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Abstract. We show that for a uniformly elliptic divergence form operator L,

defined in an open set Ω with Ahlfors-David regular boundary, BMO-solvability

implies scale invariant quantitative absolute continuity (the weak-A∞ property)

of elliptic-harmonic measure with respect to surface measure on ∂Ω. We do not

impose any connectivity hypothesis, qualitative or quantitative; in particular, we

do not assume the Harnack Chain condition, even within individual connected

components of Ω. In this generality, our results are new even for the Laplacian.

Moreover, we obtain a partial converse, assuming in addition that Ω satisfies an

interior Corkscrew condition, in the special case that L is the Laplacian.
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1. Introduction

The connection between solvability of the Dirichlet problem with Lp data, and

scale-invariant absolute continuity properties of harmonic measure (specifically,

that harmonic measure belongs to the Muckenhoupt weight class A∞ with respect

to surface measure on the boundary), is well documented, see the monograph of

Kenig [Ke], and the references cited there. Specifically, one obtains that the Dirich-

let problem is solvable with data in Lp(∂Ω) for some 1 < p < ∞, if and only if

harmonic measure ω with some fixed pole is absolutely continuous with respect

to surface measure σ on the boundary, and the Poisson kernel dω/dσ satisfies a

reverse Hölder condition with exponent p′ = p/(p − 1). The most general class of
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domains for which such results had previously been known to hold is that of the

so-called “1-sided Chord-arc domains” (see Definition 1.13 below).

The connection between solvability of the Dirichlet problem and scale invariant

absolute continuity of harmonic measure was sharpened significantly in work of

Dindos, Kenig and Pipher [DKP], who showed that harmonic measure satisfies an

A∞ condition with respect to surface measure, if and only if a natural Carleson

measure/BMO estimate (to be described in more detail momentarily) holds for

solutions of the Dirichlet problem with continuous data. Their proof was nominally

carried out in the setting of a Lipschitz domain, but more generally, their arguments

apply, essentially verbatim, to Chord-arc domains. The results of [DKP] were

recently extended to the setting of a 1-sided Chord-arc domain by Zihui Zhao [Z].

More precisely, consider a divergence form elliptic operator

(1.1) L := − div A(X)∇,
defined in an open set Ω ⊂ Rn+1, where A is (n+ 1)× (n+ 1), real, L∞, and satisfies

the uniform ellipticity condition

(1.2) λ|ξ|2 ≤ 〈A(X)ξ, ξ〉 :=

n+1∑

i, j=1

Ai j(X)ξ jξi, ‖A‖L∞(Rn) ≤ λ−1,

for some λ > 0, and for all ξ ∈ Rn+1, and a.e. X ∈ Ω.

Given an open set Ω ⊂ Rn+1 whose boundary is everywhere regular in the sense

of Weiner, and a divergence form operator L as above, we shall say that the Dirich-

let problem is BMO-solvable1 for L in Ω if for all continuous f with compact sup-

port on ∂Ω, the solution u of the classical Dirichlet problem with data f satisfies

the Carleson measure estimate

(1.3) sup
x∈∂Ω, 0<r<r0

1

σ
(
∆(x, r)

)
"
Ω∩B(x,r)

|∇u(Y)|2 δ(Y) dY ≤ C‖ f ‖2BMO(∂Ω) .

Here, r0 := 10 diam(∂Ω), σ is surface measure on ∂Ω, δ(Y) := dist(Y, ∂Ω), and as

usual B(x, r) and ∆(x, r) := B(x, r) ∩ ∂Ω denote, respectively, the Euclidean ball in

R
n+1, and the surface ball on ∂Ω, with center x and radius r.

For X ∈ Ω, we let ωX
L

denote elliptic-harmonic measure for L with pole at X,

and if the dependence on L is clear in context, we shall simply write ωX .

The main result of this paper is the following. All terminology used in the

statement of the theorem and not discussed already, will be defined precisely in the

sequel.

Theorem 1.4. Suppose that Ω ⊂ Rn+1, n ≥ 2, is an open set, not necessarily

connected, with Ahlfors-David Regular boundary. Let L be a divergence form

elliptic operator defined onΩ. If the Dirichlet problem for L is BMO-solvable inΩ,

then harmonic measure belongs to weak-A∞ in the following sense: for every ball

1It might be more accurate to refer to this property as “VMO-solvability”, but BMO-solvability

seems to be the established terminology in the literature. Under less austere circumstances, e.g., in a

Lipschitz or (more generally) a Chord-arc domain, it can be seen that the two notions are ultimately

equivalent; see [DKP] for a discussion of this point, although for the reader’s convenience, we shall

show below (see Remark 4.20) that in fact the equivalence holds for a domain with an ADR boundary,

in the presence of “S < N estimates” in Lp (thus, in particular, in the special case of the Laplacian,

in a domain satisfying an interior Corkscrew condition). In the more general setting of our Theorem

1.4 this matter is not settled.
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B = B(x, r), with x ∈ ∂Ω, and 0 < r < diam(∂Ω), and for all Y ∈ Ω \ 4B, harmonic

measure ωY
L
∈ weak-A∞(∆), where ∆ := B ∩ ∂Ω, and where the parameters in the

weak-A∞ condition are uniform in ∆, and in Y ∈ Ω \ 4B.

As mentioned above, this result was established in [DKP], and in [Z], under the

more restrictive assumption thatΩ is Chord-arc, or 1-sided Chord-arc, respectively.

The arguments of [DKP] and [Z] rely both explictly and implicitly on quantitative

connectivity of the domain, more precisely, on the Harnack Chain condition (see

Definition 1.11 below). The new contribution of the present paper is to dispense

with all connectivity assumptions, both qualitative and quantitative. In particular,

we do not assume the Harnack Chain condition, even within individual connected

components of Ω. In this generality, our results are new even for the Laplacian.

We observe that we draw a slightly weaker conclusion than that of [DKP] (or

[Z]), namely, weak-A∞, as opposed to A∞, but this is the best that can be hoped for

in the absence of connectivity: indeed, clearly, the doubling property of harmonic

measure may fail without connectivity. Moreover, even in a connected domain

enjoying an “interior big pieces of Lipschitz domains” condition, and having an

ADR boundary (and thus, for which harmonic measure belongs to weak-A∞, by

the main result of [BL]), the doubling property may fail in the absence of Harnack

Chains; see [BL, Section 4] for a counter-example.

In the particular case that L is the Laplacian, we also obtain the following.

Corollary 1.5. Let Ω ⊂ Rn+1, n ≥ 2, be an open set, not necessarily connected,

with Ahlfors-David Regular boundary, and in addition, suppose that Ω satisfies

an interior Corkscrew condition (Definition 1.10), and that the Dirichlet problem

is BMO-solvable for Laplace’s equation in Ω. Then ∂Ω is uniformly rectifiable

(Definition 1.9).

The proof of the corollary is almost immediate: by Theorem 1.4, harmonic mea-

sure belongs to weak-A∞ (even without the Corkscrew condition), so by the result

of [HM]2, in the presence of the interior Corkscrew condition, ∂Ω is uniformly

rectifiable.

We remark that the Corkscrew hypothesis is fairly mild, in the sense that if

Ω = Rn+1\E is the complement of an ADR set, then the Corkscrew condition holds

automatically. We also remark that in the absence of the Corkscrew condition, the

result of [HM], i.e., the conclusion of uniform rectifiability, may fail; a counter-

example will appear in forthcoming work of the first author and J. M. Martell.

