Ao IMPLIES NTA FOR A CLASS OF VARIABLE COEFFICIENT ELLIPTIC
OPERATORS
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AssTRACT. We consider a certain class of second order, variable coefficient divergence form elliptic
operators, in a uniform domain Q with Ahlfors regular boundary, and we show that the A, property
of the elliptic measure associated to any such operator and its transpose imply that the domain is in
fact NTA (and hence chord-arc). The converse was already known, and follows from work of Kenig
and Pipher [KP].
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1. MAIN RESULT

There has been considerable recent activity seeking necessary and sufficient geometric criteria
for the absolute continuity of harmonic measure with respect to surface measure, on the boundary
of a domain Q. This paper is concerned with a quantitative version of this problem, in which
both the geometric conditions on Q and its boundary, and the absolute continuity properties of
harmonic measure, are expressed in a quantitative, scale invariant fashion. For example, under
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the background hypotheses that 9 is Ahlfors regular (Definition 2.1 below), and that Q satisfies
an interior Corkscrew condition (Definition 2.3), in work of the first two authors [HMZ]I, it is
shown that 0Q is uniformly rectifiable (a quantitative scale invariant version of rectifiability; see
[DS1, DS2]), provided that the Poisson kernel satisfies a certain uniform scale invariant L? estimate
(which is in turn equivalent to the property that harmonic measure satisfies a quantitative, scale-
invariant version of absolute continuity, namely, the weak-A., condition; see Definition 2.8).

However, the converse to the result in [HM?2] is false (see [BiJ] for a counter-example), and it
remains an open problem to find a geometric characterization of quantitative absolute continuity of
harmonic measure”.

On the other hand, under strengthened background hypotheses, necessary and sufficient condi-
tions for absolute continuity are known. Building on the fundamental result of Dahlberg [Dah]
for Lipschitz domains, David and Jerison [DJ], and independently Semmes [Se], showed that for a
chord-arc domain 2, harmonic measure satisfies an A, condition (see Definition 2.8) with respect
to surface measure o on 9L, i.e., harmonic measure is absolutely continuous with respect to o in
a quantitative, scale invariant way. The term “chord-arc” refers to an NTA domain with an Ahlfors
regular boundary. In turn, an NTA domain is one which satisfies the Harnack Chain condition (Def-
inition 2.4), as well as both interior and exterior Corkscrew conditions. A domain which satisfies
the Harnack Chain condition and interior Corkscrew condition is known in the literature as a uni-
form domain, or a 1-sided NTA domain. Thus, an NTA domain is a uniform domain for which, in
addition, the exterior Corkscrew condition holds.

In this work, we take as our background hypotheses that Q is a uniform (i.e., 1-sided NTA)
domain, and that 9Q is Ahlfors regular. We call such domains /-sided chord-arc domains. In this
context, a necessary and sufficient condition for quantitative absolute continuity (in the form of the
Ao property) of harmonic measure with respect to surface measure is known. Indeed, one has the
following.

Theorem A. Suppose that Q ¢ R"™! is a uniform (aka 1-sided NTA) domain, whose boundary is
Ahlfors regular. Then the following are equivalent:

(1) 0Q is uniformly rectifiable.
(2) Qis an NTA domain, and hence, a chord-arc domain.
3) weA.

As mentioned above, the implication (2) = (3) was proved independently in [DJ] and in [Se],
while (3) = (1) appears in joint work of the first two authors of the present paper, together with
I. Uriarte-Tuero [HMU], and (1) = (2) was proved by the present authors jointly with J. Azzam
and K. Nystrom [AHMNT].

In the present work, we give a direct (and more efficient) proof of the fact that 3) — (2),
without passing through the results of [AHMNT]. More importantly, our approach here allows us
to extend these results well beyond the case of the Laplacian, and to treat a much broader class
of divergence form elliptic operators, with variable coefficients. For the class of operators that we
consider here, the converse direction (2) = (3) was known, and follows readily from work of
Kenig and Pipher [KP]; we shall return to this point momentarily (in particular, see Corollary 1.9).

More precisely, we shall consider divergence form elliptic operators Lu = —div(AVu), whose
coefficients satisfy the following assumptions.

ISee also [MT] for an alternative proof of the main result of [HM2], and [HLMN] for an extension of these results to
the setting of the p-Laplacian.

20n the other hand, we mention that certain other boundary estimates for harmonic functions may be characterized
in terms of uniform (i.e. quantitative) rectifiability, by combining the recent results of [HMM] and [GMT].
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Hypothesis 1.1. Let A(X) = (a; j(X))1<i,j<n+1 be areal (n+1)x (n+1) matrix such that a; j € L*(Q)
for1 <i,j<n+1, and A is uniformly elliptic, that is, there exists 1 < A < co such that

AP < AX)E- €, AX)E-nl < AlEllgl,  forallé,n e R™, and a.e. X € Q.
Suppose further that A satisfies the following conditions:
(a) A € Lip;,(€D).
B) [[IVAIS|| 1o ) < 00, where 5(X) = dist(X, IC).

(¢) VA satisfies the Carleson measure estimate:

1
(1.2) VAl == sup = — f f IVA(X)|dX < oo,
) xeﬁ% o (B(x,r) N0 JJpxrna
0<r<diam(dQ)

where o := H"|5q denotes the surface measure and H" is the n-dimensional Hausdor{f measure.

We shall also assume that {a)}L( }xeq, the elliptic measure associated with L, belongs to A (0€2).
More precisely, we shall consider elliptic operators whose associated elliptic measure satisfies the
following scale invariant higher integrability estimate.

