The Journal of Systems and Software 124 (2017) 39-55

The Journl of
ystems an

S)

Contents lists available at ScienceDirect

T
il

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

CrossMark

On building a cloud-based mobile testing infrastructure service system @

Chuangi Tao®P*, Jerry Gao®d

a Computer Science and Engineering Department, Nanjing University of Science and Technology, PR China
b State Key Laboratory for Novel Software Technology, Nanjing University, PR China

¢ Computer Engineering Department, San Jose State University, USA

dTaiyuan University of Technology, Taiyuan, PR China

ARTICLE INFO ABSTRACT

Article history:

Received 16 April 2016

Revised 22 August 2016

Accepted 8 November 2016
Available online 9 November 2016

With the rapid advance of mobile computing, cloud computing and wireless network, there is a signif-
icant increasing number of mobile subscriptions. This brings new business requirements and demands
in mobile testing service, and causes new issues and challenges. In this paper, informative discussions
about cloud-based mobile testing-as-a-service (mobile TaaS) are offered, including the essential con-
cepts, focuses, test process, and the expected testing infrastructures. To address the need of infrastruc-
ture level service for mobile TaaS, this paper presents a developed system known as MTaaS to provide an
infrastructure-as-a-service (laaS) for mobile testing, in order to indicate the feasibility and effectiveness
of cloud-based mobile testing service. In addition, the paper presents a comparison among cloud-based
mobile TaaS approaches and several best practices in industry are discussed. Finally, the primary issues,

Keywords:

Mobile testing as a service

Cloud-based infrastructure -as-a-service
Mobile application testing

challenges, and needs existed in current mobile TaaS are analyzed.

© 2016 Elsevier Inc. All rights reserved.

Introduction

With the rapid advance of mobile computing technology and
wireless networking, there is a significant increase of mobile sub-
scriptions. This brings new business requirements and demands
in mobile software testing, and causes new issues and challenges.
The growing mobile market needs more and better testing ap-
proaches for mobile apps. A report from ABI Research predicted
the growth of test automation will push the revenues close to
$800 million by the end of 2017 (https://www.abiresearch.com).
Mobile app vendors have encountered the following critical is-
sues. Testing mobile apps and web applications on different mo-
bile platforms and browsers on various devices becomes very
costly and tedious due to the fast upgrading of mobile devices,
large-scale mobile use access, rapid updates of mobile platforms
and technologies, and fast upgrading mobile application services
(Ridene and Barbier, 2011; Anand et al., 2012; Amalfitano et al.,
2012; Satoh, 2004; Bo et al., 2007; Hargassner et al., 2008; Satoh,
2012; Muccini et al., 2012, Gao et al., 2013). According to Yang
et al. (2010), Riungu et al. (2010), Ridene and Barbier (2011), Gao
et al. (2011), Gao et al. (2014), Tao and Gao (2014), Aktouf et al.,
2015, Buyya et al. (2009), Tsai et al., 2011, Anand et al. (2012),
Amalfitano et al. (2012), Satoh (2004), Bo et al. (2007), Hargassner
et al. (2008), Satoh (2012), Muccini et al., 2012, Gao et al. (2013)

* Correspondence author.
E-mail addresses: taochuangi@njust.edu.cn (C. Tao), jerry.gao@sjsu.edu (J. Gao).

http://dx.doi.org/10.1016/j.jss.2016.11.016
0164-1212/© 2016 Elsevier Inc. All rights reserved.

Gao et al. (2012), Bai et al. (2013), testing-as-a-service (TaaS) in a
cloud infrastructure is considered as a new business and service
model. A TaaS provider undertakes software testing project activi-
ties and tasks for under-test web-based software (or an application
system) in a cloud infrastructure, and delivers them as a service for
customers.

Cloud-based mobile TaaS offers a new business and service
model for diverse mobile software validation services using the
pay-as-you-test model to achieve cost-sharing and cost-reduction
in mobile computing resources, networks, cloud computing and
storage infrastructures. Therefore, cloud-based mobile TaaS is
needed to resolve major issues in mobile application testing. These
issues include: a) high costs in current mobile testing practice and
environments; b) lack of testing support and tools for mobile scal-
ability test; c) high mobile testing complexity and harness due to
high diversity in mobile devices, platforms, browsers, and environ-
ments.

Although there are a number of published papers addressing
issues, challenges and needs in mobile testing (services) (Gao et
al, 2011; Gao et al,, 2014; Tao and Gao, 2014; Aktouf et al., 2015;
Buyya et al., 2009; Tsai et al., 2011; Anand et al., 2012; Amalfi-
tano et al., 2012; Satoh, 2004; Bo et al., 2007; Hargassner et al.,
2008; Satoh, 2012; Muccini et al., 2012; Gao et al., 2013; Gao
et al., 2012), seldom publications discuss the challenges and needs
in cloud-based mobile TaaS, especially at infrastructure level. In
previous work (Gao et al., 2013; Gao et al,, 2012), we mentioned
some testing issues such as testing models, testing automation

http://dx.doi.org/10.1016/j.jss.2016.11.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.11.016&domain=pdf
https://www.abiresearch.com
mailto:taochuanqi@njust.edu.cn
mailto:jerry.gao@sjsu.edu
http://dx.doi.org/10.1016/j.jss.2016.11.016

40 C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55

approaches in mobile testing and mobile TaaS. However, there are
more challenges existed in testing criteria and standards, large-
scale test automation and mobile TaaS. There are a lack of well-
defined infrastructures and approaches which allow both mobile
application vendors and users to access mobile TaaS services. In
order to accommodate this, a suitable testing infrastructure is re-
quired which allows end users to submit on-demand service re-
quests for mobile TaaS resources in order to form an infrastructure
for mobile testing. This will include a large number of mobile de-
vices, mobile emulators, mobile hubs, and computing server ma-
chines. Generally, an ideal mobile TaaS infrastructure must provide
auto-provision, diversity support, and elastic scalability.

This paper focuses on mobile laaS. To address the need for in-
frastructure service for mobile TaaS, an laaS system MTaaS is de-
veloped to support the feasibility of mobile TaaS in practice. In
addition, this paper provides informative perspectives on cloud-
based mobile TaaS from service providers including the new fea-
tures, current approaches and infrastructures, as well as issues,
challenges, and needs.

The paper is structured as follows. The essential concepts, new
requirements, and test process are presented in the next section.
The testing infrastructures are introduced, and the current industry
practices are compared in Section 3. A developed system for cloud-
based mobile laaS is presented in Section 4. The primary issues,
challenges, and needs are discussed in Section 5. Conclusions are
summarized in the end.

Understanding cloud based mobile testing-as-a -service

The term of “mobile testing” has been used to refer to differ-
ent types of testing for mobile application testing, mobile device
testing, wireless-based application testing, and mobile APP testing.
In previous work, we initially defined mobile testing-as-a-service
(Mobile TaaS) in cloud as follows (Gao et al., 2014).

“Mobile Testing as a Service (known as Mobile TaaS) provides on-
demand testing services for mobile applications and/or SaaS to sup-
port software validation and quality engineering processes by leverag-
ing a cloud-based scalable mobile testing environment to assure pre-
defined given QoS requirements and service-level-agreements (SLAs)".

Here, mobile TaaS refers to a new testing service model and
business model, as well as cloud-based testing infrastructure and
platforms by leveraging cloud computing resources. Though some
conventional testing features can be carried on in cloud-based mo-
bile TaaS, most of them need to be addressed in cloud-based back-
ground due to the new features in cloud such as large-scale and
on-demand.

2.1. Motivations and new requirements

Why do we need cloud-based mobile TaaS? The fast grow-
ing cloud-based mobile applications and the popularity of mo-
bile cloud computing bring new needs and motivations. In previ-
ous work, we identified five primary reasons of mobile TaaS (Gao
et al., 2014). They include: a) high costs on mobile test infrastruc-
tures; b) frequent changes and upgrades on test platforms and de-
vices; c) complex mobile user interfaces; d) large-scale on mobile test
service, test simulation, and virtualization; e) multi-tenancy of mobile
applications. In addition, cloud-based mobile TaaS has four new re-
quirements from the perspective of service as follows.

- It requires mobile infrastructure-as-a-service (IaaS) on cloud. It
enables on-demand service for diverse mobile clouds, emu-
lation service, test connectivity, TaaS servers mobile devices,
hubs, etc.

- It requires mobile platform-as-a-service (PaaS) on cloud for
users to perform mobile testing in terms of their needs, such

as self-defined testing platform, test environment configuration,
test script automation running, etc.

- It requires mobile testing service tools as software-as-a-service
(SaaS) on cloud. Those SaaS applications can support cloud-
based mobile testing at anytime and anywhere.

- It requires test service management, such as mobile resources
manager, mobile environment manager, mobile test automation
manager, mobile emulation manager, etc.

2.2. The test features of cloud-based mobile TaaS

According to our research survey and practical experience,
cloud-based mobile TaaS primarily includes eight types of testing
features. Five of the features are specified for cloud-based mobile
TaaS. Three of them are focused in both general mobile testing and
cloud-based testing. The features are listed as follows.