We also obtain a partial converse to Theorem 1.4.

Theorem 1.6. Let Ω ⊂ Rn+1, n ≥ 2 be an open set, not necessarily connected,

with Ahlfors-David Regular (ADR) boundary. Let L be a divergence form elliptic

operator defined on Ω, and suppose that elliptic-harmonic measure for L belongs

to weak-A∞ in the sense of the conclusion of Theorem 1.4. Then the Dirichlet

problem for L is Lp-solvable3 in Ω, for p < ∞ sufficiently large. In the special case

that L is the Laplacian, the Dirichlet problem is BMO-solvable, provided also that

Ω satisfies an interior Corkscrew condition, and that diam(∂Ω) = diam(Ω)4.

2See also [HLMN] and [MT] for more general versions of the result of [HM].
3We shall say precisely what this means in the sequel; see Proposition 4.5, and Remark 4.8.
4I.e., either Ω is a bounded domain, or both Ω and ∂Ω are unbounded. We discuss a variant of

our results, valid in the case that ∂Ω is bounded but Ω is unbounded, in Section 5.
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As noted above, our main new contribution is Theorem 1.4, which establishes

the direction BMO-solvability implies ω ∈ weak-A∞; it is in that direction that the

lack of connectivity is most problematic. By contrast, our proof of the opposite

implication (i.e., Theorem 1.6) is a fairly routine adaptation of the corresponding

arguments of [DKP] and of [FN]. On the other hand, let us point out that in Theo-

rem 1.6, we have imposed an extra assumption, namely the Corkscrew condition.

At present, we do not know whether the latter hypothesis is necessary to obtain the

conclusion of Theorem 1.6 (although as remarked above, in its absence uniform

rectifiability of ∂Ω may fail), nor do we know whether the conclusion of BMO

solvability extends to the case of a general divergence form elliptic operator L.

To provide some further context for our results here, let us mention that recently,

Kenig, Kirchheim, Pipher and Toro have shown in [KKiPT] that for a Lipschitz do-

main Ω, a weaker Carleson measure estimate, namely, a version of (1.3) in which

the BMO norm of the boundary data is replaced by ‖u‖L∞(Ω), still suffices to es-

tablish that ωL satisfies an A∞ condition with respect to surface measure on ∂Ω.

Moreover, the argument of [KKiPT] carries over with minor changes to the more

general setting of a uniform (i.e., 1-sided NTA) domain with Ahlfors-David regu-

lar boundary [HMT]. However, in contrast to our Theorem 1.4, to deduce absolute

continuity of harmonic measure under the weaker L∞ Carleson measure condition

seems necessarily to require some sort of connectivity (such as the Harnack Chain

condition enjoyed by uniform domains). Indeed, specializing to the case that L is

the Laplacian, an example of Bishop and Jones [BiJ] shows that harmonic mea-

sure ω need not be absolutely continuous with respect to surface measure, even

for domains with uniformly rectifiable boundaries, whereas the first named author

of this paper, along with J. M. Martell and S. Mayboroda, have shown in [HMM]

that uniform rectifiability of ∂Ω alone suffices to deduce the L∞ version of (1.3) in

the harmonic case5 (and indeed, for solutions of certain other elliptic equations as

well).

The paper is organized as follows. In the remainder of this section, we present

some basic notations and definitions. In Section 2, we recall some known results

from the theory of elliptic PDE. In Sections 3 and 4, we give the proofs of Theo-

rems 1.4 and 1.6, respectively. Finally, in Section 5, we discuss the modifications

that are needed in the case that Ω is an unbounded domain with bounded boundary.

1.1. Notation and Definitions.

• We use the letters c,C to denote harmless positive constants, not necessarily the

same at each occurrence, which depend only on dimension and the constants

appearing in the hypotheses of the theorems (which we refer to as the “allow-

able parameters”). We shall also sometimes write a . b and a ≈ b to mean,

respectively, that a ≤ Cb and 0 < c ≤ a/b ≤ C, where the constants c and C are

as above, unless explicitly noted to the contrary.

• Given a closed set E ⊂ Rn+1, we shall use lower case letters x, y, z, etc., to

denote points on E, and capital letters X,Y,Z, etc., to denote generic points in

R
n+1 (especially those in Rn+1 \ E).

5We remark that in fact, the L∞ version of (1.3) actually characterizes uniform rectifiability: a

converse to the result of [HMM] has recently been obtained in [GMT].
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• The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r)

when the center x lies on E, or B(X, r) when the center X ∈ Rn+1 \ E. A “surface

ball” is denoted ∆(x, r) := B(x, r) ∩ ∂Ω.
• Given a Euclidean ball B or surface ball ∆, its radius will be denoted rB or r∆,

respectively.

• Given a Euclidean or surface ball B = B(X, r) or ∆ = ∆(x, r), its concentric dilate

by a factor of κ > 0 will be denoted κB := B(X, κr) or κ∆ := ∆(x, κr).

• Given a (fixed) closed set E ⊂ Rn+1, for X ∈ Rn+1, we set δ(X) := dist(X, E).

• We let Hn denote n-dimensional Hausdorff measure, and let σ := HnbE denote

the “surface measure” on a closed set E of co-dimension 1.

• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e.

1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x < A.

• For a Borel set A ⊂ Rn+1, we let int(A) denote the interior of A.

• Given a Borel measure µ, and a Borel set A, with positive and finite µ measure,

we set
>

A
f dµ := µ(A)−1

∫
A

f dµ.

• We shall use the letter I (and sometimes J) to denote a closed (n+1)-dimensional

Euclidean dyadic cube with sides parallel to the co-ordinate axes, and we let `(I)

denote the side length of I. If `(I) = 2−k, then we set kI := k.

Definition 1.7. (ADR) (aka Ahlfors-David regular). We say that a set E ⊂ Rn+1, of

Hausdorff dimension n, is ADR if it is closed, and if there is some uniform constant

C such that

(1.8)
1

C
rn ≤ σ(∆(x, r)

) ≤ C rn, ∀r ∈ (0, diam(E)), x ∈ E,

where diam(E) may be infinite.

Definition 1.9. (UR) (aka uniformly rectifiable). An n-dimensional ADR (hence

closed) set E ⊂ Rn+1 is UR if and only if it contains “Big Pieces of Lipschitz

Images” of Rn (“BPLI”). This means that there are positive constants θ and M0,

such that for each x ∈ E and each r ∈ (0, diam(E)), there is a Lipschitz mapping

ρ = ρx,r : Rn → Rn+1, with Lipschitz constant no larger than M0, such that

Hn
(
E ∩ B(x, r) ∩ ρ ({z ∈ Rn : |z| < r})

)
≥ θ rn .

We recall that n-dimensional rectifiable sets are characterized by the property

that they can be covered, up to a set of Hn measure 0, by a countable union of

Lipschitz images of Rn; we observe that BPLI is a quantitative version of this fact.

