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Complex nearly immotile behaviour of
enzymatically driven cargos†

O. Osunbayo,‡a C. E. Miles, ‡b F. Doval,c B. J. N. Reddy,d J. P. Keener b and
M. D. Vershinin *c

We report a minimal microtubule-based motile system displaying signatures of unconventional diffusion.

The system consists of a single model cargo driven by an ensemble of N340K NCD motors along a

single microtubule. Despite the absence of cytosolic or cytoskeleton complexity, the system shows

complex behavior, characterized by sub-diffusive motion for short time lag scales and linear mean

squared displacement dependence for longer time lags. The latter is also shown to have non-Gaussian

character and cannot be ascribed to a canonical diffusion process. We use single particle tracking and

analysis at varying temperatures and motor concentrations to identify the origin of these behaviors as

enzymatic activity of mutant NCD. Our results show that signatures of non-Gaussian diffusivities can

arise as a result of an active process and suggest that some immotility of cargos observed in cells may

reflect the ensemble workings of mechanochemical enzymes and need not always reflect the properties

of the cytoskeletal network or the cytosol.

Introduction

Microtubule-associated motility enables essential intracellular
functions and processes in eukaryotic cells. Hence, observation
and modeling of this process is a major modern research direc-
tion. Much less attention is devoted to studies of how cargos do
not move. The temporary lack of directed cargo motion is often
seen but rarely analysed in depth in particle tracking and
analysis studies. It can significantly affect net cargo velocity
for one particle and net cargo flux for a population of cargos. In
addition, cargos driven by multiple molecular motors can
remain immotile for extended periods of time at microtubule
intersections due to being simultaneously bound to multiple
filaments.1–5 In such cases, the cargos act as dynamic cross-
links for the cytoskeleton and their function bridges the fields
of motility and biomechanics.6,7 Extended stationary periods
are therefore a distinct class of motile behaviour which requires
extensive in vitro8 and in silico9 modeling, as well as additional
experimental tools to establish the underlying root causes of
such events.

Intracellular cargo tracks tend to be highly complex because
motion can be driven by a variety of causes, including mechano-
chemical enzymes10 and passive diffusion11 (equivalently, motion
can be driven by causes that obey or break detailed balance12).
The distinction between passive and active motion is crucial. For
example, one might use positional fluctuations of an intracellular
cargo to calibrate in vivo optical trapping,13 but it is essential to
first establish that the chosen cargos are not subject to motor
activity. On the other hand, if enzymatic contribution is estab-
lished then one can proceed to probe the properties of molecular
motors mediating the motility.14,15 It is thus desirable in many
experimental contexts to have a simple way to distinguish
between active and passive motility.

Mean-squared displacement (MSD) analysis16 is commonly
used to classify single particle motion. Pure Brownian motion
leads to linear MSD curves whereas motion driven by individual
mechanochemical enzymes often proceeds at constant velocity
and produces a quadratic MSD dependence.16,17 An important
subtlety is that Brownian motion is not the only stochastic
process that leads to linear MSD curves.18,19 A linear MSD can
very well arise from an active process, for example, with a
balanced ensemble of mechanochemical enzymes that oppose
each-other’s motion. Hence, MSD analysis may be convenient
and easy to perform but it is not always able to distinguish
active from passive motility.

Motility analysis and modeling is rapidly changing.19,20

Interest in active fluctuations and awareness of complications
in practical data analysis is growing.21,22 Practical examples
of enzymatically driven diffusion are now well established.15
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However, theoretical approaches to teasing out various diffusion
and activemotility modes from single particle tracking data18 are
still under active development23,24 and a single standardized
approach has yet to emerge. It is however clear that in general
mere tracking and associated analysis is insufficient to relate
cargo-scale phenotype to constituent single molecule contribu-
tions. There is thus an acute need for new experimental probes
of complex motility.

In this work, we construct a minimal experimental model of
an active but apparently diffusive process. We establish that the
process is active by demonstrating the diffusion coefficient’s
dependence on motor concentration, as well as the require-
ment for ATP presence in the system. We then examine the
resulting motility and demonstrate that even in our minimal
system the overall ensemble phenotype is complex. We further
show how active contribution to the apparent diffusion can be
isolated via a simple experimental approach. Finally, we argue
via additional experimental and theoretical analysis that this
type of complex behaviour is likely more general than our minimal
model system.

