BMO SOLVABILITY AND ABSOLUTE CONTINUITY OF HARMONIC
MEASURE

STEVE HOFMANN AND PHI LE

ABsTrRACT. We show that for a uniformly elliptic divergence form operator L,
defined in an open set Q with Ahlfors-David regular boundary, BMO-solvability
implies scale invariant quantitative absolute continuity (the weak-A., property)
of elliptic-harmonic measure with respect to surface measure on dQ2. We do not
impose any connectivity hypothesis, qualitative or quantitative; in particular, we
do not assume the Harnack Chain condition, even within individual connected
components of Q. In this generality, our results are new even for the Laplacian.
Moreover, we obtain a partial converse, assuming in addition that  satisfies an
interior Corkscrew condition, in the special case that L is the Laplacian.
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1. INTRODUCTION

The connection between solvability of the Dirichlet problem with L? data, and
scale-invariant absolute continuity properties of harmonic measure (specifically,
that harmonic measure belongs to the Muckenhoupt weight class A, with respect
to surface measure on the boundary), is well documented, see the monograph of
Kenig [Ke], and the references cited there. Specifically, one obtains that the Dirich-
let problem is solvable with data in L”(9Q) for some 1 < p < oo, if and only if
harmonic measure w with some fixed pole is absolutely continuous with respect
to surface measure o on the boundary, and the Poisson kernel dw/do satisfies a
reverse Holder condition with exponent p” = p/(p — 1). The most general class of
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domains for which such results had previously been known to hold is that of the
so-called “1-sided Chord-arc domains” (see Definition 1.13 below).

The connection between solvability of the Dirichlet problem and scale invariant
absolute continuity of harmonic measure was sharpened significantly in work of
Dindos, Kenig and Pipher [DKP], who showed that harmonic measure satisfies an
A condition with respect to surface measure, if and only if a natural Carleson
measure/BMO estimate (to be described in more detail momentarily) holds for
solutions of the Dirichlet problem with continuous data. Their proof was nominally
carried out in the setting of a Lipschitz domain, but more generally, their arguments
apply, essentially verbatim, to Chord-arc domains. The results of [DKP] were
recently extended to the setting of a 1-sided Chord-arc domain by Zihui Zhao [Z].

More precisely, consider a divergence form elliptic operator
(1.1) L:=—-divAX)V,

defined in an open set Q2 C R™! where Ais (n+ 1) x (n+ 1), real, L*, and satisfies
the uniform ellipticity condition
n+l
(12) AP < (AXE.&) = Y A& Ml < A7,
ij=1
for some A > 0, and for all £ € R™! and ae. X € Q.

Given an open set Q c R""! whose boundary is everywhere regular in the sense
of Weiner, and a divergence form operator L as above, we shall say that the Dirich-
let problem is BMO-solvable' for L in Q if for all continuous f with compact sup-
port on 09, the solution u of the classical Dirichlet problem with data f satisfies
the Carleson measure estimate

1 2 2

x€0Q, 0<r<ry

Here, ry := 10diam(0Q2), o is surface measure on 0Q, 6(Y) := dist(Y, dQ), and as
usual B(x, r) and A(x, r) := B(x, r) N 0Q denote, respectively, the Euclidean ball in
R™*!, and the surface ball on dQ, with center x and radius r.

For X € Q, we let wf denote elliptic-harmonic measure for L with pole at X,
and if the dependence on L is clear in context, we shall simply write w*.

The main result of this paper is the following. All terminology used in the
statement of the theorem and not discussed already, will be defined precisely in the
sequel.

Theorem 1.4. Suppose that Q@ ¢ R"™' . n > 2, is an open set, not necessarily
connected, with Ahlfors-David Regular boundary. Let L be a divergence form
elliptic operator defined on Q. If the Dirichlet problem for L is BMO-solvable in (),
then harmonic measure belongs to weak-A in the following sense: for every ball

It might be more accurate to refer to this property as “VMO-solvability”, but BMO-solvability
seems to be the established terminology in the literature. Under less austere circumstances, e.g., in a
Lipschitz or (more generally) a Chord-arc domain, it can be seen that the two notions are ultimately
equivalent; see [DKP] for a discussion of this point, although for the reader’s convenience, we shall
show below (see Remark 4.20) that in fact the equivalence holds for a domain with an ADR boundary,
in the presence of “S < N estimates” in L? (thus, in particular, in the special case of the Laplacian,
in a domain satisfying an interior Corkscrew condition). In the more general setting of our Theorem
1.4 this matter is not settled.
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B = B(x,r), with x € 0Q), and 0 < r < diam(0Q), and for all Y € Q\ 4B, harmonic
measure a){ € weak-As(A), where A := B N 0Q, and where the parameters in the
weak-A condition are uniform in A, and in Y € Q\ 4B.

As mentioned above, this result was established in [DKP], and in [Z], under the
more restrictive assumption that Q is Chord-arc, or 1-sided Chord-arc, respectively.
The arguments of [DKP] and [Z] rely both explictly and implicitly on quantitative
connectivity of the domain, more precisely, on the Harnack Chain condition (see
Definition 1.11 below). The new contribution of the present paper is to dispense
with all connectivity assumptions, both qualitative and quantitative. In particular,
we do not assume the Harnack Chain condition, even within individual connected
components of Q. In this generality, our results are new even for the Laplacian.

We observe that we draw a slightly weaker conclusion than that of [DKP] (or
[Z]), namely, weak-A.,, as opposed to A, but this is the best that can be hoped for
in the absence of connectivity: indeed, clearly, the doubling property of harmonic
measure may fail without connectivity. Moreover, even in a connected domain
enjoying an “interior big pieces of Lipschitz domains” condition, and having an
ADR boundary (and thus, for which harmonic measure belongs to weak-As, by
the main result of [BL]), the doubling property may fail in the absence of Harnack
Chains; see [BL, Section 4] for a counter-example.

In the particular case that L is the Laplacian, we also obtain the following.

Corollary 1.5. Let Q C R™! n > 2 be an open set, not necessarily connected,
with Ahlfors-David Regular boundary, and in addition, suppose that Q satisfies
an interior Corkscrew condition (Definition 1.10), and that the Dirichlet problem
is BMO-solvable for Laplace’s equation in Q. Then 0 is uniformly rectifiable
(Definition 1.9).