Hypothesis 1.3. There exists ¢ > 1 and C > 1, such that for every surface ball A = A(x,r) :=
B(x,r) N 0Q, with x € 0Q and 0 < r < diam(dQ), one has that wa < o, and the Poisson kernel
kX = dwl® do satisfies the scale invariant estimate

(1.4) / KA ()7 do(y) < C (M)
A
Here, X is a fixed (or any) Corkscrew point in Q, relative to A (see Definition 2.3).

We remark that in the setting of a uniform domain with Ahlfors regular boundary, it can be shown
that estimate (1.4) is in turn equivalent to the property that the Poisson kernel satisfies an L7 reverse
Holder inequality, equivalently, that elliptic measure satisfies an A, condition (a quantitative, scale-
invariant version of absolute continuity; see Definition 2.8). We further remark that Hypothesis 1.3
is equivalent to the solvability of the Dirichlet problem for L with L? data, and with nontangential
maximal function estimates in L?, for p = g/(g — 1) (see, e.g., [Ke]).

Our main result is the following.

Theorem 1.5. Let Q ¢ R™!, n > 2, be a 1-sided CAD (see Definition 2.7). Let Lu = —div(A Vu)
be a second order divergence form operator in Q, whose coefficients satisfy the assumptions of

Hypothesis 1.1, and suppose that the elliptic measures for both L and its transpose L' satisfy
Hypothesis 1.3. Then Q is a chord-arc domain (CAD).

Remark 1.6. In particular, the conclusion that Q is a CAD implies that dQ is uniformly rectifiable
(UR) (see [DS2]). The UR constants depends on dimension, the ellipticity constants, the 1-sided
CAD constants, ||[VA|6|| ., VAo and finally ¢ and C in (1.4).

Remark 1.7. We point out that we do not assume symmetry of the coefficient matrix A; on the other
hand, Theorem 1.5 is new even in the symmetric case (and in that case, of course, one requires that
Hypothesis 1.3 hold only for elliptic measure associated to L).

Let us observe that given property (b) in Hypothesis 1.1, we have that property (¢) immediately
implies the more familiar Carleson measure condition

1
(1.8) sup f f IVACX)P2 6(X) dX < oo
o B N0 Jserma
O<r<diam(0Q)
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(on the other hand, the converse is not true). Here 6(X) := dist(X, 0€2). It has essentially been shown
by Kenig and Pipher [KP], that the latter condition, in conjunction with property (b) of Hypothesis
1.1, is sufficient to deduce the A, property of elliptic measure in an arbitrary Lipschitz domain,
and thus, by a well-known maximum principle argument, in a chord-arc domain Q as well, using
the method of David and Jerison [DJ]. We refer the reader to [DJ] for the details, which are stated
there in the case that L is the Laplacian, but extend immediately to the case of operators satisfying
property (b) and (1.8), since these conditions clearly hold uniformly in every Lipschitz subdomain
of Q. In particular, combining our Theorem 1.5 with the result of [KP] and the method of [DJ], we
obtain the following necessary and sufficient criterion.

Corollary 1.9. Let Q be a 1-sided CAD (cf. Definition 2.7), and let Lu = — div(A Vu) be a variable
coefficient second order divergence form operator whose coefficients satisfy Hypothesis 1.1. Then
the elliptic measures {CU{}XGQ and {u))L(T }xeq belong to A(0Q), if and only if Qe = R™1\ Q
satisfies the Corkscrew condition (and thus, Q is a CAD).

As noted above, Corollary 1.9 was already known in the special case that L is the Laplacian.

The plan of the paper is as follows. In Section 2 we present some background and preliminaries
that are used throughout the paper. Section 3 contains some auxiliary results. The proof of Theorem
1.5 is in Section 4. There, after some reductions, we show that it suffices to establish Proposition
4.25 in the symmetric case and Proposition 4.36 in general. These in turn follow from an integra-
tion by parts argument. In Section 4.1 we single out the case of symmetric operators and we pay
particular attention to the Laplacian since it is rather simple and models the general case which is
treated in Section 4.2. Finally, we observe that the main theorem of [KKiPT] allows for a modest
shortcut in the proof of the result of [KP] that we have invoked in Corollary 1.9. For the reader’s
convenience, in an appendix we briefly sketch the argument of [KP], using the result of [KKiPT] to
shorten their proof.

Acknowledgements. The main result of this paper was proved in the Fall of 2014 while the first
two authors were visiting the last author at the Mathematics Department of the University of Wash-
ington. In addition, these results were presented, in condensed form, by the first two authors at
the MSRI Summer Graduate School “Harmonic Analysis and Elliptic Equations on real Euclidean
Spaces and on Rough Sets”, June 13-24, 2016. We are grateful to both of these institutions for their
kind hospitality.

We mention also that some of the main ideas of this work were used subsequently (but have
appeared already) in [ABHM] to obtain a qualitative version of the main result of the present paper.
In particular, Proposition 4.25, although first proved in the present work, was previously announced
in [ABHM, Proposition 3.3], with a reasonably detailed sketch of the proof®.