Materials and methods
Bead assays

Taxol stabilized microtubules were deposited on a glass cover-
slip, washed, then coverslip surface was blocked and the bead/
motor sample was subsequently admitted into the flow cell,
as previously described.25 Briefly, glass coverslips were coated
with poly-L-lysine, and attached to sapphire slides (Swiss
Jewel Company, Philadelphia, PA) via double-sided tape (3 M,
Maplewood, MN). Taxol stabilized microtubules (MT) were
diluted into the flow buffer and then deposited into flow cell
and incubated for 15 min. The flow buffer was PMEE (35 mM
Pipes, 5 mMMgSO4, 1 mM EGTA, 0.5 mM EDTA) supplemented
with 20 mM taxol and 1 mM GTP. Excess MTs were then washed
away and the surface was blocked with buffer containing
22 mg mL�1 casein (Sigma-Aldrich, St. Louis, MO). For the
temperature-dependent experiments carboxylated+ 1 mm poly-
styrene beads (Polysciences, Warrington, PA) were incubated
with excess NCD N340K kinesin diluted in PMEE buffer aug-
mented with 105 mM of NaCl, 5 mM of ATP and 5 mM
Dithiothreitol and incubated at 4 1C for 30 min. For the motor
concentration-dependent experiments, the lower concentration
was 0.13 mM while the higher concentration was 10� greater,
1.3 mM. In all cases, beads were observed to bind to micro-
tubules without detachment during the entire observation
period consistent with multiple NCD motors tethering the
beads to microtubules. Control beads without NCD did not
bind to microtubules in a parallel assay.

Imaging and temperature control

Motility data was collected in a biologically relevant tempera-
ture range as previously described.26 Briefly, flow cells were
constructed as usual but sapphire window was used in place
of the cover glass. A customized Peltier thermoelectric stage

(PE120; Linkam, Tadworth, UK) was placed in direct contact
with the sapphire cover glass for maximum heat conductivity
between the assay and the stage. Dry condenser was used to
minimize thermal coupling to the microscope. Imaging was
performed at B20 fps. Bead positions were then extracted and
analysed via custom tracking software (Matlab, Mathworks,
Natick, MA).

Lipid droplet imaging

Lipid droplet motion was imaged in wild type COS1 (ATCC CRL-
1650) cells via Differential Interference Contrast microscopy.
COS1 cell culture was carried out as previously described.27

Briefly, cells were grown in DMEM (Invitrogen, Carlsbad, CA)
supplemented with 10% fetal bovine serum and 1% antibiotic
at 37 1C in 5% CO2. For imaging purposes, cells were attached
to the polylysine coated glass coverslip by placing the coverslip
at the bottom of a 60 mm Petri dish just before plating the cells.
The cells were attached to the coverslip at least 6 hours before
imaging. A sample chamber was constructed to facilitate the
imaging as previously described.27 Live cell imaging was perfor-
med at 30 frames per s. Lipid droplets were tracked via custom
software (Matlab, Mathworks, Natick, MA).

MSD analysis of bead motion

Bead displacements were video recorded at Dt B 20 fps. Bead
location in each frame was extracted28 and full bead trajectory
was then reconstructed for each bead (e.g. Fig. 1A and B). For
each trajectory, squared displacements between all location
pairs whose time points were separated by a specific time interval

Fig. 1 Bead motility at room temperature. Representative weakly motile
tracks in the ATP (A) and AMPNP (B) background. Scale bars: 1 mm. (C) Mean-
square displacement (MSD) for motion in ATP and AMPPNP background
(as indicated).
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(time lag) were averaged to calculate mean squared displace-
ment for each time lag of interest.

The uncertainty in MSD values for a given time lag were
estimated by pooling all such values for all independent bead
trajectories (for a specific experimental condition). One sigma
and two sigma confidence intervals could then be estimated
from this data set non-parametrically (necessary because these
distributions were clearly not Gaussian).