The proof of the corollary is almost immediate: by Theorem 1.4, harmonic mea-
sure belongs to weak-A, (even without the Corkscrew condition), so by the result
of [HM]?, in the presence of the interior Corkscrew condition, € is uniformly
rectifiable.

We remark that the Corkscrew hypothesis is fairly mild, in the sense that if
Q = R™!\ E is the complement of an ADR set, then the Corkscrew condition holds
automatically. We also remark that in the absence of the Corkscrew condition, the
result of [HM], i.e., the conclusion of uniform rectifiability, may fail; a counter-
example will appear in forthcoming work of the first author and J. M. Martell.

We also obtain a partial converse to Theorem 1.4.

Theorem 1.6. Let Q ¢ R n > 2 be an open set, not necessarily connected,
with Ahlfors-David Regular (ADR) boundary. Let L be a divergence form elliptic
operator defined on Q, and suppose that elliptic-harmonic measure for L belongs
to weak-A in the sense of the conclusion of Theorem 1.4. Then the Dirichlet
problem for L is LP-solvable® in Q, for p < oo sufficiently large. In the special case
that L is the Laplacian, the Dirichlet problem is BMO-solvable, provided also that
Q satisfies an interior Corkscrew condition, and that diam(0Q)) = diam(Q)*.

2See also [HLMN] and [MT] for more general versions of the result of [HM].

3We shall say precisely what this means in the sequel; see Proposition 4.5, and Remark 4.8.

4I,e,, either Q is a bounded domain, or both Q and dQ are unbounded. We discuss a variant of
our results, valid in the case that 9Q is bounded but Q is unbounded, in Section 5.
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As noted above, our main new contribution is Theorem 1.4, which establishes
the direction BMO-solvability implies w € weak-A; it is in that direction that the
lack of connectivity is most problematic. By contrast, our proof of the opposite
implication (i.e., Theorem 1.6) is a fairly routine adaptation of the corresponding
arguments of [DKP] and of [FN]. On the other hand, let us point out that in Theo-
rem 1.6, we have imposed an extra assumption, namely the Corkscrew condition.
At present, we do not know whether the latter hypothesis is necessary to obtain the
conclusion of Theorem 1.6 (although as remarked above, in its absence uniform
rectifiability of 0Q may fail), nor do we know whether the conclusion of BMO
solvability extends to the case of a general divergence form elliptic operator L.

To provide some further context for our results here, let us mention that recently,
Kenig, Kirchheim, Pipher and Toro have shown in [KKiPT] that for a Lipschitz do-
main Q, a weaker Carleson measure estimate, namely, a version of (1.3) in which
the BMO norm of the boundary data is replaced by |ull;~(q), still suffices to es-
tablish that wy satisfies an A, condition with respect to surface measure on 9<).
Moreover, the argument of [KKiPT] carries over with minor changes to the more
general setting of a uniform (i.e., 1-sided NTA) domain with Ahlfors-David regu-
lar boundary [HMT]. However, in contrast to our Theorem 1.4, to deduce absolute
continuity of harmonic measure under the weaker L™ Carleson measure condition
seems necessarily to require some sort of connectivity (such as the Harnack Chain
condition enjoyed by uniform domains). Indeed, specializing to the case that L is
the Laplacian, an example of Bishop and Jones [BiJ] shows that harmonic mea-
sure w need not be absolutely continuous with respect to surface measure, even
for domains with uniformly rectifiable boundaries, whereas the first named author
of this paper, along with J. M. Martell and S. Mayboroda, have shown in [HMM]
that uniform rectifiability of JQ alone suffices to deduce the L™ version of (1.3) in
the harmonic case’ (and indeed, for solutions of certain other elliptic equations as
well).

The paper is organized as follows. In the remainder of this section, we present
some basic notations and definitions. In Section 2, we recall some known results
from the theory of elliptic PDE. In Sections 3 and 4, we give the proofs of Theo-
rems 1.4 and 1.6, respectively. Finally, in Section 5, we discuss the modifications
that are needed in the case that Q is an unbounded domain with bounded boundary.

1.1. Notation and Definitions.

e We use the letters ¢, C to denote harmless positive constants, not necessarily the
same at each occurrence, which depend only on dimension and the constants
appearing in the hypotheses of the theorems (which we refer to as the “allow-
able parameters”). We shall also sometimes write @ < b and a ~ b to mean,
respectively, that a < Cb and 0 < ¢ < a/b < C, where the constants ¢ and C are
as above, unless explicitly noted to the contrary.

e Given a closed set E ¢ R™!, we shall use lower case letters X,y,Z, etc., to
denote points on E, and capital letters X, Y, Z, etc., to denote generic points in
R"*! (especially those in R"*! \ E).

SWe remark that in fact, the L™ version of (1.3) actually characterizes uniform rectifiability: a
converse to the result of [HMM] has recently been obtained in [GMT].
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e The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r)
when the center x lies on E, or B(X, r) when the center X € R**' \ E. A “surface
ball” is denoted A(x, r) := B(x, r) N 0Q.

e Given a Euclidean ball B or surface ball A, its radius will be denoted rp or ra,
respectively.

e Given a Euclidean or surface ball B = B(X, r) or A = A(x, r), its concentric dilate
by a factor of x > 0 will be denoted xB := B(X, «r) or kA := A(x, kr).

e Given a (fixed) closed set E ¢ R™!, for X e R"™*!, we set (X) := dist(X, E).

e We let H" denote n-dimensional Hausdorff measure, and let o := H"| g denote
the “surface measure” on a closed set E of co-dimension 1.

e For a Borel set A ¢ R"*! we let 14 denote the usual indicator function of A, i.e.
la(x)=1if x € A,and 14(x) = 0if x ¢ A.

e For a Borel set A ¢ R™*!, we let int(A) denote the interior of A.

¢ Given a Borel measure y, and a Borel set A, with positive and finite 4 measure,
we set f, fdu := u(A)~" [ fdu.

e We shall use the letter / (and sometimes J) to denote a closed (n+ 1)-dimensional
Euclidean dyadic cube with sides parallel to the co-ordinate axes, and we let £(1)
denote the side length of 1. If £(/) = 27k then we set k; := k.