2. PRELIMINARIES

2.1. Notation and conventions.

e We use the letters ¢, C to denote harmless positive constants, not necessarily the same at each
occurrence, which depend only on dimension and the constants appearing in the hypotheses of
the theorems (which we refer to as the “allowable parameters”). We shall also sometimes write
a < b and a = b to mean, respectively, that a < Cb and 0 < ¢ < a/b < C, where the constants ¢
and C are as above, unless explicitly noted to the contrary. Unless otherwise specified upper case
constants are greater than 1 and lower case constants are smaller than 1. In some occasions it is

3Quite recently, Proposition 4.25, as gleaned from [ABHM], has also been used as one ingredient in work of Azzam,
Garnett, Mourgoglou, and Tolsa [AGMT], to extend the results of [GMT] to the class of operators with coeflicients
satisfying Hypothesis 1.1.
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important to keep track of the dependence on a given parameter , in that case we write a <, b
or a ~, b to emphasize that the implicit constants in the inequalities depend on .

e Our ambient space is R"*!, n > 2.

e Given E c R™! we write diam(E) = SUP, v |x — y| to denote its diameter.

e Given a domain Q c R"*! we shall use lower case letters x, ¥, z, etc., to denote points on €,
and capital letters X, Y, Z, etc., to denote generic points in R"*! (especially those in R"*! \ 6Q).

e The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r) when the center
x lies on 9Q, or B(X, r) when the center X € R*™1\ Q. A surface ball is denoted A(x,r) :=
B(x,r) N 9Q, and unless otherwise specified it is implicitly assumed that x € 9Q2.

e If 0Q is bounded, it is always understood (unless otherwise specified) that all surface balls have
radii controlled by the diameter of 0Q: that is if A = A(x, r) then r < diam(9€2). Note that in this
way A = 0Q if diam(9Q) < r < diam(0€2).

e For X € R"!, we set 6(X) := dist(X, dQ).

e We let H" denote n-dimensional Hausdorff measure, and let o := H"|3q denote the surface
measure on 9€).

e For a Borel set A ¢ R™!, we let 14 denote the usual indicator function of A, i.e. 14(x) = 1 if
x€A,and 14(x) =0if x ¢ A.

e For a Borel subset A C 0Q, with 0 < 0(A) < o0, we set f, fdo := (A" [, fdo.

e We shall use the letter / (and sometimes J) to denote a closed (n+ 1)-dimensional Euclidean cube
with sides parallel to the coordinate axes, and we let £(I) denote the side length of /. We use Q to
denote dyadic “cubes” on Q. The latter exist, given that dQ is AR (cf. [DS1], [Chr]), and enjoy
certain properties which we enumerate in Lemma 2.12 below.

e Given a domain Q, and an elliptic operator L, we let w} denote L-elliptic measure for Q with
pole at X, and if wf < o, we let k¥ := dwy/do be the corresponding Poisson kernel. When
the operator L is understood, we will at times suppress its appearance in the notation, and write
simply w¥, k¥ in place of w{ and k.

2.2. Some definitions.

Definition 2.1 (Ahlfors regular). We say that a closed set E ¢ R™! is n-dimensional Ahlfors
regular (AR for shortness) if there is some uniform constant C such that

(2.2) C'P"<HWENBx,))<Cr', x€E, 0<r<diam(E).

Definition 2.3 (Corkscrew condition). Following [JK], we say that a domain Q C R gatisfies
the Corkscrew condition if for some uniform constant ¢ > 0 and for every surface ball A := A(x, r),
with x € 0Q and 0 < r < diam(9Q), there is a ball B(Xa, cr) C B(x,r) N Q. The point Xp C Qis
called a corkscrew point relative to A, (or, relative to B). We note that we may allow r < C diam(9€2)
for any fixed C, simply by adjusting the constant c.

Definition 2.4 (Harnack Chain condition). Again following [JK], we say that Q satisfies the
Harnack Chain condition if there is a uniform constant C such that for every p > 0, A > 1, and
every pair of points X, X’ € Q with §(X), 6(X’) > p and [X — X’| < Ap, there is a chain of open
balls By,...,By € Q, N < C(A), with X € By, X’ € By, By N Byy1 # @ and c! diam(By) <
dist(By, 0Q) < C diam(By). The chain of balls is called a Harnack Chain.

Definition 2.5 (1-sided NTA and NTA). We say that a domain Q is a /-sided NTA domain if
it satisfies both the Corkscrew and Harnack Chain conditions. Furthermore, we say that Q is an
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NTA domain if it is 1-sided NTA and if, in addition, Qey := R™*! \ Q also satisfies the Corkscrew
condition.

Remark 2.6. The abbreviation NTA stands for non-tangentially accessible. In the literature, 1-sided
NTA domains are also called uniform domains. We remark that the 1-sided NTA condition is a
quantitative form of path connectedness.

Definition 2.7 (1-sided CAD and CAD). A /-sided chord-arc domain (1-sided CAD) is a 1-sided
NTA domain with AR boundary. A chord-arc domain (CAD) is an NTA domain with AR boundary.

Definition 2.8. (A, weak-Aw, and RH,). Given an n-dimensional Ahlfors regular set £ C R+
and a surface ball Ag := By N E, we say that a Borel measure u defined on E belongs to As(Ag) if
there are positive constants C and s such that for each surface ball A = BN E, with B C By, we have

A N
(2.9) uA)<C Q u(A), for every Borel set A C A.
()
Similarly, we say that u € weak-A(Ap) if for each surface ball A = BN E, with 2B C By,
oA\’
(2.10) uA) <C m UQR2A), for every Borel set A C A.
o

We recall that, as is well known, the condition y € A (Ap) is equivalent to the property that u < o
in Ag, and that for some ¢ > 1, the Radon-Nikodym derivative k := du/do satisfies the reverse
Holder estimate

”‘1 ey
2.11) <J[k‘1do-> sfkdaz, VA =BNE, with BC Bj.
A A a(A)

The inequality in (2.11) is often referred to as an L7 Reverse Holder (“RH,”) estimate.