Elastic scalable mobile test infrastructure - This refers to the
study of solutions on how to build elastic and scalable cloud-based
infrastructure supporting automatic provision on mobile comput-
ing resources, such as mobile devices, emulators, platforms and
browsers.

Mobile resource sharing, crossing platforms, and seamless accesses
- This refers to test platform that enables to construct and set up a
mobile test environment to meet diverse needs and requirements
on mobile devices, including mobile platforms, browsers, and con-
nectivity.

Large-scale on-demand mobile test services — This refers to the
service techniques responding to on-demand mobile testing re-
quests in mobile testing environments, test-ware, and test execu-
tion and control.

Multi-tenancy and customization support — This refers to test-
ing multi-tenanted functions, behaviors, and QoS requirements for
SaaS multi-tenancy. In addition, mobile TaaS supports customizable
large-scale data load, traffic load, and user accesses with test ser-
vice.

Contracting, utilization, billing and reporting - This refers to the
service business model, pre-defined utility model, and cost met-
rics. Mobile testing clients will be charged using the pay-as-you-
test utility model for their used mobile computing and testing re-
sources on cloud.

Control and configuration of mobile test environments (general) -
This refers to provide the required common-ware to support auto-
matic mobile test management, test control, and testing interac-
tions underlying mobile cloud. Diverse computing resources and
test-wares can be selected, configured, and provisioned (or de-
provisioned) dynamically.

Easy to test large-scale interoperation ability, mobility and connec-
tivity (general) — This refers to some distinguish mobile features on
large-scale cloud. Mobility testing verifies the quality of location-
based system functions, data, and behaviors. Connectivity involves
diverse mobile wireless networks which support the connectivity
needs of mobile applications. Connectivity also affects the applica-
tion performance and interoperability.

Test tracking, monitoring and coverage analysis (general) — This
refers to tracking, monitoring, and coverage analysis techniques
and solutions for mobile test operations at different levels for mo-
bile apps and mobile web applications.

2.3. The test process of cloud-based mobile TaaS

Fig. 1 shows a test process (function testing) for mobile TaaS
and conventional mobile testing. Compared to conventional mobile
testing, the test process of cloud-based mobile TaaS primarily fo-
cuses on typical features such as tenant-based testing and scala-
bility testing. Please note the testing activities in the dashed frame

C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55

4

_ Fault/Disaster Live Upgrading Live State Live Re-Test
[COI:II;:II(;L]: aTsees':ing]—é [Recovery Testing Testing Scenario Testing Testing

(- - @ | o
5‘ | [Connectivity Compatibility Mobility Feature I Usability] .
] . Testing Testing Testing Testing -

-~
T Mobile Feature | | Mobile Feature Testing 3
3 Testing - - «— a
a Interoperability Mobile Security Internationalization 0]
3 | Testing Testing Testing l a
“ayr - ——-——-—-————"0_———— " __ __ _— y
3 phahihaBusheshcdpuiadiuciud y g
= f h 0
ili APP Installation Security System QoS | o
(2] Tenant-Based [Scalability | i 3

! : & Depl t Testi Testi System Testing
g_ System Testing - Testing | €p_oymen esting esting |<_ §
{

= Multi-tenancy | Reliability Performance & Availability r g
o Testing Testing Load Testing Testing 3
g L | ;
g Tenant-Based o, oo e s . n, . S, . R, mn. = S g‘
-n System Function - Y GULBased Business - ~ ! System Function Testing =X
o Testing ! FTunchn /Scenario Intelligence l?rehavvwr | E o
- ﬁ _) ' esting A Testing Testing esting) ;

1]
S e] =
- Setting Traditional mobile ®

Setting Test test environment
Environment on
cloud

Fig. 1. A comparison of test process for cloud-based mobile TaaS and traditional mobile testing.

are shared by both sides. The testing process for cloud-based mo-
bile TaaS shown in Fig. 1 includes the following five steps.

Step 1- Setting up mobile test infrastructure and environment
and on cloud, including test control and run, tracking and monitor,
interactions with TaaS server as well as its underlying mobile emu-
lation cloud (or device cloud). This paper focuses on infrastructure
service.

Step 2- Tenant-based system function testing includes diverse
tenant-based service functions and features, such as function test-
ing, GUI-based testing, behavior testing, and etc.

Step 3- Tenant-based system testing checks multi-tenancy, QoS,
scalability, and etc.

Step 4- Mobile feature testing targets at mobile feature testing,
usability testing, compatibility testing, and etc.

Step 5- Tenant-based continuous testing focuses on how to
keep continuous validation for mobile system, including recovery
testing, live upgrading testing, live regression testing, and etc.

In addition, compared to conventional mobile testing, cloud-
based mobile TaaS has a number of new characteristics as shown
in Table 1.

3. Infrastructures for cloud-based mobile TaaS

Since the conventional testing approaches cannot deal with the
new requirements and features, mobile TaaS encountered many
difficulties, such as large-scale testing services and on-demand
testing needs. Thus, we need new approaches and infrastruc-
tures based on cloud to address the special features. This sec-
tion presents and compares the current different infrastructure
approaches. As shown in Fig. 2, there are three different mobile
TaaS infrastructures on cloud instances. Here we discuss these in-
frastructures respectively.o Emulation-based or simulation-based
mobile testing infrastructure on clouds- In this form, mobile-
based applications or SaaS instances on a cloud are validated using
large-scale mobile emulators or simulators on cloud as shown in
Fig. 2(a). This mobile cloud needs to support configuring diverse
mobile emulators with different configurations. In addition, this
cloud is required to have several key components, such as mobile

emulation controller and test connection manager.o Crowd-based
mobile testing infrastructure on clouds - In this form, mobile ap-
plication servers on a cloud are validated using Ad-hoc mobile test-
ing environment and Taa$S infrastructure based on crowd sourcing
as shown in Fig. 2(b). This approach does not need costs on mobile
devices. In addition, it is easy to support large-scale compatibility
testing and usability tests crossing diverse mobile devices. Some
practitioners already applied the crowd-based testing approaches
into businesses.o Device cloud-based mobile testing infrastructure
on clouds - In this form, real mobile devices are purchased, de-
ployed, and used to validate mobile-based software applications
(including mobile APPs and mobile Web applications) and mo-
bile SaaS as shown in Fig. 2(c). Unlike other mobile devices, they
are structured, connected, configured, and set up to meet mobile
testing service needs according to on-demand test service require-
ments.

The comparison among these three mobile TaaS approaches is
presented in Table 2.

Currently, there are more and more industry practices on how
to provide testing services for mobile applications based on (mo-
bile) cloud. For instance, TestDroid by Bitbar offers on-demand mo-
bile testing services on thousands of real Android and iOS de-
vices (http://testdroid.com/) based on self-developed cloud infras-
tructure. It can get agile mobile development and testing pro-
cess with continuous integration. Another well-known company
uTest is based on the idea that crowdsourcing is a critical com-
plement for testing web and mobile app in the lab (http://www.
utest.com/company). It was designed as a testing community in-
cluding courses, forums, tool reviews, etc., in order to provide
customers with an end-to-end service offering, such as func-
tional, usability and load testing for both I0S and android-based
mobile system. Testin is currently another growing cloud-based
app auto-testing service provider (http://mtestin.com/). Recently in
2015, the company released the crowd sourcing testing service
platform in order to meet the demand of large-scale testing in
cloud. Yiceyun developed by neusoft provides device cloud test au-
tomation services for android-based mobile systems. It supports
the opensource framework of Robotium, Athrun, and Guerrilla
(http://www.yiceyun.com). Perfectomobile provides MobileCloud

http://testdroid.com/
http://www.utest.com/company

42 C. Tao,]. Gao/The Journal of Systems and Software 124 (2017) 39-55

Table 1
A comparison between conventional mobile testing and cloud-based mobile TaaS.

Conventional mobile testing

Cloud-based mobile testing as a service

Primary objectives

web browsers.
Testing focuses

Testing execution

Testing environment
purchased hardware/software and tools.

Testing process Enterprise-oriented test processes for each project.

Testing techniques

system level.
Testing tools
licenses.
Project cost
engineering costs.

Validate the quality of mobile APPs on mobile operation
environments of specified mobile devices or from different

Diverse software errors in its structures, functions, behaviors,
user interfaces, and connections to the external systems;
System non-functional requirements such as performances,

reliability, availability, vertical scalability, security, and etc.
Offline testing in a test laboratory before a product delivery.

A pre-configured test environment in a test laboratory with

Apply selected well-known white-box and black-box testing
techniques at the component level (or unit level) and the

Use limited testing solutions and tools with the purchased

Required hardware/software (license) costs in a test lab, plus

Provide on-demand testing services on cloud; Leverage a scalable
mobile testing environment To assure pre-defined given QoS and SLAs.

Multi-tenancy, customization, and configurability; Mobile SaaS
scalability; Connectivity to its external contexts; Interoperability and
portability

Offline testing in a private cloud-based test environment; On-demand
test execution in a cloud-based virtual test environment; Continuous
testing for SaaS in/on/over clouds.