We remark that, at least among the class of ADR sets, the UR sets are precisely

those for which all “sufficiently nice” singular integrals are L2-bounded [DS1]. In

fact, for n-dimensional ADR sets in Rn+1, the L2 boundedness of certain special

singular integral operators (the “Riesz Transforms”), suffices to characterize uni-

form rectifiability (see [MMV] for the case n = 1, and [NToV] in general). We

further remark that there exist sets that are ADR (and that even form the boundary

of a domain satisfying interior Corkscrew and Harnack Chain conditions), but that

are totally non-rectifiable (e.g., see the construction of Garnett’s “4-corners Cantor
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set” in [DS2, Chapter1]). Finally, we mention that there are numerous other char-

acterizations of UR sets (many of which remain valid in higher co-dimensions);

see [DS1, DS2].

Definition 1.10. (Corkscrew condition). Following [JK], we say that an open set

Ω ⊂ Rn+1 satisfies the Corkscrew condition (more precisely, the interior Corkscrew

condition) if for some uniform constant c > 0 and for every surface ball ∆ :=

∆(x, r), with x ∈ ∂Ω and 0 < r < diam(∂Ω), there is a ball B(X∆, cr) ⊂ B(x, r) ∩Ω.

The point X∆ ⊂ Ω is called a “Corkscrew point” relative to ∆.

Definition 1.11. (Harnack Chain condition). Again following [JK], we say that

Ω satisfies the Harnack Chain condition if there is a uniform constant C such that

for every ρ > 0, Λ ≥ 1, and every pair of points X, X′ ∈ Ω with δ(X), δ(X′) ≥ ρ
and |X − X′| < Λ ρ, there is a chain of open balls B1, . . . , BN ⊂ Ω, N ≤ C(Λ), with

X ∈ B1, X′ ∈ BN , Bk ∩ Bk+1 , ∅ and C−1 diam(Bk) ≤ dist(Bk, ∂Ω) ≤ C diam(Bk).

The chain of balls is called a “Harnack Chain”.

Definition 1.12. (NTA and uniform domains). Again following [JK], we say

that a domain Ω ⊂ Rn+1 is NTA (“Non-tangentially accessible”) if it satisfies the

Harnack Chain condition, and if bothΩ andΩext := Rn+1 \Ω satisfy the Corkscrew

condition. If Ω merely satisfies the Harnack Chain condition and the interior (but

not exterior) Corkscrew condition, then it is said to be a uniform (aka 1-sided NTA)

domain.

Definition 1.13. (Chord-arc and 1-sided Chord-arc). A domain Ω ⊂ Rn+1 is

Chord-arc if it is an NTA domain with an ADR boundary; it is 1-sided Chord-arc

if it is a uniform (i.e., 1-sided NTA) domain with ADR boundary.

Definition 1.14. (A∞, weak-A∞, and weak-RHq). Given an ADR set E ⊂ Rn+1,

and a surface ball ∆0 := B0 ∩ E, we say that a Borel measure µ defined on E

belongs to A∞(∆0) if there are positive constants C and θ such that for each surface

ball ∆ = B ∩ E, with B ⊆ B0, we have

(1.15) µ(F) ≤ C

(
σ(F)

σ(∆)

)θ
µ(∆) , for every Borel set F ⊂ ∆ .

Similarly, we say that µ ∈ weak-A∞(∆0) if for each surface ball ∆ = B ∩ E, with

2B ⊆ B0,

(1.16) µ(F) ≤ C

(
σ(F)

σ(∆)

)θ
µ(2∆) , for every Borel set F ⊂ ∆ .

We recall that, as is well known, the condition µ ∈ weak-A∞(∆0) is equivalent to

the property that µ � σ in ∆0, and that for some q > 1, the Radon-Nikodym

derivative k := dµ/dσ satisfies the weak reverse Hölder estimate

(1.17)

(?
∆

kqdσ

)1/q

.

?
2∆

k dσ ≈ µ(2∆)

σ(∆)
, ∀∆ = B ∩ E, with 2B ⊆ B0 .

We shall refer to the inequality in (1.17) as an “RHq” estimate, and we shall say

that k ∈ RHq(∆0) if k satisfies (1.17).
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2. Preliminaries

In this section, we record some known estimates for elliptic harmonic measure

ωL associated to a divergence form operator L as in (1.1) and (1.2), and for solu-

tions of the equation Lu = 0, in an open set Ω ⊂ Rn+1 with an ADR boundary.

In the sequel, we shall always assume that the ambient dimension n + 1 ≥ 3. We

recall that, as a consequence of the ADR property, every point on ∂Ω is regular in

the sense of Wiener (see, e.g., [HLMN, Remark 3.26, Lemma 3.27]).

Lemma 2.1 (Bourgain [Bo]). Let Ω ⊂ Rn+1 be an open set, and suppose that ∂Ω

is n-dimensional ADR. Then there are uniform constants c ∈ (0, 1) and C ∈ (1,∞),

depending only on n, ADR, and the ellipticity parameter λ, such that for every

x ∈ ∂Ω, and every r ∈ (0, diam(∂Ω)), if Y ∈ Ω ∩ B(x, cr), then

(2.2) ωY
L(∆(x, r)) ≥ 1/C > 0 .

We refer the reader to [Bo, Lemma 1] for the proof in the case that L is the

Laplacian, but the proof is the same for a general uniformly elliptic divergence

form operator.

We note for future reference that in particular, if x̂ ∈ ∂Ω satisfies |X − x̂| = δ(X),

and ∆X := ∂Ω ∩ B
(
x̂, 10δ(X)

)
, then for a slightly different uniform constant C > 0,

(2.3) ωX
L (∆X) ≥ 1/C .

Indeed, the latter bound follows immediately from (2.2), and the fact that we can

form a Harnack Chain connecting X to a point Y that lies on the line segment from

X to x̂, and satisfies |Y − x̂| = cδ(X).

As a consequence of Lemma 2.1, we have the following (see, e.g., [HKM, Ch.

6]).

Corollary 2.4. LetΩ ⊂ Rn+1 be an open set, and suppose that ∂Ω is n-dimensional

ADR. For x ∈ ∂Ω, and 0 < r < diam ∂Ω, let u be a non-negative solution of Lu = 0

in Ω∩ B(x, 2r), which vanishes continuously on ∆(x, 2r) = B(x, 2r)∩ ∂Ω. Then for

some α > 0,

(2.5) u(Y) ≤ C

(
δ(Y)

r

)α
1

|B(x, 2r)|

∫∫

B(x,2r)∩Ω
u , ∀Y ∈ B(x, r) ∩Ω ,

where the constants C and α depend only on n, ADR and λ.

3. Proof of Theorem 1.4: BMO-solvability implies ω ∈ weak-A∞

The basic outline of the proof follows that of [DKP], but the lack of Harnack

Chains requires in addition some slightly delicate geometric arguments inspired in

part by the work of Bennewitz and Lewis [BL].

We begin by recalling the following deep fact, established in [BL]. Given a point

X ∈ Ω, let x̂ ∈ ∂Ω be a “touching point” for the ball B(X, δ(X)), i.e., |X − x̂| = δ(X)

(if there is more than one such point, we just pick one). Set

(3.1) ∆X := ∆
(
x̂, 10δ(X)

)
.

Lemma 3.2. Let ∂Ω be ADR, and suppose that there are constants c0, η ∈ (0, 1),

such that for each X ∈ Ω, with δ(X) < diam(∂Ω), and for every Borel set F ⊂ ∆X ,

(3.3) σ(F) ≥ (1 − η)σ(∆X) =⇒ ωX(F) ≥ c0 .
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Then ωY ∈ weak-A∞(∆), where ∆ = B∩∂Ω, for every ball B = B(x, r), with x ∈ ∂Ω
and 0 < r < diam(∂Ω), and for all Y ∈ Ω \ 4B. Moreover, the parameters in the

weak-A∞ condition depend only on n, ADR, η, c0, and the ellipticity parameter λ

of the divergence form operator L.