2.3. Dyadic grids and sawtooths. We first give a lemma concerning the existence of a “dyadic
grid” which can be found in [DS1, DS2, Chr].

Lemma 2.12 (Existence and properties of the ‘“dyadic grid’). [DS1, DS2], [Chr]. Suppose that
E c R™! satisfies the AR condition (2.2). Then there exist constants ag > 0, 7 > 0 and C; < oo,
depending only on dimension and the AR constant, such that for each k € Z, there is a collection of
Borel sets (“cubes”)

Dy :={Qj C E: j e,
where 3y denotes some (possibly finite) index set depending on k, satisfying
(i) E =V;0% foreachkeZ.
(i) If m > k then either Q" ¢ Q% or Q' 0 0% = @.
(iii) For each (j, k) and each m < k, there is a unique i such that Q’J‘. c o
(iv) diam (Q%) < Cy27,
(v) Each Qlj‘- contains some surface ball A(xf-, a02_k) =B (xﬁ, a02_k) NE.

(vi) H”({x € Qlj‘. s dist(x, E \ QI;) < 7'2_"}) <Citm H”(Ql;),for all k, j and for all T € (0, ap).

A few remarks are in order concerning this lemma.

o In the setting of a general space of homogeneous type, this lemma has been proved by Christ
[Chr], with the dyadic parameter 1/2 replaced by some constant § € (0,1). In fact, one may
always take 6 = 1/2 (cf. [HMMM, Proof of Proposition 2.12]). In the presence of the Ahlfors
regularity property (2.2), the result already appears in [DS1, DS2].
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e For our purposes, we may ignore those k € Z such that 27% > diam(E), in the case that the latter
is finite.
e We shall denote by D = D(E) the collection of all relevant Q’;-, i.e.,
D := UiDy,
where, if diam(E) is finite, the union runs over those k such that 2% < diam(E).

e For a dyadic cube Q € Dy, we shall set £(Q) = 27%, and we shall refer to this quantity as the
“length” of Q. Evidently, £(Q) ~ diam(Q).

e Properties (iv) and (v) imply that for each cube Q € Dy, there is a point xg € E, a Euclidean ball
B(xg, rp) and a surface ball A(xg, rg) := B(xg, rg) N E such that

(2.13) cl(Q) <rg < €(0) and A(xg,2rp) C Q C A(xg,Crg),
for some uniform constants C, c. We shall denote this ball and surface ball by
(2.14) BQ = B(XQ, I’Q) , AQ = A(]CQ, I’Q),

and we shall refer to the point x¢ as the “center” of Q.

It will be useful to dyadicize the Corkscrew condition, and to specify precise Corkscrew con-
stants. Let us now specialize to the case that £ = 0Q is AR, with Q satisfying the Corkscrew
condition. Given Q € D(0Q), we shall sometimes refer to a “Corkscrew point relative to O, which
we denote by X¢, and which we define to be a corkscrew point X, relative to the surface ball Ag
(see (2.13), (2.14) and Definition 2.3). We note that

(2.15) 8(Xp) ~ dist(Xp, Q) ~ diam(Q).

Definition 2.16 (cy-exterior Corkscrew condition). Fix a constant ¢y € (0,1), and a domain
Q c R"™!, with AR boundary. We say that a cube Q € D(9Q) satisfies the cg-exterior Corkscrew
condition, if there is a point zg € Ag, and a point Xé € B(zg,r9/4) \ Q, such that B(Xé, co€(Q)) C
B(zg,rg/4) \ Q, where Ag = A(xg, rp) is the surface ball defined above in (2.13)—(2.14).

Following [HM1, Section 3] we next introduce the notion of Carleson region and discretized
sawtooth. Given a cube Q € D(dL), the discretized Carleson region D relative to Q is defined
by

Dg ={Q" e D@OQ): Q' c Q}.
Let F be family of disjoint cubes {Q;} C D(9€2). The global discretized sawtooth region relative
to F is the collection of cubes Q € D that are not contained in any Q; € ¥ ;

Ds :=D\ | Dy,
QjeF

For a given Q € D the local discretized sawtooth region relative to ¥ is the collection of cubes in
Dy that are not in contained in any Q; €

Dy :=Dg\ | Do, =Dy NDg.
=
We also introduce the “geometric” Carleson regions and sawtooths. In the sequel, Q ¢ R"*! (n > 2)
will be a 1-sided CAD domain. Let ‘W = W(Q) denote a collection of (closed) dyadic Whitney
cubes of Q (see [St, Chapter VI]), so that the cubes in ‘W form a covering of Q with non-overlapping
interiors, and which satisfy

(2.17) 4 diam (1) < dist(41, 0Q2) < dist(I, 0Q2) < 40 diam (1)
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and
(2.18) diam(/;) =~ diam(/,), whenever I and I, touch.

Let X(I) denote the center of I, let £(1) denote the side length of I, and write k = k; if (1) = 27k,

Given 0 < A < 1 and I € ‘W we write I" = (1 + A)I for the “fattening” of /. By taking A
small enough, we can arrange matters so that, first, dist(/*, J*) = dist(/, J) for every I, J € ‘W, and
secondly, I* meets J* if and only if 0/ meets dJ. (Fattening ensures /* and J* overlap for any pair
1, J € W whose boundaries touch. Thus, the Harnack Chain property holds locally in I* U J* with
constants depending on A.) By picking A sufficiently small, say 0 < 4 < Ay, we may also suppose
that there is 7 € (1/2, 1) such that for distinct I,J € W, vJ N I" = @. In what follows we will
need to work with dilations I** = (1 + 2 A)I or I"** = (1 + 4 A)I and in order to ensure that the same
properties hold we further assume that 0 < A4 < 4o/4.