Linear fits were performed for lag times between 1 and
3 seconds. Longer time lags were penalized in the fit because
variance between MSDs for particle trajectories grows with
lag.17 Our regression also used inverse estimated variance as
fitting weights17 to improve estimation. A few exceptional
trajectories showed motion consistent with ballistic (constant
velocity) transport. Akaike information criterion was used to
filter out MSD curves which fit quadratic model better than
the linear one. Inclusion of such trajectories is somewhat
ambiguous in principle, since a linear fit need not produce a
meaningful estimate, but in practice it does not substantially
alter the results above.

Protein purification

N340K mutant of NCD with N-terminal 6xHis tag was bacte-
rially expressed in BL21DE3. Lysis was accomplished by sonica-
tion for 45 min at 4 1C. Lysis buffer: 50 mM Tris pH 7.5, 300 mM
NaCl, 10% glycerol, 20 mM imidazole, 10 mM PMSF, 2 mM bME
with EDTA-free Roche mixture inhibitors. Cell lysis was followed
by immobilized metal ion affinity chromatography purification
(two washes and elution). Wash buffer 1: 50 mM Tris pH 7.5,
700 mM NaCl, 10% glycerol, 40 mM imidazole, 0.02% Triton
X-100, 2 mM bME. Wash buffer 2: 50 mM Tris pH 7.5, 300 mM
NaCl, 10% glycerol, 75 mM imidazole, 2 mM bME. Elution
buffer: 25 mM Tris pH 7.5, 300 mMNaCl, 10% glycerol, 500 mM
imidazole, 2 mM bME. Gene synthesis/purification were per-
formed by Bionexus, Inc.

Results and discussion

We have examined a bead assay in which a single cargo is driven
along a single filament bymultiple copies of a single type of motor:
N340K mutant of kinesin-14 NCD (non-claret disjunctional).29

Wildtype NCD is non-processive with a bias forminus-end directed
powerstroke.29–33 The N340K mutant is a bi-directional motor,
with more balanced preference for stepping in either direction.
Ensembles of N340K NCD motors were previously used in a
microtubule gliding assay and showed ensemble bi-directional
motility. Most of themotility was reported to be localized but some
contiguous displacements in either direction were too long to be
ascribed to diffusion even though overall motile random process
appeared roughly stationary.29 The general view regarding this
phenomenon is that the cooperative activity of NCD motors is
sufficient to temporarily power directed displacement12 but the
choice of direction occurs via spontaneous symmetry breaking and
need not be biased in a specific direction. However, diffusive
motion has not been fully ruled out.11

We studied NCD N340K driven motility in a bead assay to
more closely model active bi-directional cargo motion (Fig. 1).
The observed motility was consistent with gliding assay pheno-
type:29 most beads exhibited limited localized motions while
some beads had more extensive bi-directional motility. The
MSD analysis of tracks revealed that the motion is strongly sub-
diffusive on short time scales but apparently diffusive on longer
time scales (Fig. 1).

The characteristic diffusion coefficient we observed at room
temperature is 0.008 mm2 s�1 – more than an order of magni-
tude lower than the typical diffusion coefficients for regular
diffusion of proteins along microtubules.11,34 However in a
system with multiple cross-bridges between the cargo and the
filament this is not quite definitive. We then asked whether the
linear MSD lineshape could be directly attributed to the enzy-
matic activity of NCD. We repeated the study in the AMPPNP
(rather than ATP) background. In this case the MSD curve was
nearly flat, suggesting that apparent diffusion and enzymatic
activity were abolished concomitantly (Fig. 1).

It is natural to attribute the enzymatic activity which under-
lies apparent diffusion described above to NCD N340K motors:
they are the only ATPases present under our controlled condi-
tions and the only cargo-filament crossbridges present (no cargo
binding was seen in assays absent the motors). However, it was
not a priori as clear whether this was a collective phenomenon,
although prior theoretical work suggested that it was and that
the variation of effective diffusivities with the number of motors
should be experimentally observable.35 We therefore tested
motility at two motor concentrations separated by an order of
magnitude. We found that the distributions of effective diffusion
coefficients were significantly different, with significantly more
apparently diffusive motion observed at the lower concentration
(Fig. 2). This answers our question regarding the linear MSD
lineshape, leading us to indeed attribute it to the ensemble
activity of ATP-driven motor enzymes.