Remark 3.4. Lemma 3.2 is not stated explicitly in this form in [BL], but may be

gleaned readily from the combination of [BL, Lemma 2.2] and its proof, and [BL,

Lemma 3.1]. We mention also that the paper [BL] treats explictly only the case that

L is the Laplacian, but the proof of [BL, Lemma 2.2] carries over verbatim to the

case of a general uniformly elliptic divergence form operator with real coefficients,

while [BL, Lemma 3.1] is a purely real variable result.

Given the BMO-solvability estimate (1.3), it suffices to verify the hypotheses of

Lemma 3.2, with η and c0 depending only on n, ADR, λ, and the constant C in

(1.3). To this end, let X ∈ Ω, δ(X) < diam(∂Ω), and for notational convenience, set

r := δ(X) .

We choose x̂ ∈ ∂Ω so that |X − x̂| = r, and let a ∈ (0, π/10000) be a sufficiently

small number to be chosen depending only on n and ADR. We then define ∆X as

in (3.1), and set

(3.5) BX := B(x̂, 10r) , B′X := B(x̂, ar) , ∆′X := ∆
(
x̂, ar) .

We make the following pair of claims.

Claim 1. For a small enough, depending only on n and ADR, there is a constant

β > 0 depending only on n, a, ADR and λ, and a ball B1 := B(x1, ar) ⊂ BX , with

x1 ∈ ∂Ω, such that dist(B′
X
, B1) ≥ 5ar, and

(3.6) ωX
L (∆1) ≥ βωX

L (∆X) ,

where ∆1 := B1 ∩ ∂Ω.

Claim 2. Suppose that u is a non-negative solution of Lu = 0 in Ω, vanishing

continuously on 2∆′
X

, with ‖u‖L∞(Ω) ≤ 1. Then for every ε > 0,

(3.7) u(X) ≤ Cε

(
1

σ
(
∆X

)
"

BX∩Ω
|∇u(Y)|2δ(Y) dY

)1/2

+ Cεα ,

where α > 0 is the Hölder exponent in Corollary 2.4.

Momentarily taking these two claims for granted, we now follow the argument

in [DKP], with some minor modifications, in order to establish the hypotheses of

Lemma 3.2. Let B1 and ∆1 be as in Claim 1. Let F ⊂ ∆X be a Borel set satisfying

the first inequality in (3.3), for some small η > 0. If we choose η small enough,

depending only on n, ADR, and the constant a in the definition of B′
X

, then by inner

regularity of σ, there is a closed set F1 ⊂ F ∩ ∆1 such that

σ(F1) ≥ (
1 − √η )σ(∆1) .

Set A1 := ∆1 \ F1 (so that A1 is relatively open in ∂Ω), and define

f := max
(
0, 1 + γ logM(1A1

)
)
,
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where γ > 0 is a small number to be chosen, andM is the usual Hardy-Littlewood

maximal operator on ∂Ω. Note that6

(3.8) 0 ≤ f ≤ 1 , ‖ f ‖BMO(∂Ω) ≤ Cγ , 1A1
(y) ≤ f (y) , ∀ y ∈ ∂Ω.

Note also that if z ∈ ∂Ω \ 2B1, then

M(1A1
)(z) .

σ(A1)

σ(∆1)
.
√
η ,

where the implicit constants depend only on n and ADR. Thus, if η is chosen small

enough depending on γ, then 1 + γ logM(1A1
) will be negative, hence f ≡ 0, on

∂Ω \ 2B1.

In order to work with continuous data, we shall require the following.

Lemma 3.9. There exists a collection of continuous functions { fs}0<s<ar/1000, de-

fined on ∂Ω, with the following properties.

(1) 0 ≤ fs ≤ 1, for each s.

(2) supp( fs) ⊂ 3B1 ∩ ∂Ω.

(3) 1A1
(z) ≤ lim inf s→0 fs(z), for every z ∈ ∂Ω.

(4) sups ‖ fs‖BMO(∂Ω) ≤ C‖ f ‖BMO(∂Ω) . γ, where C = C(n, ADR).

The proof is based on a standard mollification of the function f constructed

above. We defer the routine proof to the end of this section.

Let us be the solution of the Dirichlet problem for the equation Lus = 0 in Ω,

with data fs. Note that fs vanishes on 2∆′
X

, by the distance condition in Claim 1

and Lemma 3.9-(2). Then, for a small ε > 0 to be chosen momentarily, by Lemma

3.9, Fatou’s lemma, and Claim 2, we have

(3.10) ωX
L (A1) ≤

∫

∂Ω

lim inf
s→0

fs dωX ≤ lim inf
s→0

us(X) ≤ Cεγ + Cεα ,

where in the last step we have used (3.7), (1.3), and Lemma 3.9-(4). Combining

(3.10) with (2.3), we find that

(3.11) ωX
L (A1) ≤ (

Cεγ + Cεα
)
ωX

L (∆X) .

Next, we set A := ∆X \F, and observe that by definition of A and A1, along with

Claim 1, and (3.11),

ωX
L (A) ≤ ωX

L (∆X \ ∆1) + ωX
L (A1) ≤ (

1 − β + Cεγ + Cεα
)
ωX

L (∆X) .

We now choose first ε > 0, and then γ > 0, so that Cεγ + Cεα < β/2, to obtain that

ωX
L (F) ≥ β

2
ωX

L (∆X) ≥ cβ ,

where in the last step we have used (2.3). We therefore conclude that (3.3) holds.

It now remains only to establish the two claims, and to prove Lemma 3.9.

6The BMO estimate for f in (3.8) follows from the fact thatM(1A)1/2 is an A1 weight with A1

constant depending only on dimension, and that the log of an A1 weight w belongs to BMO, with

BMO norm depending only on the A1 constant of w; see, e.g., [GR, Ch. 2, Theorems 3.3 and 3.4].
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Proof of Claim 1. By translation and rotation, we may suppose without loss of gen-

erality that x̂ = 0, and that the line segment joining x̂ to X is purely vertical, thus,

X = ren+1, where as usual en+1 := (0, ..., 0, 1). Let Γ,Γ′,Γ′′ denote, respectively,

the open inverted vertical cones with vertex at X having angular apertures 200a,

100a, and 20a, respectively (recall that a < π/10000). Then B′
X
⊂ Γ′′ (where

B′
X

is defined in (3.5)). Recalling that r = δ(X), we let B0 := B(X, r) denote the

open “touching ball”, so that B0 ∩ ∂Ω = ∅, and define a closed annular region

R0 := 5B0 \ B0. We now consider two cases:

Case 1. ∂Ω∩(R0\Γ) is non-empty. In this case, we let x1 be the point in ∂Ω∩(R0\Γ)
that is closest to X (if there is more than one such point, we just pick one). Then

by construction r ≤ |X − x1| ≤ 5r, and the ball B1 = B(x1, ar) misses Γ′, hence

dist(B1, B
′
X

) ≥ dist(B1,Γ
′′) > 5ar. Moreover, since x1 is the closest point to X,

setting ρ := |X − x1|, we have that Ω′ ∩ ∂Ω = ∅, where

Ω′ :=
(
B(X, ρ) \ Γ) ∪ B0 .