Definition 1.7. (ADR) (aka Ahlfors-David regular). We say that a set E ¢ R"*!, of
Hausdorff dimension 7, is ADR if it is closed, and if there is some uniform constant
C such that

(1.8) é " <o(Alx,r) £ Cr', Yre(0,diam(E)), x € E,

where diam(E) may be infinite.

Definition 1.9. (UR) (aka uniformly rectifiable). An n-dimensional ADR (hence
closed) set E ¢ R™! is UR if and only if it contains “Big Pieces of Lipschitz
Images” of R" (“BPLI”). This means that there are positive constants § and M),
such that for each x € E and each r € (0, diam(E)), there is a Lipschitz mapping
0 = pyx, i R — R"™! with Lipschitz constant no larger than Mo, such that

H”(EﬁB(x,r)ﬂp({zeR” 2zl <r})) > 0r.

We recall that n-dimensional rectifiable sets are characterized by the property
that they can be covered, up to a set of H" measure 0, by a countable union of
Lipschitz images of R"; we observe that BPLI is a quantitative version of this fact.

We remark that, at least among the class of ADR sets, the UR sets are precisely
those for which all “sufficiently nice” singular integrals are L?>-bounded [DS1]. In
fact, for n-dimensional ADR sets in R"*!, the L? boundedness of certain special
singular integral operators (the “Riesz Transforms”), suffices to characterize uni-
form rectifiability (see [MMV] for the case n = 1, and [NToV] in general). We
further remark that there exist sets that are ADR (and that even form the boundary
of a domain satisfying interior Corkscrew and Harnack Chain conditions), but that
are totally non-rectifiable (e.g., see the construction of Garnett’s “4-corners Cantor
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set” in [DS2, Chapterl]). Finally, we mention that there are numerous other char-
acterizations of UR sets (many of which remain valid in higher co-dimensions);
see [DS1, DS2].

Definition 1.10. (Corkscrew condition). Following [JK], we say that an open set
Q c R"! satisfies the Corkscrew condition (more precisely, the interior Corkscrew
condition) if for some uniform constant ¢ > 0 and for every surface ball A :=
A(x, r), with x € 0Q and 0 < r < diam(9Q), there is a ball B(Xa, cr) C B(x,r) N Q.
The point X5 C Q is called a “Corkscrew point” relative to A.

Definition 1.11. (Harnack Chain condition). Again following [JK], we say that
Q satisfies the Harnack Chain condition if there is a uniform constant C such that
for every p > 0, A > 1, and every pair of points X, X’ € Q with 6(X), 6(X’) = p
and [X — X’| < A p, there is a chain of open balls By, ..., By € Q, N < C(A), with
X € Bi, X’ € By, Bx N Biy1 # 0 and C~! diam(By) < dist(By, 0Q) < C diam(By).
The chain of balls is called a “Harnack Chain”.

Definition 1.12. (NTA and uniform domains). Again following [JK], we say
that a domain Q ¢ R™! is NTA (“Non-tangentially accessible”) if it satisfies the
Harnack Chain condition, and if both Q and Qe := R"*! \ﬁ satisfy the Corkscrew
condition. If Q merely satisfies the Harnack Chain condition and the interior (but
not exterior) Corkscrew condition, then it is said to be a uniform (aka I-sided NTA)
domain.

Definition 1.13. (Chord-arc and 1-sided Chord-arc). A domain Q c R"! is
Chord-arc if it is an NTA domain with an ADR boundary; it is /-sided Chord-arc
if it is a uniform (i.e., 1-sided NTA) domain with ADR boundary.

Definition 1.14. (A, weak-A., and weak-RH,). Given an ADR set E C R+
and a surface ball Ag := By N E, we say that a Borel measure u defined on E
belongs to A (Ap) if there are positive constants C and 6 such that for each surface
ball A = BN E, with B C By, we have

6
F
(1.15) uF)<C E u(A), for every Borel set F C A.
o(B)
Similarly, we say that u € weak-Ax(Ag) if for each surface ball A = B N E, with
2B C By,

o(F)

6
HQ2A), for every Borel set F C A.
a(A)

(1.16) ,u(F)SC(

We recall that, as is well known, the condition u € weak-A.(Ap) is equivalent to
the property that u < o in Ag, and that for some ¢ > 1, the Radon-Nikodym
derivative k := du/do satisfies the weak reverse Holder estimate

1/q
27
(1.17) (fkqda) < f kdo ~ P2y A= BAE, with 2B < By.
A 20 ()

We shall refer to the inequality in (1.17) as an “RH,” estimate, and we shall say
that k € RH,(Ao) if k satisfies (1.17).
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2. PRELIMINARIES

In this section, we record some known estimates for elliptic harmonic measure
wy, associated to a divergence form operator L as in (1.1) and (1.2), and for solu-
tions of the equation Lu = 0, in an open set Q c R™! with an ADR boundary.
In the sequel, we shall always assume that the ambient dimension n + 1 > 3. We
recall that, as a consequence of the ADR property, every point on 9€Q is regular in
the sense of Wiener (see, e.g., [HLMN, Remark 3.26, Lemma 3.27]).

Lemma 2.1 (Bourgain [Bo]). Let Q c R™! be an open set, and suppose that 0Q
is n-dimensional ADR. Then there are uniform constants ¢ € (0, 1) and C € (1, ),
depending only on n, ADR, and the ellipticity parameter A, such that for every
x € 0Q, and every r € (0,diam(0Q)), if Y € Q N B(x, cr), then

(2.2) Wl (A(x, 1) > 1/C>0.

We refer the reader to [Bo, Lemma 1] for the proof in the case that L is the
Laplacian, but the proof is the same for a general uniformly elliptic divergence
form operator.

We note for future reference that in particular, if X € 9Q satisfies |X — %| = 6(X),
and Ay := 9Q N B(%, 106(X)), then for a slightly different uniform constant C > 0,
(2.3) wi(Ax) 2 1/C .

Indeed, the latter bound follows immediately from (2.2), and the fact that we can
form a Harnack Chain connecting X to a point Y that lies on the line segment from
X to X, and satisfies |Y — x| = c6(X).

As a consequence of Lemma 2.1, we have the following (see, e.g., [HKM, Ch.

6]).