A scalable mobile test environment based on cloud with diverse
computing resources and tools; Supporting web browsers on different
mobile platforms and devices.

Crowdsourcing based process; Well-defined TaaS processes by TaaS
vendors; Emphasis on tenant-based testing, service component testing,
etc.

Required innovative continuous testing techniques; New testing
solutions to deal with multi-tenancy and elasticity.

On-demand usage of diverse test tools with shared licenses in a cloud
environment based on pay-as-you-use.
Based on a pre-defined SLA; Pay-as-you-test service costs.

Emulation-Based
Mobile Client On

Laptop/Desktop
®

Mobile App Server

Wireless
Internet

Mobile Test
Simulator Client
tt 4 On Laptop/Desktop

(a) Large-scale Emulation-Based or Simulation-Based

Mobile Test Infrastructure

Crowdsourcing Server
for Mobile Testing

NLLCeETy
S

N\
Mgl

Crowd-Based
Mobile Users

Wireless
Internet

Mobile App Server

Wireless
Internet

-
Mobile App
(c) Device Cloud-Based Mobile Test Infrastructure

Fig. 2. Samples of mobile TaaS infrastructure on cloud instance.

Interactive, MobileCloud Automation, and MobileCloud Monitoring
(http://www.perfectomobile.com/).

Here two industrial cases of best practices in mobile TaaS are
shown. Humana, a fortune-100 health and well-being company
with more than 40,000 associates provides consumers and busi-
nesses with access to information via mobile channels across their
various health care operations in all 50 U.S. states. Humana re-
quired a solution for testing mobile apps and websites, to ensure
their members continued reliable access to healthcare information.
With the support of DeviceAnywhere mobile testing platform from
Keynote, Humana has set up a local dedicated testing environment
to cover all of mobile channels. With this test environment the
healthcare provider can run manual and automated tests on 50 live
devices, including iOS, Android, and Blackberry platforms. In the
last thanksgiving, some businesses performed very well with their
mobile apps. Internet Retailer cited Catchpoint data that pointed
to the five native mobile apps that provided users with excellent
buying experiences on Black Friday. At No. 1 comes Foot Locker
with search times as fast as 0.133 seconds with performance test-
ing from Perfecto (http://blog.perfectomobile.com).

4. A developed cloud based mobile TaaS system (MTaaS)

We are developing a mobile TaaS system, including both IaaS
and PaaS pieces. Currently, we have developed a cloud-based mo-
bile TaaS system (MTaaS) as infrastructure-as-a-service (IaaS) for
mobile app testing known as laaS piece. The PaaS piece (such
as test automation platform) is still under work. MTaaS supports
for several key infrastructure services such as resource provision-
ing, monitoring and billing services. To provide mobile laaS, MTaaS
manages massive resources and has responsibility of provision, al-
location, and charging. Server, emulator, device, and mobile hub
are the key resources in MTaaS. This section describes the infras-
tructure of MTaaS, the detailed system design, the provided service
functions, and resource allocation algorithms. In addition, system
evaluation is discussed in the end of this section.

4.1. Infrastructure of MTaaS system
The developed system MTaaS provides laaS for mobile test-

ing with setting up a mobile infrastructure, which supports
provisioning, management, monitoring and billing services. The

http://blog.perfectomobile.com

Table 2

C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55

Comparisons of cloud-based mobile TaaS approaches.

43

Perspectives/ Different
approaches

Emulation-based testing on clouds

Mobile testing in crowdsourcing

Device cloud-based mobile testing

Mobile TaaS service model
Business models and billing
Mobile testing environment
Mobile devices costs

Mobile end-to-end
transaction testing
Mobile usability testing

Mobility testing

QoS Testing for scalability,
performance, reliability and
availability

Mobile Security testing
Mobile app function and gui
testing

Emulation-based mobile TaaS service
model

Pay-as-you-use for device emulators and
other testing services

Emulation-based mobile taas
infrastructure

Only use emulators, no device costs

Emulation-based end-to-end transaction
testing

No coverage on real mobile user
experience

No reallocation service testing, Using
emulators only

Emulation-based QoS testing at the
limited scale

Emulation based security testing only
Emulation-based Testing, hard to test
functions related to real device

Crowdsourcing-based service model
Crowdsourcing cost models

Ad-hoc mobile testing environment, and
TaaS Infrastructure

No costs on mobile devices since it uses
mobile devices from crowded testers
end-to-end transaction testing in
crowdsourcing

Easy to support usability testing

Easy to performlocation service testing
by crowded testers

Ad-hoc QoS testing using crowdsourcing;
low testing quality risk; an uncertain
validation schedule

Ad-hoc security testing with risk problem
Ad-hoc mobile testing based on No. of
users

Remote mobile TaaS service model

Pay-as-you-use for remote devices and
other testing services
Shared Mobile Taa$ infrastructure

Device rental costs

Large-scale device oriented end-to-end
transaction testing

Scalable test coverage on real mobile
devices

Limited location service testing

Large-scale QoS testing

Diverse device based security testing
Diverse device based function testing

e MTaaS User | Taas
| Adml?strator I I (Tgig') tool(a ication
MTaaS Dashboard layer -
= = Application-oriented |
| Admin | | User-oriented | | (Taas)
-
Mobile Network(wifi, 2G, 3G, |
4G, 5G)
-
MTaasS Infrastructure Controller layer
API
(50 WEIET o mmmma 2 7 Bilingle-Lc = 7 i Resource Mgmt 17 T Infrastructure F__R_e_p_o_sitﬁ):y_____l
| | ¥ [| |
D | Metering | 0 g | Rating I L Load Balance | ! Template i DB I
' ' ' '
: - i H i :
' arm Co 9 o4 Allocation it Topology 0 7 Storage '
S Dol I DO 1 H E_______________:
MTaas Infrastructure Virtualization layer
e i
' '
! Server Nodes | | Mobile Device Nodes I | Mobile Emulator Nodes | | Mobile Hub Nodes J
' '
e o e e e e '
MTaa$S Physical layer
i 1
' '
! Server | I Mobile Device l | Mobile Emulator I | Mobile Hub 0
' '
e e) o o o) s e '

Fig. 3. The architecture of MTaaS.

approach to the infrastructure is based on device cloud as
introduced in Section 3. Emulation cloud is also supported
in MTaaS. The system aims to provide an on-demand mo-
bile infrastructure for mobile app testing clients’ access to
any mobile infrastructure such as mobile devices, emulators,
mobile hubs and server machines, in order to deploy, host
and test mobile applications. The primary system clients in-
clude Admin, users (such as testers), TaaS tools or applications
(They configure the provided I[aaS resources for future testing).
Fig. 3 shows the infrastructure of MTaaS. There are four layers in
the architecture, including dashboard, infrastructure controller, virtu-
alization, and physical layer.

The dashboard layer provides a detailed view of the available
resources to MTaaS clients. Also, a graphical representation is pre-
sented to facilitate users to monitor their resources running in
MTaaS.

The controller layer consists of several key components, such
as monitor, billing, infrastructure management, etc. For instance,
billing is the fundamental feature for service providers to operate
this infrastructure. Consumers can set up their payment account,
query the bills, and make payments. Various cloud systems or tools
can be used. In MTaa$, we adopt OpenStack as cloud-based infras-
tructure management support. OpenStack is a well-known open-
source cloud operating system for managing large pools of com-
pute, storage and networking resources throughout a data cen-
ter, managed through a Ul dashboard or via the OpenStack API
(Openstack documentation 2016). There are several interactions
among the internal APIs and external APIs. We have developed our
own APIs, which use RESTful web services to interact with the sys-
tem. For multiple requests, the resource allocation and manage-
ment engine employs a load balancer algorithm to distribute the
workload among multiple hosts spread across different clouds. Our

44 C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55

User Requests

L

Level 1:
Load balancer

(a) Level one

Region N

Region N

Requests

Level 2
Load balancer

VM5

) @ﬂ"

(b) Level two

Fig. 4. The two-level virtualization design in MTaaS.

approach aims to achieve load balancing of clouds with minimum
resource starvation and maximum resource utilization by the means
of optimized resource provisioning.

The virtualization layer separates physical infrastructures to cre-
ate various dedicated resources. It is the fundamental technology
that powers cloud computing (Mann, 2015). Relying on virtualiza-
tion technology, a host on a physical machine can start multiple
virtual resources. A large number of virtual resources are the basis
for laaS. Due to the various performances, the used virtual solu-
tions are different, resulting in cloud computing resources in het-
erogeneous characteristics.

We proposed a two-level virtualization solution for mobile
cloud. Level one is in front of OpenStack regions, and level two
is in front of Virtual Machines. Fig. 4 shows the sample of two-
level virtualization design. As shown in the Figure, Load balancer
is a crucial component inside of IaaS since massive requests from
customers need to be handled, distributed, and processed. Imaging
multiple regions available, load balancer at this level distributes
users’ requests to different regions, as shown in Fig. 4(a). Load bal-
ancer running at level one works closely with OpenStack Controller
node that commands the whole functionality of scheduling jobs in
each region. The interface between load balancer and controller is
based on RESTful APIs which provide plentiful runtime informa-
tion of system. Behind level one load balancer, another important
node is virtual machines distributor. It functions load balancing as
level two shown in Fig. 4(b). Virtual machine is the fundamental
resources in each region, and the host of all the virtual mobile de-
vices. When user requests are forwarded to one particular region
where the virtual machine load balancer is running, they are dis-
tributed further to different virtual machines.