Note that Ω′ satisfies the Harnack Chain condition, with constants depending only

upon n and a. Consequently, we may construct a Harnack Chain within the sub-

domain Ω′ ⊂ Ω, connecting X to a point Y ∈ B(x1, car) ∩ Ω′, with δ(Y) ≥ car/2,

where c is the constant in Lemma 2.1. Thus, by Harnack’s inequality and Lemma

2.1,

ωX
L (∆1) & ωY

L(∆1) ≥ 1/C .

Since ωX
L

(∆X) ≤ 1, we obtain (3.6), and thus Claim 1 holds in the present case.

Case 2. ∂Ω ∩ (R0 \ Γ) = ∅. By ADR, we have that

σ
(
∆(0, 10ar)

) ≤ C(ar)n , σ
(
B(X, 4r) ∩ ∂Ω) ≥ rn/C .

Thus, for a chosen small enough, depending only on n and ADR, we see that the

set ∂Ω ∩ (
B(X, 4r) \ B(0, 10ar)

)
is non-empty. Consequently, under the scenario of

Case 2,

∂Ω ∩
(

B(X, 4r) \ B(0, 10ar)
)
⊂ Γ .

Define

θ0 := min
{
θ ∈ [0, 200a) : ∂Ω ∩ (

B(X, 4r) \ B(0, 10ar)
) ⊂ Γθ

}
,

where Γθ is the inverted cone with vertex at X of angular aperture θ. It is not hard

to see that since n ≥ 2, we necessarily have θ0 > 0, as a consequence of the ADR

property; see, e.g., [DS1, Lemma 5.8]. Then by construction, there is a point

x1 ∈ ∂Γθ0 ∩ ∂Ω ∩
(
B(X, 4r) \ B(0, 10ar)

)
.

Note that B1 = B(x1, ar) misses B(0, 9ar), so that in particular, dist(B1, B
′
X

) > 5ar.

Moreover, Ω′ ∩ ∂Ω = ∅, where now

Ω′ :=
((

B(X, 4r) \ Γθ0
) ∪ B0

)
\ B(0, 10ar) .

Thus, as in Case 1, there is a point Y ∈ B(x1, car) ∩ Ω′, with δ(Y) > cr/2, which

may be joined to X via a Harnack Chain within the subdomain Ω′ ⊂ Ω, as follows:

starting at Y, we move on a great circle on the sphere ∂B(X,R), where R = |X − Y |,
and then horizontally until we reach X; since the smallest ball in this Harnack

Chain has radius on the order of car, we can see that the number of balls will

depend only on a, n, and implicitly on ADR (since c depends on n and ADR).
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Thus, by Harnack’s inequality, Lemma 2.1, and the fact that ωX
L

(∆X) ≤ 1, we again

obtain (3.6). Claim 1 therefore holds in all cases. �

Proof of Claim 2. As in the proof of Claim 1, we may assume by translation and

rotation that x̂ = 0, and that X = ren+1, with r = δ(X). Let Γ denote the upward

open vertical cone with vertex at 0, of angular aperture π/100. We let S denote the

spherical cap inside Γ, i.e., S := S n∩Γ (recall that our ambient dimension is n+1).

Then by Harnack’s inequality, letting µ denote surface measure on the unit sphere,

we have

u(X) .

∫

S

u(rξ) dµ(ξ) =

∫

S

(
u(rξ) − u(εrξ)

)
dµ(ξ) + O(εα) =: I + O(εα) ,

where we have used Corollary 2.4 to estimate the “big-O” term. In turn,

|I| =
∣∣∣∣
∫

S

∫ r

εr

∂

∂t

(
u(tξ)

)
dt dµ(ξ)

∣∣∣∣ ≤ (εr)−n

"
Γ∩Rε

|∇u(Y)| dY ,

where Rε := B(0, r) \ B(0, εr), and we have used polar co-ordinates in n+ 1 dimen-

sions. We then have

|I| . (εr)−nr(n+1)/2

("
Γ∩Rε

|∇u(Y)|2 dY

)1/2

. (ε)−n−1/2r−n/2

("
B(0,r)∩Ω

|∇u(Y)|2 δ(Y) dY

)1/2

,

where we have used that by construction, Γ∩Rε ⊂ B(0, r)∩Ω, with δ(Y) ≈ |Y | ≥ εr
in Γ ∩ Rε. Estimate (3.7) now follows, by ADR and the definition of BX . �

Proof of Lemma 3.9. Let ζ ∈ C∞
0

(Rn+1), with

supp(ζ) ⊂ B(0, 1) , ζ ≡ 1 on B(0, 1/2) , 0 ≤ ζ ≤ 1 .

Given s ∈ (0, ar/1000), and z, y ∈ ∂Ω, set

Λs(z, y) := b(z, s)−1ζ
(
s−1(z − y)

)
,

where

(3.12) b(z, s) :=

∫

∂Ω

ζ
(
s−1(z − y)

)
dσ(y) ≈ sn ,

uniformly in z ∈ ∂Ω, by the ADR property. Furthermore,
∫

∂Ω

Λs(z, y) dσ(y) ≡ 1 , ∀ z ∈ ∂Ω .

We now define

fs(z) :=

∫

∂Ω

Λs(z, y) f (y) dσ(y) ,

so that fs is continuous, by construction. Let us now verify (1)-(4) of Lemma 3.9.

We obtain (1) immediately, by (3.8), and the properties of Λs, while (2) follows

directly from the smallness of s and the fact that supp( f ) ⊂ 2B1 ∩ ∂Ω. Next,

observe that since A1 is a relatively open set in ∂Ω, we have that for every z ∈ ∂Ω,

1A1
(z) ≤ lim inf

s→0

∫

∂Ω

Λs(z, y) 1A1
(y) dσ(y) ≤ lim inf

s→0
fs(z) ,

by the last inequality in (3.8). Hence (3) holds.
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To prove (4), we observe that the second inequality is simply a re-statement of

the second inequality in (3.8), so it suffices to show that

(3.13) ‖ fs‖BMO(∂Ω) . ‖ f ‖BMO(∂Ω) , uniformly in s .

To this end, we fix a surface ball ∆ = ∆(x, r), and we consider two cases.

Case 1: s ≥ r. In this case, set c :=
>
∆(x,2s)

f , so that by ADR, (3.12) and the

construction of Λs,?
∆

| fs − c| dσ .
?
∆

?
∆(x,2s)

| f − c| dσdσ . ‖ f ‖BMO(∂Ω) .

Case 2: s < r. In this case, set c :=
>

2∆
f . Then by Fubini’s Theorem,?

∆

| fs(z) − c| dσ(z) .

?
2∆

| f (y) − c|
∫

∂Ω

Λs(z, y) dσ(z) dσ(y) . ‖ f ‖BMO(∂Ω) ,

where again we have used ADR, (3.12) and the compact support property ofΛs(z, y).