For every Q we can construct a non-empty family Wy, € ‘W and define

(2.19) Up:=|J I,
le W,

satisfying the following properties: Xp € Uy and there are uniform constants k* and K such that

k(Q) — k" <k; <k(Q)+k* VIeWs;,
(2.20) X(I) —uy, Xo V1eWy,

dist(, Q) < Ko 27KO VIeW,.

Here X(I) —y, X means that the interior of Uy contains all the balls in a Harnack Chain (in
Q) connecting X(I) to X, and moreover, for any point Z contained in any ball in the Harnack
Chain, we have dist(Z, 0Q) ~ dist(Z, Q \ Ugp) with uniform control of the implicit constants. The
constants k*, Ko and the implicit constants in the condition X(I) -y, Xg in (2.20) depend on at
most allowable parameters and on A. For later use, it will be convenient to associate to Whitney
boxes a particular nearest dyadic cube. Let I € ‘W with £(I) < diam(9dQ) and pick z € 9Q (there
could be more than one z with this property but we just pick one) such that dist(/, 9Q2) = dist(/, 7).
We define Q; € D as the unique dyadic cube such that z € Q; with £(Q7) = €(I). We note that the
construction in [HM1] guarantees that [ € (W" (indeed, this property holds for any other nearest
dyadic cube with side length £(/)). The reader 1s referred to [HM 1] for full details.

For a given Q € D, the Carleson box relative to Q is defined by

T :=int U Uy
Q'eDg

For a given family ¥ of disjoint cubes {Q;} C D and a given Q € D we define the local sawtooth
region relative to ¥ by

Qf ¢ = int U Up | =int U r|,
0'eDyr o leWr g

where Wg o = 0Dy W, . Analogously, we can slightly fatten the Whitney boxes and use I**
to define new fattened Whitney regions and sawtooth domains. More precisely,

@21y  Ty=int| | Uy |, Qpyi=int| | UL ). Up= | I
Q’ EDQ Q,EDTA,Q Ie (W*Q’

Similarly, we can define 7', Q , and Uy by using /*** in place of I**.
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One can easily see that there is kp > ¢~! (depending only on the allowable parameters and where
c is the constant in (2.13)) so that

(2.22) TocTocTy cTy CkoBoNQ=:Bp,NQ,  YQeD.

Given a pairwise disjoint family & c D (we also allow ¥ to be the null set) and a constant
p > 0, we derive another family # (o) € D from ¥ as follows. Augment ¥ by adding cubes Q € D
whose side length £(Q) < p and let ¥ (p) denote the corresponding collection of maximal cubes
with respect to the inclusion. Note that the corresponding discrete sawtooth region Dg,) is the
union of all cubes Q € D¢ such that £(Q) > p. For a given constant p and a cube Q € D, let Dy, o
denote the local discrete sawtooth region and let Q) o denote the local geometric sawtooth region
relative to disjoint family 7 (o).

Given Q € Dand 0 < € < 1, if we take ¥y = @, one has that Fy(e £(Q)) is the collection
of Q' € D such that e £(Q)/2 < €(Q’) < €£(Q). We then introduce Ug e = Qg ce(0)),0, Which
is a Whitney region relative to Q whose distance to JQ is of the order of € £(Q). For later use,
we observe that given Qg € D, the sets {U Q’E}QEDQO have bounded overlap with constant that may
depend on €. Indeed, suppose that there is X € Up N Uy  with Q, Q" € Dg,. By construction
Q) ~e 0(X) ~¢ €(Q') and

dist(Q, 0") < dist(X, Q) + dist(X, Q') S €(Q) + {(Q") ~e U(Q).

The bounded overlap property follows then at once.

2.4. PDE estimates. Next, we recall several facts concerning elliptic measure and Green’s func-
tions. For our first results we will only assume that Q ¢ R"*!, n > 2, is an open set, not necessarily
connected with Q2 being AR. Later we will focus on the case where Q is 1-sided CAD.

Let Lu = —div(A Vu) be a variable coefficient second order divergence form operator with
A(X) = (a;j(X))1<i j<n+1 being a real (non-necessarily symmetric) (n + 1) X (n + 1) matrix such
that a; j; € L*(Q) for 1 < i, j < n+ 1, and A is uniformly elliptic, that is, there exists 1 < A < oo
such that

AP <AX)E-£ JADE -l < Al Inl,
for all £, € R™! and almost every X € Q. We write LT to the denote the transpose of L, or, in
other words, L™u = —div(A" Vu) with AT being the transpose matrix of A.

We say that a function u € Wllo’f(Q) is a weak solution to Lu = 0 in Q or that Lu = 0 in the weak
sense in €, if

f f AX) Vu(X) - VOX)dX =0, Y e CQ).
Q

Associated with L and LT one can respectively construct the elliptic measures {w}xeq and
{wa }xeq, and the Green functions G and G+ (see [HMT] for full details). We next present some
of the properties that these object satisfy and that will be used throughout this paper.

Lemma 2.23. Suppose that 0Q is n-dimensional AR. Then there are uniform constants ¢ € (0,1)
and C € (1,00), depending only on n, AR, and A such that for every x € 0, and every r €
(0, diam(0Q)), if Y € Q N B(x, cr), then

(2.24) Wl (A(x, 1) = 1/C>0.

