at taochuanqi@njust.edu.cn.

J State University, CA, USA. His research areas include cloud computing, testing-as-a-service

(y.gao@sjsu.edu.
huanqi Tao is an assistant professor in the Department of Software Engineering at
odel-based testing and test aumomation, mobile application testing, and regressio

erry Gao is a full professor in the Department of Computer Engineering at San Jose

TaaS), mobile computing, and software testing and automation. Contact him at jerr

	On building a cloud-based mobile testing infrastructure service system
	 Introduction
	 Understanding cloud based mobile testing-as-a -service
	2.1 Motivations and new requirements
	2.2 The test features of cloud-based mobile TaaS
	2.3 The test process of cloud-based mobile TaaS

	3 Infrastructures for cloud-based mobile TaaS
	4 A developed cloud based mobile TaaS system (MTaaS)
	4.1 Infrastructure of MTaaS system
	4.2 MTaaS system design
	4.3 Service functions of MTaaS
	4.4 Resource allocation in MTaaS
	4.4.1 Issues and resolutions
	4.4.2 The proposed hybrid algorithm

	4.5 System evaluation
	4.5.1 System testing
	4.5.2 A comparative study between MTaaS and other systems

	4.6 The limitations of current MTaaS

	5 Issues, challenges, and needs in mobile TaaS
	6 Conclusions
	 Acknowledgment
	 References