Corollary 2.4. Let Q c R"! be an open set, and suppose that 0 is n-dimensional
ADR. For x € 0Q, and 0 < r < diam 0%, let u be a non-negative solution of Lu = 0
in QN B(x, 2r), which vanishes continuously on A(x,2r) = B(x,2r) N 0Q. Then for
some « > 0,

s\ 1
(25) wy) < C(T) m ffB(x’zr)nQM, VY e Bx,ryNnQ,

where the constants C and a depend only on n, ADR and A.

3. Proor oF THEOREM 1.4: BMO-SOLVABILITY IMPLIES (0 € WEAK-A

The basic outline of the proof follows that of [DKP], but the lack of Harnack
Chains requires in addition some slightly delicate geometric arguments inspired in
part by the work of Bennewitz and Lewis [BL].

We begin by recalling the following deep fact, established in [BL]. Given a point
X € Q, let & € 0Q be a “touching point” for the ball B(X, §(X)), i.e., |X — & = 6(X)
(if there is more than one such point, we just pick one). Set

3. Ax = A%, 106(X)) .

Lemma 3.2. Let 0Q) be ADR, and suppose that there are constants cy,n € (0, 1),
such that for each X € Q, with 6(X) < diam(dQ2), and for every Borel set F C Ay,
(3.3) o(F)> (1 -no(Ax) = o (F)>cp.
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Then w? € weak-Aw(A), where A = BNOQ, for every ball B = B(x, r), with x € 0Q
and 0 < r < diam(0Q), and for all Y € Q \ 4B. Moreover, the parameters in the
weak-As condition depend only on n, ADR, n, co, and the ellipticity parameter A
of the divergence form operator L.

Remark 3.4. Lemma 3.2 is not stated explicitly in this form in [BL], but may be
gleaned readily from the combination of [BL, Lemma 2.2] and its proof, and [BL,
Lemma 3.1]. We mention also that the paper [BL] treats explictly only the case that
L is the Laplacian, but the proof of [BL, Lemma 2.2] carries over verbatim to the
case of a general uniformly elliptic divergence form operator with real coefficients,
while [BL, Lemma 3.1] is a purely real variable result.

Given the BMO-solvability estimate (1.3), it suffices to verify the hypotheses of
Lemma 3.2, with n7 and ¢y depending only on n, ADR, A, and the constant C in
(1.3). To this end, let X € Q, 6(X) < diam(0€2), and for notational convenience, set

r:=0X).

We choose & € 0Q so that |[X — %| = r, and let a € (0,7/10000) be a sufficiently
small number to be chosen depending only on n and ADR. We then define Ay as
in (3.1), and set

(3.5) By := B(%,10r), By := B(%,ar), Ay :=A(%,ar).
We make the following pair of claims.

Claim 1. For a small enough, depending only on n and ADR, there is a constant
B > 0 depending only on n, a, ADR and A, and a ball By := B(x|,ar) C By, with
x1 € 0Q, such that dist(B’,, By) > Sar, and

(3.6) Wi (A1) = Bwf(Ax),
where Ay := B; N 0Q.

Claim 2. Suppose that u is a non-negative solution of Lu = 0 in Q, vanishing
continuously on 2A%,, with ||u||z~q) < 1. Then for every & > 0,

12
(3.7) u(X) < Cg (; ff |VM(Y)|25(Y) dY) + Cg%,
o(Ax) JIByna

where a > 0 is the Holder exponent in Corollary 2.4.

Momentarily taking these two claims for granted, we now follow the argument
in [DKP], with some minor modifications, in order to establish the hypotheses of
Lemma 3.2. Let B; and A be as in Claim 1. Let F' C Ay be a Borel set satisfying
the first inequality in (3.3), for some small n > 0. If we choose  small enough,
depending only on n, ADR, and the constant a in the definition of B, then by inner
regularity of o, there is a closed set F; C F N A such that

o(F) > (1— \/ﬁ)O‘(Al).
Set A| := A\ Fy (so that A; is relatively open in 0Q2), and define
f=max (0,1 +ylogM(14,)),
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where y > 0 is a small number to be chosen, and M is the usual Hardy-Littlewood
maximal operator on Q. Note that®

(3.3) 0<f<l1, I flsrowe) < Cy, 14, (y) < f(y), Yy € 0Q.
Note also that if z € dQ \ 2By, then
O’(A])
M(1 < ——2 < ,
(14 =) Vn

where the implicit constants depend only on n» and ADR. Thus, if 77 is chosen small
enough depending on v, then 1 + ylog M(14,) will be negative, hence f = 0, on
0Q\ 2B;.

In order to work with continuous data, we shall require the following.

Lemma 3.9. There exists a collection of continuous functions { fs}o<s<ar/1000, de-
fined on 0Q), with the following properties.

(1) 0 < f; <1, for each s.

(2) supp(fs) € 3B1 N OQ.

(3) 14,(2) < liminfs_ fi(2), for every z € Q.

(4) sup,llfsllamowa) < Clifllsmowa) < v, where C = C(n, ADR).

The proof is based on a standard mollification of the function f constructed
above. We defer the routine proof to the end of this section.

Let uy be the solution of the Dirichlet problem for the equation Luy; = 0 in Q,
with data f;. Note that f; vanishes on 2A%, by the distance condition in Claim 1
and Lemma 3.9-(2). Then, for a small &£ > 0 to be chosen momentarily, by Lemma
3.9, Fatou’s lemma, and Claim 2, we have

(3.10) wy(Ay) < f liminf f, dw”® < liminf us(X) < Cey + Ce®,
BQ N i

s—0

where in the last step we have used (3.7), (1.3), and Lemma 3.9-(4). Combining
(3.10) with (2.3), we find that

(3.11) wy (A1) < (Cey + Ce) wf(Ax).

Next, we set A := Ay \ F, and observe that by definition of A and A}, along with
Claim 1, and (3.11),

Wy (A) < wi(Ax \A)) + (A1) < (1= + Coy + Ce¥) wi(Ay).
We now choose first £ > 0, and then y > 0, so that C,y + Ce® < /2, to obtain that
B

w)L((F) > wa(Ax) > B,

where in the last step we have used (2.3). We therefore conclude that (3.3) holds.

It now remains only to establish the two claims, and to prove Lemma 3.9.