The physical layer represents the physical resources such as mo-
bile devices, servers, emulators, and hubs of our own or donated
by providers.

Fig. 5 presents the cloud-based infrastructure in MTaaS. The re-
mote mobile emulation cloud and mobile device cloud are both
adopted to support large-scale mobile testing. The [aaS server han-

Public/Private Cloud

7
2G3GAGSG, 7
. Remote Mobile Emulation Cloud

\Lnternet

<

e y

Fig. 5. Cloud-based infrastructure of MTaaS.

Remote Mobile Device Cloud

dles diverse on-demand testing services. The laaS management
server controls the infrastructure service process and business
flow.

4.2. MTaaS system design

This subsection describes the system design primarily in user
Interface, database, algorithms, and MTaaS connectivity.

User interface design: Various types of clients like admin,
users, or applications (TaaS tools) can access the system. Depend-
ing on the user type, Visualization is presented to the user. Admin
can have access to run time graph visualization. The request gener-
ation Ul presents the user to specify resources to the requests. This
further is handled by proxy server. The billing Ul is made available
to user as soon as resources are granted to/ registered by users.
In short, users interact with the Ul through web browser. A user
can perform various relevant actions on UI such as requesting re-
sources through request loader module. The incoming requests are
accepted by a proxy server (‘Load balancing server’). This server
is Node.js server. The navigation flow diagram shown in Fig. 6 rep-
resents the flow between web pages and explains the to and fro
movement in Ul application. The main page is home page. Users
can navigate from home page to ‘request generator’ or ‘billing’ or
‘resource usage’ pages. The additional run time graph page is also
visible, pictorially representing resource status from admin’s point
of view.

Logic and algorithms design: In MTaaS, resource management
is an important part in controller, mainly including load balanc-
ing and resource allocation. The incoming requests are firstly dis-
tributed to a load balancer port based on diverse load balancing
strategies. They are directed to servers depending on the chosen
strategy. Then, the physical and virtualized resources need to be
allocated. In mobile device cloud, there are multiple cloud data
centers across various locations. Based on the requests’ static or
dynamic nature, various types of resource allocation algorithms to
support the nature of requests are needed. Thereby request han-
dling, resource allocation, and load balancing go hand in hand in
the system. The detailed strategies and adopted algorithms for re-
source allocation are discussed in Section 4.4.

Database design: The system is facilitated by HTML 5 - local
storage feature as it allows fast access to data. At initialization, the
data is fetched from My SQL and stored in HTML5. Then all the
storage and retrieval is performed through HTML 5. The database
design has been made taking into account normalization rules to
minimize redundancy. The design facilitates minimal storage space
constraint and is optimized to enable faster date access and recov-
ery. A sample piece of data in the application is shown below.

Server {

'Server Name': 'Test Server 3/,

C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55 45

Devices Click Login
Login Logout
Click”
Vlrtual_ Click Home Click Click Click Logout
and Physical Login Dashboard
Devices ” Tab
Click Runtime Graph tab
Request Click Reques: DashBoard Runtime
Generator generator Tab Click Dashboard Tab Graph

Click Home

Click” ok” on

Click “Request
message box

generator Tab”

Click Billing Tab

Click
Click Runtime Graph tab

Billing
Click Server Tab

Click “Request
generator Tab”

Server Click “LogoutIcon”

Fig. 6. The navigation flow of UL

" IP Address’: * 10.0.0.2/,

‘Image Name’: 'cirros-0.3.2 x 86_64-uec’,

‘Location’: "China’,

‘Status’: "Active’,

'Date Created’: '6/20/2016,

" Availability’: * Unavailable’}

It is related to server information at a given point of time in
system. The data is stored in local storage and can be fetched from
it.

MTaaS connectivity design: A set of RESTful APIs have been
used to establish communications between user interface and ap-
plication logic layer. The clients from any browser can interact
with the system. The interactions are carried out through RESTful
API calls (GET, PUT, POST, and DELETE). When the method type is
GET, data associated and pertaining to desired target as designed
is fetched. We have developed our own APIs, which use RESTful
web services to interact with the system. Partial designed APIs are
presented in Table 3 with a sample request for each. For instance,
Create Cloud is a POST method to create a cloud in a particular lo-
cation. Create Resource Allocation Request is a POST method to cre-
ate a request for resource allocation to one of the resource types,
i.e., Mobile Device, Mobile Hub, Emulator, and Server Machine. Get
Cloud By Name is a GET method, which retrieves a cloud and hosts
that are present along with usage statistics of the cloud, and Delete
Server is a POST method, which deletes a particular instance of
host.

4.3. Service functions of MTaaS

The developed MTaaS system provides several service func-
tions, including request generator, resource provisioning, dash-
board monitoring, mobile network connectivity, and billing service.
Next, those service functions are explained respectively.

Request loader service: The request loader generates multi-
ple mobile-enabled service requests. The incoming mobile requests
demand diverse mobile cloud resources such as mobile devices,
mobile hub, emulators and server machines to form a virtualized
mobile testing infrastructure. MTaaS provides a convenient way
to manage these emulator resources with operations of creating,
querying, and deleting. Users can create a new emulator with a
few clicks. Before submitting, users can modify the parameters of
emulators to satisfy their test requirements. Request loader service

Table 3
Samples of designed RESTful APIs.

RESTful API calls API functions

POST Create cloud

POST Create host

POST Create resource allocation request
GET Get cloud by name

DELETE Delete server

POST Setup cloud

POST Request loader

function facilities our testing needs through a number of generated
requests.

Resource provisioning and management service: This com-
ponent allows an administrator to apply different load balancing
optimization algorithms as part of optimized resource allocation
strategy to deliver selected mobile testing infrastructure requested
by users to form a mobile cloud testing environment. In addition
to Mobile Devices, Mobile Hubs, Emulators and Server Machines,
components such as Mobile Hub Manager, Emulator Manager, and
Device Manager are also provided. They control and manage a
number of configurable mobile devices and emulators. Users can
query, choose, and terminate resources.

MTaaS provides a nice virtual device screen function by which
users can manipulate their remote emulators as same as local ones.
Besides virtual devices screen feature, users also can log into their
remote emulators via standard SSH tools. Devices are another kind
of essential resources provided by MTaaS, since most mobile devel-
opers need to verify some features with real smart devices. MTaaS
provides the same interface by which users can connect the pop-
ular test tools and mobile app IDE to their devices in the cloud.
Users can quickly create any model of devices that they need in
a minute with MTaaS, and don’t need to spend a huge money to
buy them. Fig. 7 shows the screenshot of configured and selected
emulators and physical devices. The left screenshot in Fig. 7 shows
the requested emulators, including their name, OS type and ver-
sion, RAM, and status. The right screenshot presents the informa-
tion of requested physical mobile devices. In addition, in MTaas,
a user can wishfully lease resources, and in turn gain monetary
advantage for that. Users can provide resource donations such as
servers, devices, and hubs.

46 C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55

= Emulators

Physical Devices

Emulator
Name os Version (MB) Status Actions Device Name os Version (MB) Status Actions
Nexus 4 Android 4.4 512 Running Samsung Android 4.4 1024 Running
Galaxy 6
Nexus 5 Android 5 1024 - —— pam—— P = -
Nexus S Android 5 2048 - LG G4 Android S 1024 Running
Nexus One Android 4.4 512 - HTC One Android S 2048 -
Prev 1 2 3 a Next Prev 1 2 3 4 Next
Fig. 7. Screenshot of emulator and physical devices.
i ® < m [A] © S [J (£=3] [h] 192.168.1.106 5 [i] i o [+
MTaasS R
«
@& Dashboard
OHub o I

& Wizard
& Resources Hubs Launch
0 Emulst Name hub
0 Hub

Netwrok Type WiFi s
(o] De

Netwrok Provider Comcast XFINITY s

B Billing

Ports Number S s

Fig. 8. Connecting MTaaS to network by using hub.

Mobile network connectivity service: Mobile hub provides
network connectivity for both emulators and devices. Most of
the mobile apps are internet-based and very sensitive to network
bandwidth, latency, and throughput. Mobile hub can satisfy these
kinds of mobile app with multiple choices of network connection
like wifi, cellular, etc. Each bub is combined with several mobile de-
vices or emulators. As shown in Fig. 8 users can create, query, and
delete mobile hub according to their requirements. Once a mobile
hub is created, users can attach both emulators and devices to this
hub so that all those equipment get network connection.

Through resource provisioning and network connectivity, the
result of requested infrastructure is configured. Fig. 9 shows a sam-
ple runtime graph of the infrastructure configuration in dashboard.
A hub is connected to Test Server 1 with several mobile devices of
Android OS in Location of USA. Fig. 9 also shows the configured
clients’ infrastructure needs through real physical resources plus
software controlling and defining.