The linear fits17 to long lag time portion of the MSD curves
revealed that the distribution of the effective diffusion coefficients

Fig. 2 Effective diffusion dependence on motor concentration. Empirical
cumulative distribution function (ECDF) for motors at 0.13 mM (red) and
1.3 mM (blue) motor concentrations. (inset) Maximum likelihood estimates
for characteristic diffusion coefficient assuming exponential distribution.
Error bars: 95% c.i. (p o 1 � 10�4).
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is not Gaussian. At all temperatures it is highly skewed and
reasonably approximated by an exponential distribution (Fig. 2
and 3A). This feature is unexpected: approximately Gaussian
distributions typically arise in this type of analysis due to the
central limit theorem for large data sets. Indeed, this observa-
tion is in contrast to e.g. simple Brownian motion of beads in
water, for which the distribution of diffusion coefficients is of
course approximately Gaussian and varies slowly with tempera-
ture (Fig. S1, ESI†). Though exponential density is unusual,
it does provide us with a decay scale which we can then use as
the characteristic of diffusion at a given temperature.

Non-Gaussian distribution of diffusivities has been reported
in many systems with linear average MSD character36 but not for
enzymatically driven ensembles. We conclude that active matter is
subject to similar puzzling behaviours as passive matter. How then
can we test whether the source of apparent diffusion is passive or
active? We sought methodology to answer this question which
could be readily used in vivo as well as in vitro. The central idea
behind our approach is that biological enzymes typically undergo
dramatic changes in activity over a biologically relevant tempera-
ture range26,36,37 whereas passive processes like ordinary diffusion
show much less pronounced variation with temperature (Fig. S1,
ESI†). We demonstrate (Fig. 3) that temperature dependent single
particle tracking is indeed a rapid and convenient approach for
analysing the active contribution to apparent diffusion.

The characteristic diffusion coefficients from assays in a
biologically relevant temperature range yielded an excellent fit
to the Arrhenius model but not to the linear one (Fig. 3B and C).
The activation energy extracted from the Arrhenius fit was
130 KJ mol�1 – somewhat high but within the range of activation
energies observed for kinesin motors especially for a system of
multiple motors where a stepping enzyme would see significant
opposing load.38 It is unlikely that another energy barrier
relevant to our system is in this range. For example, the activa-
tion energies for protein diffusion along the microtubule lattice
are not generally precisely known but are thought to be more
than an order of magnitude lower.11 The energy barriers
relevant for the motor-microtubule detachment are of order
10 KJ mol�1.39 Therefore, variable temperature measurements
are sufficient to detect the active process contributing to the
apparent diffusion.

The last question we aimed to address is the unexpected
finding that the distribution of effective diffusion coefficients
in our assays is extremely skewed. To test whether this is a more
general phenomenon associated with immotile but actively
driven cargos we have examined a lipid droplet motility system
in mammalian COS1 cells. Lipid droplet motility is known to be
driven by kinesin-2 and dynein motors40 and is also known to
show a diverse array of phenotypes, from long distance directed
motion to more stationary displacements (Fig. 4). Moreover,
lipid droplet motility in mammalian cells has been used as
a probe of viscoelasticity of the cytoskeleton.41 Indeed, sub-
diffusive behaviour has been found at short time scales but
transition to linear MSD curves have been seen at longer time
scales.41