5The BMO estimate for £ in (3.8) follows from the fact that M(14)'/? is an A weight with A,
constant depending only on dimension, and that the log of an A; weight w belongs to BMO, with
BMO norm depending only on the A; constant of w; see, e.g., [GR, Ch. 2, Theorems 3.3 and 3.4].
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Proof of Claim 1. By translation and rotation, we may suppose without loss of gen-
erality that ¥ = 0, and that the line segment joining X to X is purely vertical, thus,
X = rey. 1, where as usual e,41 := (0,...,0,1). Let I, T, I denote, respectively,
the open inverted vertical cones with vertex at X having angular apertures 200a,
100a, and 20a, respectively (recall that @ < 7/10000). Then B, C I’ (where
B, is defined in (3.5)). Recalling that r = 6(X), we let By := B(X, r) denote the
open “touching ball”, so that By N dQ = 0, and define a closed annular region
Ry := S_BO \ By. We now consider two cases:

Case 1. 90QN(Rp\I) is non-empty. In this case, we let x; be the point in 9QN(Ry\I')
that is closest to X (if there is more than one such point, we just pick one). Then
by construction » < |X — x{| < 5r, and the ball B; = B(x;,ar) misses I, hence
dist(By, By) > dist(B,I"”) > Sar. Moreover, since x; is the closest point to X,
setting p := |X — x|, we have that Q' N dQ = (0, where

Q' = (B(X,p)\T) UBy.

Note that Q' satisfies the Harnack Chain condition, with constants depending only
upon n and a. Consequently, we may construct a Harnack Chain within the sub-
domain Q" C Q, connecting X to a point Y € B(xy, car) N Q', with 6(Y) > car/2,
where c is the constant in Lemma 2.1. Thus, by Harnack’s inequality and Lemma
2.1,

wi(AD) 2 wl(A) 2 1/C.
Since wf (Ax) < 1, we obtain (3.6), and thus Claim 1 holds in the present case.
Case 2. 0Q N (Ry \ ') = 0. By ADR, we have that
o (A0, 10ar)) < C(ar)", o(B(X,4r)noQ) > r"/C.

Thus, for a chosen small enough, depending only on n and ADR, we see that the
set 0Q N (B(X, 4r) \ B(0, 10ar)) is non-empty. Consequently, under the scenario of
Case 2,
0Q N (B(X.4r) \ B0, 10ar)) c T .
Define
6o := min {0 € [0,200a) : 0Q N (B(X,4r) \ B(0, 10ar)) c Ty},

where Iy is the inverted cone with vertex at X of angular aperture 6. It is not hard
to see that since n > 2, we necessarily have 6y > 0, as a consequence of the ADR
property; see, e.g., [DS1, Lemma 5.8]. Then by construction, there is a point

x1 € Ty, N 0Q N (B(X,4r) \ B0, 10ar)).

Note that By = B(x1, ar) misses B(0,9ar), so that in particular, dist(By, BY) > 5ar.
Moreover, Q' N 0Q = (), where now

Q' :=((B(X.4r) \Ty,) U Bo) \ B0, 10ar).

Thus, as in Case 1, there is a point Y € B(xy, car) N &/, with §(Y) > cr/2, which
may be joined to X via a Harnack Chain within the subdomain Q" c Q, as follows:
starting at Y, we move on a great circle on the sphere dB(X, R), where R = |X — Y|,
and then horizontally until we reach X; since the smallest ball in this Harnack
Chain has radius on the order of car, we can see that the number of balls will
depend only on a, n, and implicitly on ADR (since ¢ depends on n and ADR).
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Thus, by Harnack’s inequality, Lemma 2.1, and the fact that w’L( (Ax) < 1, we again
obtain (3.6). Claim 1 therefore holds in all cases. ]

Proof of Claim 2. As in the proof of Claim 1, we may assume by translation and
rotation that X = 0, and that X = re,., with r = §(X). Let I" denote the upward
open vertical cone with vertex at 0, of angular aperture 7/100. We let S denote the
spherical cap inside I, i.e., S := " NI (recall that our ambient dimension is n+ 1).
Then by Harnack’s inequality, letting u denote surface measure on the unit sphere,
we have

u(X) < fs u(ré) du(€) = fs (u(ré) - u(eré)) du(€) + 0(&") =: I+ 0("),

where we have used Corollary 2.4 to estimate the “big-O” term. In turn,

"0
n-| f f 9 (utue) dedu®)| < (ery” f Vu(v)ldy,
SJer I'NR,

where R, := B(0, r) \ B(0, er), and we have used polar co-ordinates in n + 1 dimen-
sions. We then have

1/2
1] < (er) ™"+ D/2 ( ff |Vu(Y)|2dY)
I'nR,

1/2
< ()12 ( f f V()P 5(Y) dY) ,
B(0,r)nQ

where we have used that by construction, 'NR, € B(0,r)NQ, with 6(Y) ~ |Y| > er
in I' N R,. Estimate (3.7) now follows, by ADR and the definition of By. O

Proof of Lemma 3.9. Let € CS"(R"”), with
supp({) € B(0,1), ¢=1o0nB(0,1/2), 0<¢<1.
Given s € (0,ar/1000), and z, y € 09, set
As(zy) = bz )7 (T @ =),
where

(3.12) b(z, 5) := fm{(s_l(z—y))dd(y) ~ ",

uniformly in z € 0Q, by the ADR property. Furthermore,

f As(z,y)do(y) =1, Yz €.
80
‘We now define

i) = fa A ) do),

so that f; is continuous, by construction. Let us now verify (1)-(4) of Lemma 3.9.
We obtain (1) immediately, by (3.8), and the properties of A, while (2) follows
directly from the smallness of s and the fact that supp(f) c 2B; N 0Q. Next,
observe that since A is a relatively open set in JQ2, we have that for every z € 0Q,

1,2 < liminf f As@y) Ly, 0)dor(y) < liminf £(2),
s—0 FTe) s—0

by the last inequality in (3.8). Hence (3) holds.
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To prove (4), we observe that the second inequality is simply a re-statement of
the second inequality in (3.8), so it suffices to show that

(3.13) I fsllemowa) S IfllBmMowe), uniformlyins.

To this end, we fix a surface ball A = A(x, r), and we consider two cases.