Billing service: With this module, a business cost model is im-
plemented with billing metrics to determine the costs for users
based on their service request types. In MTaaS, we propose a sys-
tematic cost model for mobile testing laaS, PaaS, and SaaS. For
laaS, the primary cost factor includes the number of CPU cores,
the amount of RAM and disk storage, as well as the mobile re-
source usage. For PaaS level, the cost factors are the test environ-
ment, usage time, and configurable testing platform. For SaaS level,

SaaS testing tools, cost sharing, and license are considered as the
main cost factors. Billing service function provides a fundamen-
tal support for service providers to operate MTaaS. Both users and
administrator can leverage this feature. Administrator manages all
the user payment accounts and bills. Users can choose their billing
plan within “pay as hour go” or “month flat rate” . As shown in
Fig. 10, a billing query function facilitates users to view all the bills
in history.

Mobile monitoring service: The Ul dashboard provides moni-
toring and reporting functions including resource usage across dif-
ferent clouds, usage index per cloud, the utilization and availability
of CPU cores, RAM and disk storage. For each virtual resource when
created, the system will instantiate a VM monitor object for real-
time monitoring of the indicators of the VM parameters at run-
time for a single request in order to get access to the VM load
balance information. Besides monitoring resources, dashboard also
provides a quick start for users who firstly log into MTaaS. Users
can pick-and-choose different plans based on their requirements.
Fig. 11 shows the screenshot of the monitoring services in MTaaS
dashboard. There are some emulator plans and device plans re-
quested from users. Here Emulator plan A, Emulator plan B, Device
plan A, and Device plan B are available. Through the use of highly
interactive D3 |S library in java script, we provided graph visual-
ization to all clients to know the current status of overall resources
used.

C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55 47

Feel free to donate your resources here: Hub Donation

Test Servel ;;u;::" — android-ord —— —- -, H
Test Server 11 N
**Test Server 20
**Test Server 21
**Test Server 22
“*Test Server 23
“*Test Server 24

USA.(7}

Proxy@-é —

Test Server 3
~ Chinat Test Server 8

“Try Server

Test Server 2

Fig. 9. The dashboard runtime graph of infrastructure configuration.

3 ® < m] (A) [1s°] e == [h] 127.0.0.1] th i (4]

« » Billing

@ Dashboard —
B3 Billing o I
@& Wizard

Year: 2015 [Month: August

& Resources

B Billing
Summary Amount
]
- MTaas Charges 164,792
B Payments plan: pay_as_hour_go from: 2015-08-01 00:00:00 to: 2015.08-27 12:50:11
B3 Settings - Payment Details 164.792
status: unpaid pay date:

Detail
- emulator
Resource Id Start Billing Time End Billing Time Total Billing Time (Hrs) Cost
00000000612 2015-08-03 22:07:12 2015-08-03 23:15:44 1.142 0.137
00000000613 2015-08-03 23:18:16 2015-08-03 23:20:57 0.045 0.005
IS 00000000614 2015-08-03 23:20:24 2015-08-03 23:41:59 0.36 0.043]

Fig. 10. A service billing screenshot.

4.4. Resource allocation in MTaaS

Resource allocation has a significant impact in cloud comput-
ing, especially in pay-per-use deployments where the number of
resources is charged to application providers. The issue here is to
allocate proper resources to perform the computation with min-
imal time and infrastructure cost. Proper resources are to be se-
lected for specific applications in IaaS (Zhan et al., 2015; Manvi and
Shyam, 2014; Yehuda et al., 2014; Do and Rotter, 2012). In MTaasS,

how to utilize the traditional resource allocation algorithms to ad-
dress the new needs in mobile device cloud effectively raises new
issues and challenges. In the following subsections, the issues, res-
olutions, and proposed algorithm are discussed in detail.

4.4.1. Issues and resolutions

Issues:

A lot of differences are exited between conventional cloud and
mobile device cloud. The conventional cloud focuses on computing

48 C. Tao,]. Gao/The Journal of Systems and Software 124 (2017) 39-55

127.0.0.1 < u i L]

<« r 4
@& Dashboard
PR
@& Wizard
& Resources

B Billing

Quick Start

D ' . B Bills
Emulators 0 D Devices [} ‘Hubs This Month

124.512

1 Hub 2 Hub

S Emulators

SSH Access

Screen Access

15 Emulators

SSH Access

Screen Access

1 Hub 2 Hub
5 Devices 15 Devices
SSH Access SSH Access

Screen Access Screen Access

Fig. 11. Dashboard UI of monitoring service.

and storage while mobile resources and connectivity are paid more
attention in mobile device cloud. For instance, the primary new re-
sources in mobile cloud are mobile devices and hubs. In addition,
mobile network connectivity is performed through various wire-
less solutions, such as 2 G, 3 G, wifi, cellular, etc. All these features
bring new issues for cloud-based mobile TaaS.

In MTaaS, cloud computing infrastructure services are a collec-
tion of resources, cloud resources diversity and heterogeneity. Cur-
rent device cloud can be provided by large business companies.
Thus, we assume that the devices are from three parts: users’ de-
vices, test lab provided devices, and devices in MTaaS. First of all,
basic service resources can be divided according to geographical
area. A region is shown in the resource layer structure. Each re-
gion contains a DC (data center), and each DC is considered as a
cluster system, with multiple physical machines. The diversity of
devices and users lead to location issue for resource allocation.

According to our survey, there are a number of published algo-
rithms applied in resource allocation in cloud computing (Mann,
2015; Zhan et al.,, 2015; Manvi and Shyam, 2014; Yehuda et al.,
2014; Do and Rotter, 2012), such as FCFS, Round Robin, GA, ACO,
PSO, etc. However, diverse mobile resources, different locations,
and large-scale requests lead to the need of revised or new algo-
rithms in MTaaS. The nature of incoming requests in MTaaS can
be static or dynamic. The pre-booking or planed requests are static
while the on-demand or real-time requests are dynamic. The pur-
pose of applied algorithms for static requests aims at optimization,
and for dynamic requests the on-demand features need to be ad-
dressed. Thus, diverse algorithms need to be selected to deal with
the static and dynamic natures of different requests.

Resolutions:

To meet the demand of various requests, we need to take ad-
vantage of the available algorithms. In MTaaS, we proposed a Hy-
brid Algorithm for resource allocation. Round Robin algorithm and
Random Algorithm are selected for dynamic requests while Ant
Colony Optimization is selected for static optimization. For large-
scale requests, we adopt request peeking to deal with request pri-
ority issue. In addition, a Location Aware Algorithm is proposed
to deal with the location issue. The overall goal of Hybrid Algo-
rithm aims to improve the system performance while reducing
costs due to wireless connectivity, communication, and diverse lo-
cations. Next, the proposed Hybrid Algorithm is discussed in detail.

f job>maximumjob
or load
%ﬂmloa

Yes

Request peeking

) 4
Choose the nearest Cloud
Center corresponding to
the test user

T«

<I®

enter is too busy\/ Yes

No

Choose a neighbor J
Cloud Center to the

current center

Choose allocation
algorithm and allocation
scheme

A 4

Stop)

Fig. 12. Overview of hybrid algorithm.

4.4.2. The proposed hybrid algorithm

Fig. 12 shows the overview of the algorithm. The key step is
request peeking, location aware, and algorithm selection. The three
steps are described below in detail.

Step 1: Request peeking. An approach to request optimization
is implemented through request peeking. At any point of time, the
set of request(s) reside in a request queue after submission. On
turning on this feature, the requests are served on basis of prior-
ity. The priority can be based on request duration time, urgency
degree, service cost, request level, and etc. Fig. 13 presents the
process of request peeking. Once the requests are accepted, the
requests in queue are sorted according to the priority rules. The
number of peeking can be set in terms of practical needs.

C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55 49

Initialize an array for
sorting request

»|

m>
= max lengt

Get
request_durationtime ,re
quest_level from request

Arr[il=[request,requ
est_durationtime,re
quest_level]

L 7

Sort Arr based on
request_durationtime
or request level by
some rules

sm No

server request

Send request to
server

Fig. 13. The process of request peeking.

Step 2: Location aware. In reality, a cloud computing system
usually consists of some data centers which are distributed in dif-
ferent geographical areas. These data centers connect with each
other by dedicated network with high reliability and high trans-
mission rate. Compared to traditionally centralized internet data
center (IDC), users in different regions can access to the close data
centers in MDC environments. The services for users requested
can be provided by data centers nearby, as it can reduce access
latency and network load. Meanwhile, location aware improves
communication efficiency and supports to reduce network costs
for some high-bandwidth applications. Therefore, for serving di-
verse nature of requests, we proposed Location aware algorithm
for MTaaS. The pseudo codes for Location-aware algorithm are pre-
sented in Algorithm 1. In the algorithm, resources are distributed
based on the location distance between user and data center. In
our implementation, test center and user regions are the key loca-
tion factors. Firstly, the users’ location distance is calculated, and
then the nearest cloud data center is computed. Finally, the users’
requests are allocated to the center.