We refer the reader to [Bo, Lemma 1] for the proof in the harmonic case and to [HMT] for
general elliptic operators. See also [HKM, Theorem 6.18] and [Z, Section 3].

A proof of the next lemma may be found in [HMT]. We note that, in particular, the AR hypothesis
implies that 9 is Wiener regular at every point (see [HLMN, Lemma 3.27]). In fact, it satisfies the
Capacity Density Condition (CDC) (see [Z, Section 3]).
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Lemma 2.25. Let Q be an open set with n-dimensional AR boundary. Let Lu = — div(A Vu) be as
above. There are positive, finite constants C, depending only on dimension, A and cy, depending
on dimension, A, and 6 € (0, 1), such that Gy, the Green function associated with L, satisfies

(2.26) GLX,Y)<CIX-YI'™"

(2.27) colX =Y <GX,Y), if X-Y|<608X), 6€(0,1);
(2.28) GL(,V)eCQ\{Y) and  GL(.V)|,,=0, VYe®
(2.29) GL(X,Y)>0, VX,YeQ,X=#YV;

(2.30) GL(X,Y)=G~(Y,X), VX, YeQ,X=#V.

Moreover, G (-,Y) € WIIO’CZ(Q \{Y}) for any Y € Q and satisfies LGL(-,Y) = Oy in the weak sense in
Q, that is,

ff AX)VyGL(X,Y) - VDO(X)dX = O(Y), YO e Cy(Q).
In particular, G (, Y)Qis a weak solution to LG (-, Y) = 0 in the open set Q \ {Y}.
Finally, the following Riesz formula holds
(2.31) fLAT(Y) VyGrr (Y, X) - VO(Y)dY = O(X) — /89 O dw’, fora.e. X € Q,
for every ® € C{(R™1).

Next, we recall a Caffarelli-Fabes-Mortola-Salsa estimate (cf. [CFMS], and [HMT] for the cur-
rent version).

Lemma 2.32. Let Q be a 1-sided CAD domain. Let B := B(x, r), with x € 0Q, 0 < r < diam(9dQQ).
Then for X € Q\ 2 B we have

1 _
(2.33) Ew{(A) < "G L(X, Xp) < Cwf(A).

The constant in (2.33) depends only on A, dimension and on the constants in the I-sided CAD
character.

Lemma 2.34. Suppose that Q is a 1-sided CAD domain. Let B := B(x,r), x € 0Q, A := BN 0Q
and X € Q\ 4B. Then there is a uniform constant C, depending only on A, dimension and on the
constants in the 1-sided CAD character, such that

(2.35) Wy (2A) < Cwi(A).

3. AUXILIARY RESULTS

We have the following Poincaré inequality which is an improvement of [HM1, Lemma 4.8].

Lemma 3.1. Suppose that Q is a 1-CAD. Fix Q¢ € D, a (possibly empty) pairwise disjoint family
¥ C Dyg,, and let Q € Dg ,. Then for every p, 1 < p < oo, and for every small € > 0, there is a
constant Ce , such that

(3.2) f f F(X) = .l dX < Cop €Q) f f VFOOP dX,
Qe 00)).0 Qe 0.0

where cge = Qe [(Q))’er f fgﬂd@w fdX. In particular, the previous Poincaré inequality holds
for Ug ¢ replacing Q¢ ¢(0)),0-
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Proof. Without loss of generality we may assume that Qg ()0 # ©. We first observe that

1
(3.3) ff fX) - fo f)dy
Qreuon.o Q7 0)).0l Qr (0.0
1
397 f ff If(X) = fD)IP dX dY
Q7 e con.0l s w0 I cuono

1
[ [ 10 = s axay.

I
Q7 (e e0)). 0

p
dx

1Je Weewo).0

Fix now I,J € We(c)),0- Note that dist(1, J) < £(I) = £(J) = £(Q) (where the implicit constants
depend upon €). By [HM1, Lemma 3.61] there is a chain {I1, I», .. ., Iy} € W (c¢(0)),0, of bounded
cardinality N depending only on dimension, the 1-sided CAD constants of €, and €, such that

=J, Iy =1, t(Ij) = {(I) = {(J) for each j (again the implicit constants depend upon €), and for
Wthh UN_ 11} contains a Harnack Chain which connects the centers of I and J. Moreover, the chain
may be constructed so that I N I; 1 # 9,1 < j<N-1. Hence, by telescoping and using the
standard Poincaré inequality

(3.4)

( [, f1 [, J* If(X)—f(Y)I”dXdY)}]
san (( 1. If(X)—fz*I”dX> ( [ rn- fﬁV’dY) >+£(1> ,, Zlﬁ - fi|

<o ( f f VCOP dx> wan " Zlfz* frl
Qreuon.e

where we have used the notation ﬁ;f = II;fl‘l 1], - /> and where the implicit constants depend on p
J

and €. To analyze the last term, take 1 < j < N — 1. Recall that /7 = (1+4) I; with I; being a dyadic
Whitney cube. The same applies to I;f +1- Also, by choice of 1 and since I; N I; .1 % D it follows that

0l meets 01,1, which in turns implies that £(/;) ~ €(I;+1). Hence, one can find a cube Ic I ! I;‘ 1

with £(I) ~ Al(I;) = AL(I;+1). Then, by using again the standard Poincaré inequality we conclude