Case 1: s > r. In this case, set ¢ := fA(x 25 f, so that by ADR, (3.12) and the

construction of Ay,

f fs = cldo < f f f = cldodor < |fllsmoe -
A A JA(x,2s)

Case 2: s < r. In this case, set ¢ := JC2 A /- Then by Fubini’s Theorem,

f|fs(2)—c| do(2) < lf(y) —cl f As(z,y)do(2)do(y) < |Ifllsmowe »
A 20 a0

where again we have used ADR, (3.12) and the compact support property of A(z, y).

Since these bounds are uniform over all x € 09, and r € (0, diam(9Q)), we
obtain (3.13). ]

4. PrROOF OF THEOREM 1.6: w € WEAK-As IMPLIES LP AND BMO-SOLVABILITY

In this section, we suppose that Q is an open set with ADR boundary €2, and
that for every ball By = B(xg, r), with xy € 0, and 0 < r < diam(d€2), and for all
Y € Q\ 4By, elliptic-harmonic measure w{ € weak-A(Ag), where Ag := By N IQ.
Thus, cu{ < o in A, and the Poisson kernel k¥ := dw;/do satisfies the weak
reverse Holder condition (1.17), for some uniform ¢ > 1. In our proof of BMO-
solvability (but not for L? solvability), we shall also require, at precisely one point
in the argument, that the Corkscrew condition (Definition 1.10) is satisfied in Q.
Even in the absence of the Corkscrew condition, it may happen that there is a
Corkscrew point X, relative to some particular A (e.g., for every X € Q, this is true
for the surface ball Ay as in (3.1), with X itself serving as a Corkscrew point), and
in this case, we have the following consequence of the weak-RH,, estimate:

1/
A.1) (JC (kXA)qu') ! < Car)™".
A

Indeed, one may cover A by a collection of surface balls {A” = B’ N dQ}, in such
a way that X, € Q \ 4B’, but each A’ has radius comparable to that of A (hence
o(A’) = (M), by the ADR property), depending on the constant in the Corkscrew
condition, and such that the cardinality of the collection {A’} is uniformly bounded;
one may then readily derive (4.1) by applying (1.17) in each A’, and using the crude
estimate that w*2(2A")/o(A") < (A = o(A) .

Our first step is to establish an L? solvability result. To this end, we define non-
tangential “cones” and maximal functions, as follows. First, we fix a collection of
standard Whitney cubes covering 2, and we denote this collection by W. Given
x € 09, set

4.2) W(x) :={I € W: dist(x, ) < 100diam(/) < 1000 diam(9Q2)},
and define the (possibly disconnected) non-tangential “‘cone” with vertex at x by
“4.3) T(x) := Urew I .
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For a continuous u defined on (2, the non-tangential maximal function of u is de-
fined by
“4.4) N.u(x) := sup |u(Y)|.

Yer(x)
Recall that M denotes the (non-centered) Hardy-Littlewood maximal operator on
0Q. We have the following.

Proposition 4.5. Suppose that there is a q > 1, such that (1.17) holds for the
Poisson kernel kY, for every surface ball A = B N 09, centered on 09, provided
Y € Q\ 4B. Given g continuous with compact support on 0Q, let u be the elliptic-
harmonic measure solution of the Dirichlet problem for L with data g. Then for
p=q/(g—1), and for all x € 0Q

(4.6) Nou(x) < (Mgl )7
Thus, for all s > p, the Dirichlet problem is L*-solvable, i.e.,
4.7) IN.ullLs@o) < Csllgllisoo) -

Remark 4.8. As is well known, the weak-RH, estimate (1.17) is self-improving,
i.e., weak-RH, implies weak-RH ., for some & > 0, thus, in particular, one may
self-improve (4.7) to the case s = p. We also remark that our definition of LP-
solvability of the Dirichlet problem entails only a non-tangential maximal function
estimate, and does not address the issue of non-tangential convergence a.e. to the
data. The latter would seem to require that the Whitney boxes in the definition of
Wi(x) (see (4.2)) exist at infinitely many scales, for a.e. x € 9Q; e.g., the interior
Corkscrew condition would be more than enough to guarantee this property.

Proof of Proposition 4.5. Splitting the data g into its positive and negative parts,
we may suppose without loss of generality that g > 0, hence also u > 0. Let

x € 0Q, fix Y € T(x), and let € 9Q be a touching point, i.e., |Y — | = 6(Y). Set
Ay = A(3,10005(Y)), By = B(9,10005(Y)),

and note that x € Aj. Define a continuous partition of unity > ;>0 ¢x = 1 on 9€,
such that 0 < ¢ < 1 for all k > 0, with

4.9) supp(go) € 4A},  supp(gr) C Ry 1= 2572A5 \ 2FAL k> 1,

set gx 1= gux, and let u; be the solution of the Dirichlet problem with data g (it
may be that for some &, the boundary annulus Ry is empty; for such k, we have that
gk and hence uy, are identically zero). Thus, u = }};5( ux in Q. By construction, ¥
is a Corkscrew point for 4A}, and x € 4A}, hence

uo(Y)Sf go kY do < JC
oQ 4A%

Y

1/p
g d“] < (M)

where in the next to last step we have used (4.1).
Next, we claim that for k > 1,

(4.10) w(Y) < 275 (M(gP)(x))"” .

Given this claim, we may sum in & to obtain (4.6). Thus, it suffices to verify (4.10).
To this end, we set

Wi = {I € W: I meets 2By},
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and for each I € Wy, we fix a point X; € I N 2k=1B* and we define
A[ = AX] ,
as in (3.1), with X = X;. We now choose a collection of balls {B;};<i<y, with N
depending only on n and ADR, and corresponding surface ball A; := B; N 0, such
that R,  UY | A;, and such that for each i = 1,2, ..., N, with r := §(Y),
rg. ~ 2 and 2By c R™\ 4B;.
Then by definition of Ry (see (4.9)), and the ADR property,

N

1/p 1/q

Ry

1/p
) [JC g "”] < Mg,
2k+2A;

where in the next-to-last step we have used the weak-RH,, estimate (1.17) in each
A;, along with the crude bound wX(2A;) < 1, and the fact that each A; has radius
TA; ® 2kr.