Step 3: Algorithm selection. In order to continuously optimize
the performance of the implemented system, we analyze several
algorithms for resource allocation. As we discussed, once the re-
quests are submitted by user, they are received by proxy server.
One of the algorithms picked for requests come into considera-
tion then. We have selected three typical resource allocation algo-
rithms. These are used for serving dynamic as well as static na-
ture of requests. The first algorithm is Round Robin (RR). In RR
algorithm, time slices are assigned to each process in equal por-
tions and in circular order, handling all processes without priority
(also known as cyclic executive) (Hirenkumar, 2015). RR schedul-
ing is simple, easy to implement, and starvation-free. The second

Algorithm 1. Location aware algorithm for MTaasS.

Input: undetermined request queue
Output: request scheduling policy
1: FOR request IN Arr do
//compute nearest cloud center for each request in queue
2: Get coordinates of cloud centers list;
3: Users_location=compute_location(request);
/[current request user’s location
4: WHLIE list != NULL
5: Current_center=list.pop;
6: Cloud_location=compute_location(Current_center);
7: Distance=compute_distance(users_location,cloud_location);
//compute the nearest cloud center
8: IF distance < min_distance THEN
9: nearest_cloud =Current_center;
10: min_distance =distance;
11: END IF
12: END WHILE
13: Allocate request to Current_center;
//assign each request to the nearest center
14: END FOR

one is Random Algorithm, which is a commonly-used resource allo-
cation strategy. In MTaaS, mobile hubs and devices are combined
together. The complexity of nodes is not high. Thus, RR or Ran-
dom Algorithm is suitable for resource allocation. The third algo-
rithm is Ant Colony Optimization (ACO), which is inspired from the
ant colonies that work together in foraging behavior (Dorgio and
Birattari, 2010).

Our algorithm selection process is as follows. When the user
quest is dynamic, we select simple RR or Random Algorithm to
handle on-demand needs. When the user quest is static and pre-
defined, ACO is selected for optimization of resource allocation.
The detailed comparison of diverse algorithms for resource alloca-
tions are not discussed in this paper. In the future work, we plan
to perform several comparison experimental studies to investigate
the application effect.

In summary, the hybrid algorithm based on the three steps
above is described in Algorithm 2 below. At first, Algorithm 2 deals
with request peeking (lines 1-14) according to the setting rules;
then, Location-Aware Algorithm is performed (lines 15-20); later,
different algorithms are selected in terms of static and dynamic
request nature (lines 21-27).

4.5. System evaluation

4.5.1. System testing

We performed both function and performance testing of MTaaS
system. For scenario-based function testing, we designed a total
of 29 test scenarios for dashboard, emulator management, device
management, hub management, and billing management. All the
test cases have been executed and passed. For example, Table 4
lists the five passed test cases for the emulator management func-
tion.

For performance testing, we mainly used the average response
time and error ratios as the two indexes to demonstrate the perfor-
mance with the tool JMeter. For instance, the typical five scenarios
we chose are as follows. The testing results for the five scenarios
are shown in Tables 5 -9 respectively. They are as follows.

Scenario 1: Consecutively increase user number from 0 to 1000,
each user sends the request to get the responding emulators with
running status.

Scenario 2: A user request to launch 20 emulators at one time.

Scenario 3: Consecutively increase user number from 0 to 20,
each user sends the request to launch 5 hubs.

50 C. Tao,]. Gao/The Journal of Systems and Software 124 (2017) 39-55

Algorithm 2. Hybrid algorithm for MTaasS.

Input: undetermined request queue

Output: request scheduling policy

1: Arr=[]

2: FOR request IN request list do

|/perform request peeking on request queue
IF server.job > maximumjob or server.load > maximumload
WHILE len(Arr) < max length do
request_duration =request.getduration();
request_level= request.getlevel();
Arr.append (request_duration,request_level);

//assignment for each request

8: END WHILE

9: Arr.Sort(); //sort by some policy

10: WHILE server.request < max request do

11: Send request to server;

12: ELSE pass;

13: END IF

14: END FOR

15: FOR request IN Arr do

16: perform Algorithm 1; // Location aware algorithm

17: Requestlist=[];

18: FOR get request from server do

19: Requestlist.append (get request from server);

20: END FOR

21: FOR Requestlist != NULL do

22: IF Requestlist[i]. expectedtime < d

23: IF Requestlist[i]. nature is static

24: Apply Requestlist[i] and Requestlist[i+ 1] to round robin

25: and random;

NoauAw

26: END IF
27: ELSE Apply Requestlist[i] to ACO;
28: END IF
29: Delete Requestlist[i];
30: END FOR
Table 4
Partial function testing results.
Test case Description Result
Func_emulator_01 Create a emulator Pass
Func_emulator_02 Query emulators Pass
Func_emulator_03 Delete a emulator Pass
Func_emulator_04 View screen of a remote emulator Pass

Func_emulator_05 Connect to a remote emulator via SSH ~ Pass

Table 5
Testing results of scenario 1.

Function Get emulators of each user

APIs /emulators

Method GET

Users Consecutively from 0 to 1000 in 5 min

Avg. requests 18 per sec.
Avg. response time 10 ms
Error ratio 1.08%

Scenario 4: Consecutively increase user number from 0 to 1000,
each user sends the request to get the responding hubs with run-
ning status.

Scenario 5: Consecutively increase user number from 0 to 1000,
each user sends the request to get the responding emulators and
hubs with running status.

Fig. 14(a)-(e) presents the testing results of the five scenarios
in a curve graph respectively. The left vertical axis represents the
number of VU (virtual users). The right two vertical axis shows RT
(response time) and the number of Hits. The horizontal axis repre-
sents the testing time. Fig. 14(a) shows the testing results of Sce-
nario 1. As shown in the graph, the RT value keeps stable during
the 5 min, and the average RT value is 10 ms. The number of Hits/s
Total is fluctuant around 20 each second. Obvious Hits Errors ap-

Table 6
Testing results of scenario 2.

Function Launch emulators
APIs Jemulators
Method POST

Users 1

No. of Emulators 20

Avg. response time 300 ms

Error ratio 2.17%

Table 7
Testing results of scenario 3.

Function Launch hubs
APIs [hubs
Method POST
Users Consecutively from 0 to 20 in 1.5 min
No. of hubs 100
Avg. response time 270 ms
Error ratio 1.21%
Table 8
Testing results of scenario 4.
Function Get hubs
APIs [hubs
Method GET
Users Consecutively from 0 to 1000 in 1.5 min
Avg. requests 20 per sec.
Avg. response time 125 ms
Error ratio 4.68%

Table 9
Testing results of scenario 5.

Function Get emulators & hubs

APIs /emulators, /hubs

Method GET

Users Consecutively from 0 to 1000 in 1.5 min
Avg. requests 20 per sec.

Avg. response time 200 ms

Error ratio 4.83%

pear six times in the duration. The value of error ratio is 1.08% as
listed in Table 5. In Scenario 2, RT value is fluctuant from around
200 ms to 400 ms most of the time as shown in Fig. 14(b). Obvi-
ous Hits Errors happen three times in the duration. In Scenario 3,
the number of Hits/s Total is one almost all the time in Scenario 3
shown in Fig. 14(c). Obvious Hits Errors only appears one time. The
error ratio is 1.21% in a low level. The performance of Scenario 4
(shown in Fig. 14(d)) and Scenario 5 (shown in Fig. 14(e)) shows
no significant difference as the test case is similar.

In summary, the RT value is less than 300 ms for all of these
tested scenarios. Thus, according to the testing results, the system
is doing well in performance for RT. The error ratio is relatively
higher when the number of virtual users is increasing to 1000 in a
short time, such as 1.5 mins in Scenario 4 and 5. The testing results
could support us to find more issues of the system performance
bottleneck.

4.5.2. A comparative study between MTaaS and other systems
Currently, there are not any open-source implementations for
mobile TaaS according to our survey. Various online mobile test-
ing platforms are available nowadays. However, their functional-
ity is limited since they only provide one or few of the testing
mechanisms. The related business players such as Perfecto Mobile
and uTest (introduced in Section 3) provide partial features such as
cross platform testing, test simulation, and crowdsourcing testing.