We examined the lipid droplet motility at long time scales
only and focused on apparently diffusive transport – MSDs
which conformed to a quadratic model better than linear as per
Akaike information criterion were ignored in our analysis. The
resulting tracks are not all stationary: linear or sub-diffusive
MSD curves can arise from active motion if it is saltatory, or if it
is a minor part of a longer record. All these cases are seen in
Fig. 4A. The average MSD curve is broadly consistent with a
linear trend (Fig. 4B). Any minor sub-diffusive curvature for
short lags is not significant although such a feature would be
expected from and consistent with a prior report.41 However,
the distribution of apparent diffusion coefficients (Fig. 4C) is
inconsistent with Brownian motion and is instead highly
skewed. The strong similarity between these observations and
our in vitro data is of course insufficient to infer the microscopic
picture of lipid droplet motility in cells. It is however sufficient to
call into question whether viscoelastic contributions can be
unambiguously attributed to the cytoskeletal filaments or cytosol
in general. They may be partially or even wholly due to the motor
contribution instead. It is also sufficient to call into question
whether cytoskeletal motor contribution to nanoscale bio-
mechanics in cells is purely elastic.42

The observation of complex behaviour for nearly-immotile
ensembles of molecular motors likely has some system-specific
origins. At the same time, we might expect some skewness for the
distribution of diffusion coefficients on very general grounds.

Fig. 3 Temperature dependence of apparent diffusion coefficients.
(A) Histograms of diffusion coefficients for 5, 10, 15, 22 1C are shown as
labelled. In each panel, a fit to exponential density is shown (solid red).
Because x-axis values needed to be rescaled for data at variable tempera-
tures, fits to exponential densities at lower temperatures are shown for higher
temperature panels (dashed red) for reference of overall scale. Characteristic
diffusion coefficient for each temperature and a best fit Arrhenius curve (red)
are shown on linear (B) and Arrhenius style (C) plots.
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The active process or processes are likely to possess their own
distinct length and time scales (e.g. for motors these scale reflect
the ATPase rate and the powerstroke distance). Heterogeneity of
scales and the resulting complex diffusive energy landscape can
give rise to non-Gaussian diffusivities.35 We consider a theore-
tical model with all experimental complexity reduced to just one
active and one passive process43 in the ESI† (Supp. Text S1 and
Fig. S2, S3) and readily confirm that the skewness in this case is
considerably higher than for pure diffusion.

Conclusions

We have demonstrated that cytoskeleton motor ensembles can
lead to complex motile behaviours in the absence of the cytosol,
in the absence of microtubule movement,6 and indeed even in
the absence of tug of war between different motor types44,45 or
multiple cytoskeletal filaments.7 Some of the motility we observed
(short lag times) is clearly in the class of anomalous diffusion
(Supp. Text S2 and Fig. S2, ESI†) while longer lag time motility

remains to be fully understood. We also show that active pro-
cesses in the context of cytoskeletal transport can lead to linear
MSD curves for longer lag times, however the apparent diffusion
coefficients extracted from suchMSD curves are likely to possess a
highly skewed distribution. We note that inherently non-Gaussian
distribution of apparent diffusion coefficients has been observed
in many systems and has been recently modelled using the
diffusing diffusivities approach.20 This type of model is unlikely
to be generally applicable for all in vitro and in vivo situations but
can be extended to include active matter contribution. It is also
clear that the skewness of the distribution of diffusion coefficients
can clearly arise from both passive and active contributions.

Subdiffusion (without aging effects7) observed in the context of
cytoskeletal transport has often been conceptualized as a process of
cargos getting trapped in small spatial compartments and occa-
sional jumps between such compartments.46 Our work suggests
that stationary segments of cytoskeletal cargo motion may not
always be due to compartment trapping but dynamic motor-based
trapping instead. In addition, models of molecular motor transport
often assumemotor crosslinks to be purely elastic springs.47,48 This
assumption is convenient, computationally efficient, and allows for
reasonably faithful modeling of motor-driven transport. However
our observation of subdiffusive transport attributable directly to the
motors (rather than the cytosolic influences) suggests that a more
detailed model may be warranted.

On a practical level, we show that when dealing with cyto-
skeletal motility experiments which produce linear MSD curves,
it is a good idea to examine the distribution of effective diffusion
coefficients because deviations from Gaussian (or high-degree-
of-freedom chi-squared) behaviour can be a signature of a more
complex process. We show that these anomalies can arise even
in minimal systems with a small ensemble of identical enzymes
so that they may be pervasive in biological active matter. We
further show that varying temperature is an excellent and easily
experimentally accessible technique for probing active contribu-
tions to single particle motion in the cytoskeletal context.
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