Next, by Corollary 2.4,

1
(4.12) u(y) g 27%@ . f u(Z)dz
1251BY | JJak-1: 00

1 1
< 27 ff w(Z)dZ ~ 27k | w(X;)
~ k 1 k 1
(2 r)'l+ I;Wk 1 (2 r)n+ I;'Vk

< 275 (M(gP)(x)'7

where in the last two lines we have used Harnack’s inequality in the Whitney box
I, and then (4.11), and the fact that the Whitney boxes in W}, are non-overlapping
and are all contained in a Euclidean ball of radius ~ 2*r. O

With Proposition 4.5 in hand, we turn to the proof of BMO-solvability. Our ap-
proach here follows that in [DKP], which in turn is based on that of [FN]. We now
suppose that the Corkscrew condition holds in €, and that L is the Laplacian. In
this case, by the result of [HM] (see also [HLMN] and [MT]), the weak-A., condi-
tion for harmonic measure implies that 0€ is uniformly rectifiable, and thus, by a
result of [HMM2], we have the following square function/non-tangential maximal
function estimate: for ¥ harmonic in Q,

(4.13) f (Su) do < Cpf (N.u)? do, l<p<oo,
a0 pre)

where C,, depends also on 7, and the UR constants for 6Q2 (and thus on the ADR,
Corkscrew and weak-A., constants), and where

1/2
Su(x) := ( f f IVu(Y)Ich(Y)l‘”dY) )
T(x)

We recall that Y'(x) and N,u were defined in (4.3) and (4.4).
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Remark 4.14. In fact, the interested reader may observe that the proof below does
not require, per se, either the Corkscrew assumption or that L be the Laplacian, but
only that the “S < N” bounds (4.13) hold.

Remark 4.15. There is a technical point that we wish to address before proceeding
further. Recall that in the BMO solvability part of Theorem 1.6, we have imposed
the further assumption that diam(0Q) = diam(€2). It is in the nature of the space
BMO that constant data should not be detected by the Carleson measure expression
in (1.3); i.e., constant data f = c¢ should produce a constant elliptic-harmonic
measure solution u. If either diam(QQ) < oo, or diam(Q2) = diam(9Q) = +oo,
this is trivially true: elliptic-harmonic measure is a probability measure in these
cases, so the elliptic-harmonic measure solution with constant data is equal to the
same constant in Q. However, if dQ is bounded, but Q is unbounded, then elliptic-
harmonic measure is a probability measure only if we consider it to exist on ds£2,
that is, the boundary of Q with point at infinity appended’. Thus, in the case
of an unbounded domain with bounded boundary, we are forced to make certain
modifications, which we discuss in Section 5.

Now consider a ball B = B(x,r), with x € dQ, and 0 < r < diam(Q2), and
corresponding surface ball A = BN JQ. Let f be continuous with compact support
on 0Q, and set h := f — ca, where cp = Jﬁo A f. With a slight abuse of notation, we
let u denote the elliptic-harmonic measure solution with data A, and observe that
this u differs from our original solution u# by a constant. We construct a smooth
partition of unity 30 ¢x = 1 on 9Q as before, but now with 10A in place of Aj,.
Set hy := hgy, and let uy be the solution to the Dirichlet problem with data 4. Set

(4.16)  Wpg:={I € W: I meets B}, Wy i={leWp: &) =27},

and for each I € ‘Wi, fix a point X; € I N B. As above, let A; := Ay, be defined as
in (3.1), and note that by construction,

Z€EN = I e W),

where ‘W(z) is defined in (4.2). Consequently, given z € 9Q,

4.17) Z f fl IVuo(V)P?8(Y) " dY < (Sup(z))*.

I:zeA;

Let us note also that

(4.18) leWp = A CAxCr)=:A",

TRecall that our ambient dimension is 1 + 1, with n > 2, so that the fundamental solution of L
decays to O at infinity.
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for C chosen large enough. Let us fix p € [2,0) such that the Poisson kernel
satisfies an L? reverse Holder estimate for ¢ = p/(p — 1). We then have

[ mwmramar < 3 [[wwr s
BNQ

IeWpg
f f [Vuo(V)|> 6(Y) dY do
IeWpg Ap

f (Suo(2))? do(z)
.

A

Q

N

N

2/p
o (A)PIP ( f (Suo(2))? da(z)) ,
A*

where in the last two steps we have used the ADR property and (4.17), and then
ADR again. Therefore, by (4.13), and then Proposition 4.5/Remark 4.8, and the
definition of uy,

1 ~ 2/p
mffmg Vuo(V)? (V) dY < o(A) /P (IM |f_CA|p) < a0 -

Next, we observe that
(4.19)

2 12
( f fB QIV(M(Y)—uo(Y))Izé(Y)dY) [ S an f f |V(M(Y)—M0(Y))|2dY]
N

1/2
[ ! f |(M(Y)—M0(Y))|2dY]

/2
< { 5(1) f f (V)| dY]
l IeWp

Fork > 1, we set g := |hg| = |f —calex, and let v be the solution of the Dirichlet
problem with data g. Thus, |uy| < vg. For k > 0, set

B:=40B = B(x,40r), By:=2KB, A,:=BiNoQ,

and let A; be a sufficiently large concentric fattening of A. Given I € ‘W, define
I' = (1+71)I, with T chosen small enough that dist(/*, 0Q) =~ dist({, 9Q) ~ diam(J).
Then for Y € I*, with I € ‘Wé, by Corollary 2.4,

t«nH\* 1 o
¥) ff v s (272%) af N.vido
26r ) 1Be-1l JUBna A

) 1/p ) 1/p
< (272577 ( f (N.vi)? d(f] < (272%™ ( JC If — cal? dO')
Ay JAVER)

< k2™ Ifllsmonn)

where in the last two steps we have used Proposition 4.5/Remark 4.8, and then
a well known telescoping argument. Consequently, setting A* = A(x,Cr) as in

vi(Y) < (
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(4.18), we find that the squares of the summands in the last line of (4.19) satisfy

> [ @R ay s B R yn, Y, @Y o

IeWg ji27igr IefWé
2 A—2ki 2
S kw27 ”f”BMo(aQ) o(A"),

since for each fixed j, the surface balls A; with I € (Wé have bounded overlaps,
and are all contained in A*. By ADR, o(A*) = o(A), so we may then plug this
last estimate into (4.19) and sum in k to obtain (1.3), thus concluding the proof of
Theorem 1.6.