\fi: = fr N < U = fl + 17 = jﬂl_ll| flf(X) f,|a’X+~ f|f(x) fir, ldx
1
smfﬁ|f<X)—ﬁ;|dX+|l*+]|ff 1100~ fir_|dX

< |1*| f IV OO dX + J’: f f IV £l dX

where the implicit constants depend on n and 4. Now we plug this estimate into (3.4), use that
f(l;f) ~ {(I) =~ £(Q) (with constants that depend on €), the bounded overlap of the family {Ij*-}yz , and
that N depends upon e (it also depends on / and J, but in a uniformly bounded manner for € fixed):

([[ ]} veo- e axar)’
<o ( f f IVf(X)I”dX> o f f VY
Qree0).0 VLT
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1 1
n+l 4 p i m+1_@ N s L, » r
<€) » IVA(X))PdX + () » P |Uj:1]j P Vf(IPdY
Qr w00 Ui, I

1

1 P
< Q7 e0y),0!7 €(Q) (ff IVf()P dY) )
Q0.0

Both in the last line above as in order to conclude the proof of (3.2) from this inequality and (3.3)
we need to observe that

#Wrcnono < #{Q €Dg: UQ) > el(Q)} < ce.

O

The following result is of purely real variable nature and establishes that if a measure satisfies
an A, type condition on a cube Qp then a stopping time argument allows us to extract a pairwise
disjoint family ¥ C Dy, such that the averages of the measure for cubes “above” the sawtooth (i.e,
in Dg ¢, ) are essentially constant. Additionally, the complement of the union of the cubes in F are
an ample portion of Qy, this means that the local sawtooth region Qg o, has an ample contact with

Qo.

Lemma 3.5. Let Qg € D and let u be a non-negative regular Borel measure on Qy. Assume that
U < o on Qyand write k = du/do. Assume also that there exist Ko > 1, 6 > 0 such that

1(Qo) p(F) o(F) )"

3.6 1< < K d < K , VF .
G0 o0 = M g = <0'(Qo)> 0
Then, there exists a pairwise disjoint family ¥ = {Q;}; C Do, \ {Qo} such that
(3.7) o(20\ U @) = Ki'e0o)

QjeF
and
1 (0)
(3.8) 5 < g(Q) <KoKi, VQeDgsg,

where K| = (4 Ko)é

Proof. The proof is based on a stopping time argument similar to those used in the proof of the Kato
square root conjecture [HMc, HLMc, AHLMcT], a more refined version appears in [HLMN, HM?2].

Let ¥ = {Q}}; be the collection of dyadic cubes contained in Qy that are maximal, and therefore
pairwise disjoint, with respect to the property that either

O 1 and/or HD

<
a(Q) 2 o(0Q)

Note that (3.6) and the fact that K1 > 1 imply that ¥ C Dy, \ {Qo}. Also, the maximality of the
cubes in ¥ immediately gives (3.8).

(39) > KO K.

On the other hand, we observe that ¥ = F; U ¥, where 77 corresponds to the family stopping
time cubes with respect to the first criterion in (3.9) and ¥, = ¥ \ ¥ is comprised of the maximal
cubes for which the first condition in (3.9) fails but the second holds. Set

Fo=Qo\<UQj>, F=J o, =] 0,
QjeF Qjef QjeF>
sothat Qg = Fo U F U F».
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We first handle the cubes in ] which, by construction, satisfy
1 1 1
pF) = ) Q) < Y 0(Q) = So(F1) < o(Qu).
(S QeFi
On the other hand, the definition of the family ¥, and (3.6) give
1 1 1
T(F)= Y 0(Q) < —— K > uQ)) = HF2) < o H(Q0) < 4 a(Qo)
Qjeh2 Qjeh2
This, (3.6), and our choice of K yield
u(Fz) <K, <CT(F2)> K1
a(Qo) (Qo)

Tk 4
Collecting the estimates obtained for F| and F», and using again (3.6) we see that

3
o(Qo) < u(Qo) = u(Fo) + p(F1) + u(F2) < u(Fo) + 7 0(Qo).
Hiding the last term on the right hand side and by (3.6) one can conclude that

<u<Fo> x (a(%))"
Qo) = "\ Qo)

which is (3.7) and the proof is complete. O

With a slight abuse of notation, let Q0 be either 0Q2, and in that case Dgo := D, ora fixed cube
in D, hence Dy is the family of dyadic subcubes of 0% Leta = {aQ}QeDQO be a sequence of

non-negative numbers indexed by the dyadic “cubes” in Do, and for any collection D" € Dgo, we
define an associated discrete “measure”

(3.10) me(D) := ) ap.
Qel’
We say that m is a “Carleson measure” (with respect to o) in QY, if
m(x(DQ) < o0
a(Q)

(311) ||ma”C(QO) = Ssup
Q€D xo
For simplicity, when 0° = 9Q we simply write |[m,||c.
Our next result establishes that to show that m,, is a Carleson measure it suffices to check (3.11)
only on “sawtooths with an ample contact”:

Lemma 3.12. Let Q° be either 0Q or a fixed cube in D. Let a = {G’Q}QEDQO be a sequence of
non-negative numbers and consider m, as defined above. Given M| > 0 and K| > 1, we assume
that for every Qo € Do there exists a pairwise disjoint family Fo, = {Q;}; € Dg, \ {Qo} such that

(3.13) c(e\ U 9j)z koo
0€F 0,

and

(3.14) me(Dgy .00) < M1 0(Qo).