Since these bounds are uniform over all x ∈ ∂Ω, and r ∈ (0, diam(∂Ω)), we

obtain (3.13). �

4. Proof of Theorem 1.6: ω ∈ weak-A∞ implies Lp
and BMO-solvability

In this section, we suppose that Ω is an open set with ADR boundary ∂Ω, and

that for every ball B0 = B(x0, r), with x0 ∈ ∂Ω, and 0 < r < diam(∂Ω), and for all

Y ∈ Ω \ 4B0, elliptic-harmonic measure ωY
L
∈ weak-A∞(∆0), where ∆0 := B0 ∩ ∂Ω.

Thus, ωY
L
� σ in ∆, and the Poisson kernel kY := dωL/dσ satisfies the weak

reverse Hölder condition (1.17), for some uniform q > 1. In our proof of BMO-

solvability (but not for Lp solvability), we shall also require, at precisely one point

in the argument, that the Corkscrew condition (Definition 1.10) is satisfied in Ω.

Even in the absence of the Corkscrew condition, it may happen that there is a

Corkscrew point X∆ relative to some particular ∆ (e.g., for every X ∈ Ω, this is true

for the surface ball ∆X as in (3.1), with X itself serving as a Corkscrew point), and

in this case, we have the following consequence of the weak-RHq estimate:

(4.1)

(?
∆

(
kX∆

)q
dσ

)1/q

≤ C σ(∆)−1 .

Indeed, one may cover ∆ by a collection of surface balls {∆′ = B′ ∩ ∂Ω}, in such

a way that X∆ ∈ Ω \ 4B′, but each ∆′ has radius comparable to that of ∆ (hence

σ(∆′) ≈ σ(∆), by the ADR property), depending on the constant in the Corkscrew

condition, and such that the cardinality of the collection {∆′} is uniformly bounded;

one may then readily derive (4.1) by applying (1.17) in each ∆′, and using the crude

estimate that ωX∆(2∆′)/σ(∆′) ≤ σ(∆′)−1 ≈ σ(∆)−1.

Our first step is to establish an Lp solvability result. To this end, we define non-

tangential “cones” and maximal functions, as follows. First, we fix a collection of

standard Whitney cubes covering Ω, and we denote this collection byW. Given

x ∈ ∂Ω, set

(4.2) W(x) := {I ∈ W : dist(x, I) ≤ 100 diam(I) < 1000 diam(∂Ω)} ,
and define the (possibly disconnected) non-tangential “cone” with vertex at x by

(4.3) Υ(x) := ∪I∈W(x) I .
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For a continuous u defined on Ω, the non-tangential maximal function of u is de-

fined by

(4.4) N∗u(x) := sup
Y∈Υ(x)

|u(Y)| .

Recall thatM denotes the (non-centered) Hardy-Littlewood maximal operator on

∂Ω. We have the following.

Proposition 4.5. Suppose that there is a q > 1, such that (1.17) holds for the

Poisson kernel kY , for every surface ball ∆ = B ∩ ∂Ω, centered on ∂Ω, provided

Y ∈ Ω \ 4B. Given g continuous with compact support on ∂Ω, let u be the elliptic-

harmonic measure solution of the Dirichlet problem for L with data g. Then for

p = q/(q − 1), and for all x ∈ ∂Ω
(4.6) N∗u(x) .

(M(|g|p)(x)
)1/p
.

Thus, for all s > p, the Dirichlet problem is Ls-solvable, i.e.,

(4.7) ‖N∗u‖Ls(∂Ω) ≤ Cs ‖g‖Ls(∂Ω) .

Remark 4.8. As is well known, the weak-RHq estimate (1.17) is self-improving,

i.e., weak-RHq implies weak-RHq+ε, for some ε > 0, thus, in particular, one may

self-improve (4.7) to the case s = p. We also remark that our definition of Lp-

solvability of the Dirichlet problem entails only a non-tangential maximal function

estimate, and does not address the issue of non-tangential convergence a.e. to the

data. The latter would seem to require that the Whitney boxes in the definition of

W(x) (see (4.2)) exist at infinitely many scales, for a.e. x ∈ ∂Ω; e.g., the interior

Corkscrew condition would be more than enough to guarantee this property.

Proof of Proposition 4.5. Splitting the data g into its positive and negative parts,

we may suppose without loss of generality that g ≥ 0, hence also u ≥ 0. Let

x ∈ ∂Ω, fix Y ∈ Υ(x), and let ŷ ∈ ∂Ω be a touching point, i.e., |Y − ŷ| = δ(Y). Set

∆∗Y := ∆
(
ŷ, 1000δ(Y)

)
, B∗Y := B

(
ŷ, 1000δ(Y)

)
,

and note that x ∈ ∆∗
Y

. Define a continuous partition of unity
∑

k≥0 ϕk ≡ 1 on ∂Ω,

such that 0 ≤ ϕk ≤ 1 for all k ≥ 0, with

(4.9) supp(ϕ0) ⊂ 4∆∗Y , supp(ϕk) ⊂ Rk := 2k+2∆∗Y \ 2k∆∗Y , k ≥ 1 ,

set gk := gϕk, and let uk be the solution of the Dirichlet problem with data gk (it

may be that for some k, the boundary annulus Rk is empty; for such k, we have that

gk, and hence uk, are identically zero). Thus, u =
∑

k≥0 uk in Ω. By construction, Y

is a Corkscrew point for 4∆∗
Y

, and x ∈ 4∆∗
Y

, hence

u0(Y) ≤
∫

∂Ω

g0 kY dσ .


?

4∆∗
Y

gp dσ


1/p

.
(M(

gp)(x)
)1/p
,

where in the next to last step we have used (4.1).

Next, we claim that for k ≥ 1,

(4.10) uk(Y) . 2−kα (M(
gp)(x)

)1/p
.

Given this claim, we may sum in k to obtain (4.6). Thus, it suffices to verify (4.10).

To this end, we set

Wk :=
{
I ∈ W : I meets 2k−1B∗Y

}
,
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and for each I ∈ Wk, we fix a point XI ∈ I ∩ 2k−1B∗
Y

, and we define

∆I := ∆XI
,

as in (3.1), with X = XI . We now choose a collection of balls {Bi}1≤i≤N , with N

depending only on n and ADR, and corresponding surface ball ∆i := Bi ∩∂Ω, such

that Rk ⊂ ∪N
i=1
∆i, and such that for each i = 1, 2, ...,N, with r := δ(Y),

rBi
≈ 2kr and 2k−1B∗Y ⊂ Rn+1 \ 4Bi .

Then by definition of Rk (see (4.9)), and the ADR property,

(4.11) uk(XI) ≤
∫

Rk

g dωXI . (2kr)n


?

2k+2∆∗
Y

gp dσ


1/p


N∑

i=1

?
∆i

(
kXI

)q
dσ



1/q

.


?

2k+2∆∗
Y

gp dσ


1/p

.
(M(

gp)(x)
)1/p
,

where in the next-to-last step we have used the weak-RHq estimate (1.17) in each

∆i, along with the crude bound ωXI (2∆i) ≤ 1, and the fact that each ∆i has radius

r∆i
≈ 2kr.