Remark 4.20. We observe that a slight refinement of the argument above shows that
for a domain Q with ADR boundary, for which the “S < N estimate” (4.13) holds
for every p € (1,00), the notions of VMO-solvability and BMO-solvability are
equivalent. Indeed, suppose that the Carleson measure estimate (1.3) holds for all
continuous data f. Then harmonic measure is weak-A. in the sense of Theorem
1.4, and therefore, by the first part of Theorem 1.6 (i.e., by Proposition 4.5), we
have that (4.7) holds for all sufficiently large (but finite) powers s. We may then
repeat the preceding argument essentially verbatim, but now with the continuous,
compactly supported data f replaced by an arbitrary f € BMO(0Q); as before, we
construct elliptic-harmonic measure solutions u and ug, corresponding to the BMO
data f —ca, and to the dyadic pieces hy = (f — ca)erk, respectively. In order to carry
out the rest of the argument to obtain the Carleson measure estimate (1.3), we need
only verify that the solution u is well defined, and that u(Y) = > ; ux(Y) pointwise,
for every Y € Q. In the case that 0Q is bounded, these facts follow immediately
from the John-Nirenberg inequality, the higher integrability of the Poisson kernel,
and the fact that only finitely many terms appear in the sum.

If 0Q is unbounded, we proceed as follows. Without loss of generality, we
may suppose that cx = 0, and for ¥ € Q fixed, as above we set A}, := dQ N
B($, 1000056(Y)), where § € 0Q satisfies |Y — $| = 6(Y). We then define a smooth
partition of unity },-o @n relative to A as in (4.9) (but where we now change
@k to @y, to avoid confusion with the the partition of unity used to define uy), set
cy = ]a A, f, and observe that

[ e’ < [ i -eide i< Y [ 1= ertpnde” + e
0 90 i Joo

= )" an(¥) + leyl.
m=0
By slightly modifying the proof of Proposition 4.5 mutatis mutandi (see in partic-
ular (4.11) and (4.12)), and using a standard telescoping argument, we find that
am(Y) < m27"|fllsmoe), and therefore that u(Y) = faQ fdwY is well defined,
and that u(Y) = >}; ux(Y), by dominated convergence.

5. THE CASE THAT £) IS AN UNBOUNDED DOMAIN WITH BOUNDED BOUNDARY

We suppose now that Q is unbounded, but that 9Q is bounded. In this case,
as noted above in Remark 4.15, estimate (1.3) cannot hold in general: indeed, for
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constant data f, the right hand side of (1.3) is zero, but the left hand side is non-
zero, since the solution u(X) = fag fdwX is not constant. We therefore consider
the following variant of (1.3):

1
(5.1) su S f f [Vu(Y)|> 5(Y) dY
x€dQ, 0<pr<gR0 a(Ax, 1) JJansir

< C(Ilf o + ¥@Ifliepe) . Yee©,.1),

where Ry := diam(0Q2), f is any continuous function defined on 9, and u is the
elliptic-harmonic measure solution with data f, and where x(¢) — 0 as € — 0.

Let us now observe that suitable variants of Theorems 1.4 and 1.6 hold in this
context.

Assuming that (5.1) holds for all continuous f defined on dQ, for some «(&)
with lim._, k(&) = 0, we may repeat the proof of Theorem 1.4 with minor modifi-
cations, provided that 6(X) < gRy with & small enough. Note that the function f;
that we have constructed satisfies ||fs|l < 1. Consequently, a version of estimate
(3.7) still holds, but with the small error C&? replaced by C(e® + Vk(¢)). For & (and
hence also «(g)) small enough, and now fixed, the rest of the proof of Theorem 1.4
goes through unchanged, and we obtain that (3.3) holds whenever 6(X) < eRy. In
turn, an examination of the proof of Lemma 3.2 (the result of [BL]) reveals that the
conclusion of Lemma 3.2 continues to hold for all surface balls A of radius at most
gRy. It then readily follows that the weak-A., property holds for all surface balls
of radius up to Rp; the constants depend on &, but the latter constant has now been
fixed depending only on the various parameters in the hypotheses of the theorem.
Thus Theorem 1.4 is still valid in this setting. We leave the details to the interested
reader.

Conversely, suppose that elliptic-harmonic measure belongs to weak-A., in the
sense of Theorem 1.4, and that the “S < N” bound (4.13) holds (in particular,
as noted above, this is true when L is the Laplacian and Q satisfies an interior
Corkscrew condition). We seek to establish the Carleson measure estimate (5.1).
As in the proof of the BMO-solvability part of Theorem 1.6, we let u be the elliptic-
harmonic measure solution with given continuous data f defined on 0€2, and for
B = B(x,r), A = A(x,r), with r < Ry, we set h := f —ca, where again ca = thOA f.
Note that

(5.2) leal < 1fllz= g -
‘We then have
u(X) :f hdoX + ca(X) =1) + ca,
Q0

where v(X) := w¥(0Q), and therefore, setting ii(X) := fag hdwX, we see in turn
that

Vu(X) = Vi(X) + cAVi(X),
where 7 := v — 1. We may handle the contribution of i exactly as in Section 3,
making a dyadic annular decomposition of 4 into a sum of terms /;, which give rise
to elliptic-harmonic measure solutions u;. The new ingredient is the contribution
of . By (5.2), it is enough to show that

1
5.3 - VH(Y)?8(Y)dY < C&*®,
©-9) o(A(x, 1)) fLﬁB(x,r)l PO dY < Ce
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which yields (5.1) with () = C&2*. With B = B(x,r), define ‘Wj, (W{? as in
(4.16). Note that ¥ vanishes continuously on 0€2, and is bounded in absolute value
by 1, so that the left hand side of (5.3) is no larger than a constant times

54) 1" fl-lff~Y2dY
SO I UnN ALt

J:27sr [ew),
r 2a
—n n+2a p—2a !l
<Y TR, S(Ro) :

J:27gr [e"W{g

where we have used first Caccioppoli’s inequality, then Holder continuity at the

boundary (Corollary 2.4), along with the ADR property and the definition of ‘W {3.
Since r < gRy, we obtain (5.3).
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