1250

C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55

5000 ms 25

500ms 125

51

1000 v 4000ms 20 h '\ ‘ 400ms 1
750w 3000ms 15 300ms 075
500 vu 2000ms 10 200ms 0.5
250w 1000ms 5 100ms 025

[}
UVU ul I I R J1 D"\S 0 Oms 0
2323 2324 2325 2326 327 18:25:00 18:25:30 18:26:00 182630 18:27:00
Users - ALL Hits/s Total - ALL = Hit/s Errors - ALL Response Time - Average - ALL Hits/s Total - ALL = Hit/s Errors - ALL Response Time - Average - ALL
(a) (b)
1250w 1000ms 50

25w 500ms 2.5

20w woms 2 1000w 800ms 40

Lw 00ms 15 750w 600ms 30

10w 200ms 1 500w 400ms 20

Swu 100ms 0.5 250wu o ﬂ {\ 200ms 10
Owu Oms 0 Owu / \ ” H]L Jl)\
2:22:45 22:23:00 22:23:15 222330 22:2345 22:24:00 220010 220020 2200:30 22:0040 220050 2201:00 220110 220120 22:01:30
Users - ALL Hits/s Total - ALL Response Time - Average - AL — Hit/s Errors - ALL I Users - ALL Hits/s Total - AL — Hit/s Errors - ALL Response Time - Average - ALL
(e (d
1250 vu 2500 ms 25
1000 vu 2000 ms 20
750 vu — 1500 ms 15
500 vu 1000 ms 10
250 vu 500 ms 5
O vu Oms o
22:11:15 22:11:30 22:11:45 22:12:00 22:12:15 22:12:30

Hits/s Total - ALL Bl Users - ALL

Response Time - Average - ALL

—— Hit/s Errors - ALL

(e)

Fig. 14. Performance testing results of MTaaS system.

Different from the current business tools, the developed sys-
tem in this paper aims to provide infrastructure-as-a- service for
testers, tools, applications, etc., in order to form the backbone for
the different types of tests that are part of mobile TaaS. Our system
MTaaS could form an integral piece of mobile TaaS on which ap-
plication services such as testing tools and methods can be based
on. The request generator of MTaaS will be the basis for genera-
tion of diverse tests and the resource allocation and provisioning
via hybrid intelligent algorithms. They will be used to automati-
cally allocate resources per demand basis on the MTaaS system. A
comparison to the existing major players is presented in Table 10.
The main difference between existing players and MTaaS is that
we developed infrastructure service for mobile TaaS. In addition,
we adopt device cloud and emulation cloud as the major infras-
tructure approach. MTaaS is a more accessible option compared to
the current market offerings. Most of the current systems require

that users join a community and network to find human testers in
order to test applications.

Our service aims to automate the median between the devel-
oper and the tester to provide access to the smart phones and the
resources to test an application, in order to eliminate the need for
a network of human testers due to our automation of black box
tests that we are developing.

In addition, we aim to perform testing on actual cell phones
unlike many other mobile application testing services depending
on emulators to generate test results. Applications may work well
on emulators but then may crash when tested on an actual de-
vice. In order to quickly send out multiple smart phone devices for
testing, our platform and network of smartphones will be readily
available at any time. Since the operations are scalable without in-
curring a large cost, MTaaS can meet virtually any amount of de-
mands for service. If the demand for the service ever did rise be-
yond what our current test devices were able to process, we could

52

Table 10

A comparison to the existing major players.

C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55

Major players

Testin

Yiceyun

PerfectoMobile

uTest

TestDroid

Our system (MTaaS)

Infrastructure
approach

Real devices yes, 4000 + Yes, 200 + Yes, 200 + no Yes, 400 + Yes, by users, providers,
and donated reources
Auto-test No No Yes No Yes Yes
Deploy method Central control plus User device Continuous quality ~ User device Centers in US and Device cloud
user device Lab Europe
0S type i0S, android Android i0S, android i0S, android i0S, android i0S, android
Testing focuses Install/uninstall, Adaption, traverse, Remote, Global testing Function, On-demand, scalable
compatibility, performance performance, community performance testing,
function, monitoring
performance
Service type PaaS PaaS PaaS PaaS PaaS laaS
Test community Yes No No Yes No No
24/7/365 service Yes No No No No Yes
Security testing No No No Yes No No

Crowdsourcing

Crowdsourcing

Emulation cloud

Crowdsourcing

Emulation cloud

Device cloud,
emulation cloud,
support crowdsourcing
users

offer for more smartphone owners to earn money by turning their
old phones into test devices as resource donation.

Moreover, MTaaS supports crowdsourcing mobile cloud based
testing. Through the platform, clients are able to remotely connect
app developers to devices (smartphones) that are located virtually
anywhere in the world as long as the devices are powered on and
connected to the platform via the internet. Though this type of
crowdsourcing testing already exists in some way, they require a
network of people to manually run the tests on the devices that
are connected to the platform. Besides laaS, we are currently de-
veloping test automation approaches in order to reduce the de-
mand for a knowledgeable human tester to manually run tests on
the device. Along with that, we are developing an app that anyone
with a smartphone can download that will connect their phone
to our platform as a test device and become part of our network.
Once the devices are connected, the developers can remotely in-
stall their app on any number of devices in our network, and run
automated tests. Once the tests are concluded, our platform will
uninstall the app, and then send a bug report back to the app de-
veloper so they can determine what they need to do in order to
get their app working properly on that particular device. Through-
out this process, the owner of the device does not have to do any-
thing other than leave it on and connected to the internet with our
app running.

Automating the human element of mobile testing (as well as
purchasing a warehouse of phones) results in significant cost sav-
ings. MTaaS aims to solve the problem of smaller app developers
not having sufficient access to a variety of different physical test
devices to test their new apps on. Additionally, our service would
be an alternative for bigger app developers to purchasing and run-
ning their own testing lab, and as a way to outsource their mobile
testing needs for cost savings.

4.6. The limitations of current MTaaS

The current MTaaS system suffers from several limitations as
follows.

The developed system in this paper only focuses on laaS level,
i.e.,, on-demand infrastructure service of test resources (device, em-
ulators, hubs, TaaS servers) for mobile app testing. To provide a
complete mobile TaaS system, PaaS-level service need to be devel-
oped. Currently, we are working on test automation approaches for
mobile apps, including test environment setting, test models, and
test methods.

Regarding security issue, user access control is considered in
the system. Nevertheless, mobile resource security needs to be en-
hanced in the future. As the initial version of mobile laaS, we
primarily focus on features such as service infrastructure, virtual-
ization solution, implemented functions and system performance.
In market applications, cloud services encounter a number of the
risks associated with security and privacy. There are several se-
curity issues that need to be addressed, such as the security and
privacy of user’s data stored on cloud server(s), security threats
caused by multiple virtual machines, and intrusion detection. We
plan to address some security issues in the future work. More is-
sues and challenges in mobile TaaS will be discussed in the next
section.

5. Issues, challenges, and needs in mobile TaaS

Although there are a number of published papers addressing
issues, challenges and needs in testing services (Gao et al., 2011;
Gao et al,, 2014) and mobile testing (Gao et al., 2013; Gao et al,,
2012), no publications discusses the challenges and needs in mo-
bile testing-as-a-service on cloud. In previous work, we addressed
some testing issues, such as testing models, testing automation ap-
proaches in mobile testing and mobile TaaS. However, there are
more challenges existed in testing criteria and standards, large-
scale test script automation and cloud-based Mobile TaaS. This sec-
tion summarized several current issues.

Issue #1: Lack of well-defined infrastructures and approaches on
cloud which allow both mobile application vendors and users to access
for mobile TaaS services.

Since cloud-based mobile TaaS is a new topic among software
testing, mobile computing, and software testing service communi-
ties, now we are at the earlier stage. As more people recognize
the importance of its business opportunities and needs, more mo-
bile device clouds (such as sensor device clouds and mobile device
test clouds) will be developed to support mobile TaaS cloud infras-
tructures and services. In addition, with the population of crowd-
based application, how to construct effective service infrastructure
for crowd-based mobile users and crowed-souring server is still a
problem.

Need #1: More study and research results on cloud-based mobile
TaaS infrastructures and mobile testing environments supporting on-
demand elastic mobile testing resources and offering unified mobile
test automation services.

Since mobile scalability is one important QoS evaluation param-
eter, engineers must validate it using both emulation-based and

C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55 53

device-based testing approaches. To support this, engineers need to
an elastic cloud-based mobile test infrastructure based on a remote
mobile device cloud and mobile virtualization. Hence, a desirable
mobile TaaS infrastructure is needed to support auto-provision of
mobile testing resources with elastic scalability.

Issue #2: Lack of standards in mobile test environments, billing
charges, tools, and test automation for mobile testing services on
cloud.

As pointed out in Gao et al. (2012), engineers have found this
problem in mobile test automation even though there are numer-
ous available mobile test tools since they used different interfaces,
scripting languages, and diverse technologies. Thus, setting up a
mobile test environment for multiple applications across various
platforms is tedious, time-consuming, and expensive. Moreover,
the frequent updates and changes in mobile device and platforms
worsen this situation.

Need #2: Developing well-defined standards for mobile TaaS ser-
vice on cloud in different areas.

Several types of standards are needed. The first is a standard
cloud-based mobile test environment which can be easily defined,
configured, deployed, and executed. And the other refers to stan-
dard testing service protocols and APIs supporting test services,
which includes the followings.

Standard TaaS interactions between mobile device clouds and
the mobile TaaS server.

Standard reusable mobile test platform with well-defined com-
mon testing services on mobile devices.

Standard tool control interactions/interfaces between mobile
test tools and under-test mobile applications.

- A standard mobile connectivity control service protocol for mo-
bile device clouds to support and control mobile connection for
each mobile device.

Issue #3: There is a lack of well-defined test models and coverage
criteria to address distinct needs in cloud-based mobile testing.