Next, by Corollary 2.4,

(4.12) uk(Y) . 2−kα 1

|2k−1B∗
Y
|

"
2k−1B∗

Y
∩Ω

uk(Z) dZ

. 2−kα 1

(2kr)n+1

∑

I∈Wk

"
I

uk(Z) dZ ≈ 2−kα 1

(2kr)n+1

∑

I∈Wk

|I| uk(XI)

. 2−kα (M(
gp)(x)

)1/p
,

where in the last two lines we have used Harnack’s inequality in the Whitney box

I, and then (4.11), and the fact that the Whitney boxes inWk are non-overlapping

and are all contained in a Euclidean ball of radius ≈ 2kr. �

With Proposition 4.5 in hand, we turn to the proof of BMO-solvability. Our ap-

proach here follows that in [DKP], which in turn is based on that of [FN]. We now

suppose that the Corkscrew condition holds in Ω, and that L is the Laplacian. In

this case, by the result of [HM] (see also [HLMN] and [MT]), the weak-A∞ condi-

tion for harmonic measure implies that ∂Ω is uniformly rectifiable, and thus, by a

result of [HMM2], we have the following square function/non-tangential maximal

function estimate: for u harmonic in Ω,

(4.13)

∫

∂Ω

(Su
)p

dσ ≤ Cp

∫

∂Ω

(
N∗u

)p
dσ , 1 < p < ∞ ,

where Cp depends also on n, and the UR constants for ∂Ω (and thus on the ADR,

Corkscrew and weak-A∞ constants), and where

Su(x) :=

("
Υ(x)

|∇u(Y)|2 δ(Y)1−n dY

)1/2

.

We recall that Υ(x) and N∗u were defined in (4.3) and (4.4).
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Remark 4.14. In fact, the interested reader may observe that the proof below does

not require, per se, either the Corkscrew assumption or that L be the Laplacian, but

only that the “S < N” bounds (4.13) hold.

Remark 4.15. There is a technical point that we wish to address before proceeding

further. Recall that in the BMO solvability part of Theorem 1.6, we have imposed

the further assumption that diam(∂Ω) = diam(Ω). It is in the nature of the space

BMO that constant data should not be detected by the Carleson measure expression

in (1.3); i.e., constant data f ≡ c should produce a constant elliptic-harmonic

measure solution u. If either diam(Ω) < ∞, or diam(Ω) = diam(∂Ω) = +∞,

this is trivially true: elliptic-harmonic measure is a probability measure in these

cases, so the elliptic-harmonic measure solution with constant data is equal to the

same constant in Ω. However, if ∂Ω is bounded, but Ω is unbounded, then elliptic-

harmonic measure is a probability measure only if we consider it to exist on ∂∞Ω,

that is, the boundary of Ω with point at infinity appended7. Thus, in the case

of an unbounded domain with bounded boundary, we are forced to make certain

modifications, which we discuss in Section 5.

Now consider a ball B = B(x, r), with x ∈ ∂Ω, and 0 < r < diam(Ω), and

corresponding surface ball ∆ = B∩ ∂Ω. Let f be continuous with compact support

on ∂Ω, and set h := f − c∆, where c∆ :=
>

40∆
f . With a slight abuse of notation, we

let u denote the elliptic-harmonic measure solution with data h, and observe that

this u differs from our original solution u by a constant. We construct a smooth

partition of unity
∑

k≥0 ϕk ≡ 1 on ∂Ω as before, but now with 10∆ in place of ∆∗
Y

.

Set hk := hϕk, and let uk be the solution to the Dirichlet problem with data hk. Set

(4.16) WB :=
{
I ∈ W : I meets B

}
, W j

B
:=

{
I ∈ WB : `(I) = 2− j} ,

and for each I ∈ WB, fix a point XI ∈ I ∩ B. As above, let ∆I := ∆XI
be defined as

in (3.1), and note that by construction,

z ∈ ∆I =⇒ I ∈ W(z) ,

whereW(z) is defined in (4.2). Consequently, given z ∈ ∂Ω,

(4.17)
∑

I: z∈∆I

"
I

|∇u0(Y)|2 δ(Y)1−n dY .
(Su0(z)

)2
.

Let us note also that

(4.18) I ∈ WB =⇒ ∆I ⊂ ∆(x,Cr) =: ∆∗ ,

7Recall that our ambient dimension is n + 1, with n ≥ 2, so that the fundamental solution of L

decays to 0 at infinity.
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for C chosen large enough. Let us fix p ∈ [2,∞) such that the Poisson kernel

satisfies an Lq reverse Hölder estimate for q = p/(p − 1). We then have"
B∩Ω
|∇u0(Y)|2 δ(Y) dY .

∑

I∈WB

"
I

|∇u0(Y)|2 δ(Y) dY

≈
∑

I∈WB

?
∆I

"
I

|∇u0(Y)|2 δ(Y) dY dσ

.

∫

∆∗

(Su0(z)
)2

dσ(z)

. σ(∆)(p−2)/p

(∫

∆∗

(Su0(z)
)p

dσ(z)

)2/p

,

where in the last two steps we have used the ADR property and (4.17), and then

ADR again. Therefore, by (4.13), and then Proposition 4.5/Remark 4.8, and the

definition of u0,

1

σ(∆)

"
B∩Ω
|∇u0(Y)|2 δ(Y) dY . σ(∆)−2/p

(∫

40∆

| f − c∆|p
)2/p

. ‖ f ‖2BMO(∂Ω) .

Next, we observe that

("
B∩Ω
|∇(u(Y) − u0(Y)

)|2 δ(Y) dY

)1/2

.


∑

I∈WB

`(I)

"
I

|∇(u(Y) − u0(Y)
)|2 dY



1/2

.


∑

I∈WB

`(I)−1

"
I∗
|(u(Y) − u0(Y)

)|2 dY



1/2

.

∞∑

k=1


∑

I∈WB

`(I)−1

"
I∗
|uk(Y)|2 dY



1/2

.

(4.19)

For k ≥ 1, we set gk := |hk| = | f −c∆|ϕk, and let vk be the solution of the Dirichlet

problem with data gk. Thus, |uk| ≤ vk. For k ≥ 0, set

B̃ := 40B = B(x, 40r) , Bk := 2k B̃ , ∆k := Bk ∩ ∂Ω ,

and let ∆∗
k

be a sufficiently large concentric fattening of ∆k. Given I ∈ W, define

I∗ = (1+τ)I, with τ chosen small enough that dist(I∗, ∂Ω) ≈ dist(I, ∂Ω) ≈ diam(I).

Then for Y ∈ I∗, with I ∈ W j

B
, by Corollary 2.4,

vk(Y) .

(
`(I)

2kr

)α
1

|Bk−1|

"
Bk−1∩Ω

vk .
(
2 j2kr

)−α
?
∆∗

k

N∗vk dσ

.
(
2 j2kr

)−α

?
∆∗

k

(
N∗vk

)p
dσ


1/p

.
(
2 j2kr

)−α
(?
∆k+2

| f − c∆|p dσ

)1/p

. k
(
2 j2kr

)−α ‖ f ‖BMO(∂Ω) ,

where in the last two steps we have used Proposition 4.5/Remark 4.8, and then

a well known telescoping argument. Consequently, setting ∆∗ = ∆(x,Cr) as in
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(4.18), we find that the squares of the summands in the last line of (4.19) satisfy

∑

I∈WB

`(I)−1

"
I∗
|uk(Y)|2 dY . k2 2−2kα ‖ f ‖2BMO(∂Ω)

∑

j: 2− j.r

(
2 jr

)−2α
∑

I∈W j

B

σ(∆I)

. k2 2−2kα ‖ f ‖2BMO(∂Ω) σ(∆∗) ,

since for each fixed j, the surface balls ∆I with I ∈ W j

B
have bounded overlaps,

and are all contained in ∆∗. By ADR, σ(∆∗) ≈ σ(∆), so we may then plug this

last estimate into (4.19) and sum in k to obtain (1.3), thus concluding the proof of

Theorem 1.6.