The existing test models did not address and present di-
verse mobile environment contexts (such as mobile platforms, web
browsers, mobile technologies, different native APIs, and device-
specific gesture, and related configurations on different devices),
diverse network connectivity and related contexts, testing scalabil-
ity and mobility, usability and security. These problems need to be
solved in cloud-based mobile TaaS.

Need #3: Well-defined test models and criteria to address the spe-
cial features in mobile applications.

Recently, several researchers attempt to address this need in
mobile testing. For example, a semantic tree model is proposed
in Tao and Gao (2014) to present diverse testing environments
in mobile testing. The approach in Aktouf et al. (2015) aims to
test location-based function service using a dynamic graph-based
model. However, there is still a demand for more test models and
coverage criteria to address the special features, such as mobility,
cross-platform, and crowdsourcing.

6. Conclusions

This paper presents the design and development of a mobile
TaaS system known as MTaaS as infrastructure-as-a-service. The sys-
tem supports mobile TaaS by providing mobile instances such as
server machines, mobile hubs, devices and emulators for testing
environment and applications. The evaluation results indicate the
feasibility and effectiveness of the system. In addition, the paper
provides the detailed perspectives on the current mobile TaaS, in-
cluding the test features, infrastructures, industrial practices, as
well as issues and challenges. Moreover, a comparative study is
given to indicate the advantage of the developed system.

As the fast increase of mobile app deployments on devices, en-
gineers need more quality validation research and test automa-
tion tools to cope with the discussed issues and challenges. Mo-
bile TaaS is an effective approach to on-demand and large-scale
mobile testing through providing services like infrastructures, plat-
forms, and applications. Mobile test automation solutions are also
urgently needed to meet current and future demands in mobile
testing. Besides the developed MTaaS system for mobile TaaS, we
are currently developing a test automation platform as platform-as-
a-service based on laaS as another important piece of mobile TaaS.

Acknowledgment

This paper is supported by the National Natural Science Foun-
dation of China under Grant No. 61402229 and No. 61502233; the
Open Fund of the State Key Laboratory for Novel Software Technol-
ogy (KFKT2015B10), and the Postdoctoral Fund of Jiangsu Province
under Grant No.1401043B.

References

Aktouf, O.EK. Zhang, T, Gao, J., Uehara, T., 2015. Testing location-based function
services for mobile applications. In: Accepted in Proceedings of The First Inter-
national Workshop on Mobile Cloud TaaS (MCTaaS 2015).

Amalfitano, D., et al., 2012. Using GUI ripping for automated testing of android ap-
plications. In: Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 258-261.

Anand, S., et al., 2012. Automated concolic testing of smartphone apps. In: Proceed-
ings of the ACM SIGSOFT International Symposium on the Foundations of Soft-
ware Engineering, pp. 1-11.

Bai, X.Y., Li, M.Y,, Tsai, W.T., Gao,]., 2013. Vee@Cloud: the virtual test lab on the
cloud. In: Proceedings of the Workshop on Automation of Software Test (AST),
pp. 15-18.

Bo, J., Xiang, L., Gao, X.P,, 2007. MobileTest: a tool supporting automatic black box
test for software on smart mobile devices. In: Proceedings of the International
Workshop on Automation of Software Test.

Buyya, R, et al., 2009. Modeling and simulation of scalable cloud computing envi-
ronments and the cloudsim toolkit: challenges and opportunities. In: Proceed-
ings of International Conference on the High Performance Computing & Simu-
lation (HPCS), pp. 1-11.

Do, T.V,, Rotter, C., 2012. Comparison of scheduling schemes for on-demand IaaS
requests.]. Syst. Softw. 85, 1400-1408.

Dorgio, M., Birattari, M., 2010. Ant colony optimization. In: Encyclopedia of Machine
learning. Springer, US, pp. 36-39.

Gao, J., et al, 2012. A cloud-based TaaS infrastructure with tools for SaaS vali-
dation, performance and scalability evaluation. In: Proceedings of IEEE Inter-
national Conference on Cloud Computing Technology and Science (CloudCom),
pp. 464-471.

Gao,], et al, 2013. Mobile application testing: a tutorial. IEEE Comput. 47 (2),
46-55.

Gao, J., Bai, X.Y,, Tsai, W.T,, Uhere, T., 2011. Cloud testing - issues, challenges, needs
and practice”, software engineering. Int. J. (SEIJ) 1 (1), 9-22.

Gao, J., Tsai, W.T,, Paul, R., Bai, X.Y., 2014. Mobile testing-as-a- service (mobile taas)-
-infrastructures, issues, solutions and needs. In: Proceedings of IEEE Interna-
tional Symposium on High Assurance Systems Engineering (HASE), pp. 158-167.

Hargassner, W., et al., 2008. A script-based testbed for mobile software frameworks.
In: Proceedings of International Conference on Software Testing, Verification,
and Validation, pp. 448-457.

Hirenkumar, B.H., 2015. An overview of load balancing techniques in cloud comput-
ing environments. Int. J. Comput. Appl. 4 (1), 9874-9881.

Mann, Z.A., 2015. Allocation of virtual machines in cloud data centers—a survey of
problem models and optimization algorithms. ACM Comput. Surv. 48 (1), 1-34
Article 11.

Manvi, S.S., Shyam, G.K., 2014. Resource management for infrastructure as a service
(IaaS) in cloud computing: a survey. J. Netw. Comput. Appl. 41, 424-440.

Muccini, H., Francesco, A.D., Esposito, P., 2012. Software testing of mobile applica-
tions: challenges and future research directions. In: Proceedings of International
Workshop on Automatic Software Test Automation, pp. 29-35.

Openstack documentation. http://docs.openstack.org/.

Ridene, Y., Barbier, F, 2011. A model-driven approach for automating mobile ap-
plications testing. In: Proceedings of the 5th European Conference on Software
Architecture, pp. 1-7.

Riungu, L.M., Taipale, O., Smolander, K., 2010. Software testing as an online Service:
observations from practice. In: Proceedings of International Conference on Soft-
ware Testing, Verification, and Validation Workshops (ICSTW), pp. 418-423.

Satoh, 1., 2004. Software testing for wireless mobile computing. IEEE Wireless Com-
mun. 11 (5), 58-64.

Satoh, I, 2012. A testing framework for mobile computing software. IEEE Trans.
Softw. Eng. 29 (12), 1112-1121.

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0024
http://docs.openstack.org/
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0031

54 C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55

Tao, C.Q., Gao, J., 2014. Modeling mobile application test platform and environment:
testing criteria and complexity analysis. In: Proceedings of the 2014 Workshop
on Joining AcadeMiA and Industry Contributions to Test Automation and Mod-
el-Based Testing, pp. 28-33.

Tsai, W.T,, Hang, Y., Shao, Q.H., 2011. Testing the scalability of SaaS applications.
In: Proceedings of IEEE International Conference on Service-Oriented Computing
and Applications (SOCA), pp. 1-4.

Yang, Y., Onita, C., Zhang, X., Dhaliwal, J., 2010. TESTQUAL: conceptualizing software
testing as a service. e-Service J. 7 (2), 46-65.

Yehuda, OA.B, Yehuda, M.B., Schuster, A., Dan, T.,, 2014. The rise of RaaS: the re-
sourceas-as-a-Service cloud. Commun. ACM 57 (7), 76-84.

Zhan, ZH.,, Liu, XF, Gong, YJ., Zhang, J., Chung, H.S,, Li, Y., 2015. Cloud computing
resource scheduling and a survey of its evolutionary approaches. 47 (4), Article
63:1-33.

http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30223-0/sbref0039

C. Tao, J. Gao/The Journal of Systems and Software 124 (2017) 39-55 55

Chuangi Tao is an assistant professor in the Department of Software Engineering at Nanjing University of Science and Technolgy in Nanjing, China. His research areas include
model-based testing and test aumomation, mobile application testing, and regression testing. Contact him at taochuanqi@njust.edu.cn.

Jerry Gao is a full professor in the Department of Computer Engineering at San Jose State University, CA, USA. His research areas include cloud computing, testing-as-a-service
(TaaS), mobile computing, and software testing and automation. Contact him at jerry.gao@sjsu.edu.

	On building a cloud-based mobile testing infrastructure service system
	 Introduction
	 Understanding cloud based mobile testing-as-a -service
	2.1 Motivations and new requirements
	2.2 The test features of cloud-based mobile TaaS
	2.3 The test process of cloud-based mobile TaaS

	3 Infrastructures for cloud-based mobile TaaS
	4 A developed cloud based mobile TaaS system (MTaaS)
	4.1 Infrastructure of MTaaS system
	4.2 MTaaS system design
	4.3 Service functions of MTaaS
	4.4 Resource allocation in MTaaS
	4.4.1 Issues and resolutions
	4.4.2 The proposed hybrid algorithm

	4.5 System evaluation
	4.5.1 System testing
	4.5.2 A comparative study between MTaaS and other systems

	4.6 The limitations of current MTaaS

	5 Issues, challenges, and needs in mobile TaaS
	6 Conclusions
	 Acknowledgment
	 References