Remark 4.20. We observe that a slight refinement of the argument above shows that

for a domain Ω with ADR boundary, for which the “S < N estimate” (4.13) holds

for every p ∈ (1,∞), the notions of VMO-solvability and BMO-solvability are

equivalent. Indeed, suppose that the Carleson measure estimate (1.3) holds for all

continuous data f . Then harmonic measure is weak-A∞ in the sense of Theorem

1.4, and therefore, by the first part of Theorem 1.6 (i.e., by Proposition 4.5), we

have that (4.7) holds for all sufficiently large (but finite) powers s. We may then

repeat the preceding argument essentially verbatim, but now with the continuous,

compactly supported data f replaced by an arbitrary f ∈ BMO(∂Ω); as before, we

construct elliptic-harmonic measure solutions u and uk, corresponding to the BMO

data f −c∆, and to the dyadic pieces hk = ( f −c∆)ϕk, respectively. In order to carry

out the rest of the argument to obtain the Carleson measure estimate (1.3), we need

only verify that the solution u is well defined, and that u(Y) =
∑

k uk(Y) pointwise,

for every Y ∈ Ω. In the case that ∂Ω is bounded, these facts follow immediately

from the John-Nirenberg inequality, the higher integrability of the Poisson kernel,

and the fact that only finitely many terms appear in the sum.

If ∂Ω is unbounded, we proceed as follows. Without loss of generality, we

may suppose that c∆ = 0, and for Y ∈ Ω fixed, as above we set ∆∗
Y

:= ∂Ω ∩
B
(
ŷ, 10000δ(Y)

)
, where ŷ ∈ ∂Ω satisfies |Y − ŷ| = δ(Y). We then define a smooth

partition of unity
∑

m≥0 ϕ̃m relative to ∆∗
Y

as in (4.9) (but where we now change

ϕk to ϕ̃m to avoid confusion with the the partition of unity used to define uk), set

cY :=
>

4∆∗
Y

f , and observe that

∫

∂Ω

| f |dωY ≤
∫

∂Ω

| f − cY |dωY + |cY | ≤
∞∑

m=0

∫

∂Ω

| f − cY |ϕ̃mdωY + |cY |

=:

∞∑

m=0

am(Y) + |cY | .

By slightly modifying the proof of Proposition 4.5 mutatis mutandi (see in partic-

ular (4.11) and (4.12)), and using a standard telescoping argument, we find that

am(Y) . m2−mα‖ f ‖BMO(∂Ω), and therefore that u(Y) =
∫
∂Ω

f dωY is well defined,

and that u(Y) =
∑

k uk(Y), by dominated convergence.

5. The case that Ω is an unbounded domain with bounded boundary

We suppose now that Ω is unbounded, but that ∂Ω is bounded. In this case,

as noted above in Remark 4.15, estimate (1.3) cannot hold in general: indeed, for
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constant data f , the right hand side of (1.3) is zero, but the left hand side is non-

zero, since the solution u(X) =
∫
∂Ω

f dωX is not constant. We therefore consider

the following variant of (1.3):

(5.1) sup
x∈∂Ω, 0<r<εR0

1

σ
(
∆(x, r)

)
"
Ω∩B(x,r)

|∇u(Y)|2 δ(Y) dY

≤ C
(
‖ f ‖2BMO(∂Ω) + κ(ε) ‖ f ‖

2
L∞(∂Ω)

)
, ∀ε ∈ (0, 1) ,

where R0 := diam(∂Ω), f is any continuous function defined on ∂Ω, and u is the

elliptic-harmonic measure solution with data f , and where κ(ε)→ 0 as ε→ 0.

Let us now observe that suitable variants of Theorems 1.4 and 1.6 hold in this

context.

Assuming that (5.1) holds for all continuous f defined on ∂Ω, for some κ(ε)

with limε→0 κ(ε) = 0, we may repeat the proof of Theorem 1.4 with minor modifi-

cations, provided that δ(X) ≤ εR0 with ε small enough. Note that the function fs

that we have constructed satisfies ‖ fs‖∞ ≤ 1. Consequently, a version of estimate

(3.7) still holds, but with the small error Cεα replaced by C(εα+
√
κ(ε)). For ε (and

hence also κ(ε)) small enough, and now fixed, the rest of the proof of Theorem 1.4

goes through unchanged, and we obtain that (3.3) holds whenever δ(X) ≤ εR0. In

turn, an examination of the proof of Lemma 3.2 (the result of [BL]) reveals that the

conclusion of Lemma 3.2 continues to hold for all surface balls ∆ of radius at most

εR0. It then readily follows that the weak-A∞ property holds for all surface balls

of radius up to R0; the constants depend on ε, but the latter constant has now been

fixed depending only on the various parameters in the hypotheses of the theorem.

Thus Theorem 1.4 is still valid in this setting. We leave the details to the interested

reader.

Conversely, suppose that elliptic-harmonic measure belongs to weak-A∞ in the

sense of Theorem 1.4, and that the “S < N” bound (4.13) holds (in particular,

as noted above, this is true when L is the Laplacian and Ω satisfies an interior

Corkscrew condition). We seek to establish the Carleson measure estimate (5.1).

As in the proof of the BMO-solvability part of Theorem 1.6, we let u be the elliptic-

harmonic measure solution with given continuous data f defined on ∂Ω, and for

B = B(x, r), ∆ = ∆(x, r), with r ≤ εR0, we set h := f −c∆, where again c∆ =
>

40∆
f .

Note that

(5.2) |c∆| ≤ ‖ f ‖L∞(∂Ω) .

We then have

u(X) =

∫

∂Ω

h dωX + c∆
(
v(X) − 1

)
+ c∆ ,

where v(X) := ωX(∂Ω), and therefore, setting ũ(X) :=
∫
∂Ω

h dωX , we see in turn

that

∇u(X) = ∇ũ(X) + c∆∇ṽ(X) ,

where ṽ := v − 1. We may handle the contribution of ũ exactly as in Section 3,

making a dyadic annular decomposition of h into a sum of terms hk, which give rise

to elliptic-harmonic measure solutions uk. The new ingredient is the contribution

of ṽ. By (5.2), it is enough to show that

(5.3)
1

σ
(
∆(x, r)

)
"
Ω∩B(x,r)

|∇ṽ(Y)|2 δ(Y) dY ≤ Cε2α ,
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which yields (5.1) with κ(ε) = Cε2α. With B = B(x, r), define WB, W j

B
as in

(4.16). Note that ṽ vanishes continuously on ∂Ω, and is bounded in absolute value

by 1, so that the left hand side of (5.3) is no larger than a constant times

(5.4) r−n
∑

j: 2− j.r

∑

I∈W j

B

`(I)−1

"
I

|ṽ(Y)|2dY

≤ r−n
∑

j: 2− j.r

∑

I∈W j

B

`(I)n+2αR−2α
0 ≤

(
r

R0

)2α

,

where we have used first Caccioppoli’s inequality, then Hölder continuity at the

boundary (Corollary 2.4), along with the ADR property and the definition ofW j

B
.

Since r ≤ εR0, we obtain (5.3).
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