Then, m,, is Carleson measure in Q0 and moreover

(3.15) Imalloin = QSEIIJDIZO m;g)g) < K1 M.
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Proof. We first take a sequence D! ¢ D> ¢ --- c DV ¢ --- ¢ Dgo such that Dy = UyDV
and #D¥ = N. For each N > 1 we let ay := {a/g}QeDQ0 where a/g = agp if Q € DV and
a/g := 0 otherwise. Let m,, be the corresponding discrete measure associated with ay and set
¢y = min{€(Q) : Q € DV} > 0.

We first note that

My, (D 1 1
IMayllogoy = sup May (Do) = sup E Qg < g g < co.
D

0y, (0 0eD yo.£(Q)2ty 9(Q) ey (&N ot

Fix now Qp € Do and let Fp, be the associated pairwise disjoint family given by our hypotheses.
By the definition of D,.00 and by (3.13) we have

May Doy \ Dy 00) = Y, MayDg) < IMayllony, > o(Q))
Q€T o, 0eFq,

= Imaylicn o \J €)= (1= K7 Iyl Qo)
QJ'E?_Q()
This and (3.14) yield
m(,N(DQO) _ ma’N(D(f_QO,Qo) + maN(DQO \DTQO,QQ)
a(Qo) a(Qo) a(Qo)
Note that this estimate holds for every Qg € D . Hence, we conclude that
Mgy (Do)
a(Q)

We can then hide the last term (which is finite as observed above) to obtain [[may o) < K1 M)
and letting N — oo we conclude (3.15). O

< Ml + (1 - Kl_l) ”maNHC(QO).

”maN”C(QO) = Sup < Ml + (1 - Kl_l) ”mLL/N”C(QO)

QGDQO

4. PROOF OF THE MAIN RESULT

Given 0 < ¢9 < 1, let B = B(cg) denote the collection of Q € D for which the cy-exterior
Corkscrew condition (see Definition 2.16) fails. Set « := {@g}gep With

{d@,ﬁQeﬂ
a/Q =

0, otherwise.

4.1)

Associate to a the discrete measure 1, as above, which depends on the parameter cy. We are going
to prove that under the assumptions in Theorem 1.5 the collection $ satisfies a packing condition,
i.e., that m is a discrete Carleson measure, provided that ¢ is small enough.

Proposition 4.2. Under the assumptions of Theorem 1.5, there is co sufficiently small and My > 1,
such that if B = B(cy), its associated measure m, as above satisfies the packing condition

ma(DQ) 1 ’
43 olle = = B < M,.
(4.3) Imallc += sup =75 = = sup U(Q)Q@%CQO—(QR 1

The constants co and My depend only upon dimension, A, the 1-sided CAD constants,
IVAllc) and finally g and C in (1.4).

IVA| 5|

oo’

Assuming this result momentarily, we fix a cube Q € D(0Q2), and we seek to show that Qey
has a Corkscrew point relative to Q. Let Ag C Q denote the surface ball defined in (2.13)—(2.14).
Take Q1, a sub-cube of Q of maximal size contained in Ap, and observe that £(Q1) > cf(Q). We
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claim that there exists Q" € Dy, \ B such that £(Q") > 2-IMil £(Qy) (here [M] is the biggest integer
smaller than or equal to M). Otherwise, by (4.3) (applied to Q1)

(M;]
(M1+Do@)=), >  o@=< Y. @ <MoQ)
k=0 Q€eDy, QeB: 0cO

€Q)=27%£(Q1)

which readily leads to a contradiction. Hence there is Q" € Dy, \ B such that £(Q’) > 27 IMilp(0y) >
c27Mil ¢(Q). Since Q’ enjoys the co-exterior Corkscrew condition, so does Q, but with ¢ replaced
by cy=coc 2-IMil On the other hand, every surface ball contains a cube of comparable diameter,
this means that there is an exterior Corkscrew point relative to every surface ball on the boundary,
and therefore Q is NTA, and hence chord-arc. This completes the proof of Theorem 1.5 modulo
Proposition 4.2.

To prove Proposition 4.2 we are going to use Lemma 3.12 with Q° = Q. Fix Qg € Dgo =D, an
arbitrary dyadic cube, and our goal is to obtain (3.14) for some pairwise disjoint family Fo, C Do, \
{Qo} for which (3.13) holds. We note that it suffices to consider the case £(Qg) < diam(dQ)/M, with
My large enough (depending only on the allowable parameters). In fact, assuming this, in order to
prove the case diam(0Q)/My < €(Qp) < diam(0Q) (of course this is meaningful only if diam(0Q) <
o), we cover Qg by disjoint cubes {Q’(j}k with diam(0Q)/(2 My) < €(Q’6) < diam(0Q)/M. For each
Q’(‘), by the previous case one can find TQg so that (3.13) and (3.14) hold with Q’(‘) in place of Qy.
Note that if we set Fg, = UkTQ(k) we automatically have (3.13) and moreover

Ma(Drg,00) < D ey o)+ >, Q)
k 0 QeDg,NB
€(Q)>diam(8Q)/My
<My Y o (Qf) + Cay 0(Qo) < (My + Cayy) 7(Q0)-
k
Thus, we have proved that for every Qp € D, (3.14) holds for some pairwise disjoint family # C
Do, \ {Qo} satisfying (3.13). Hence Lemma 3.12 yields (4.3) with some constant M/ and hence the
proof of Proposition 4.2 would be complete.

In view of the previous observation we fix Qg € D such that £(Qg) < diam(0Q)/My. We choose
M, so that if we set Xp = X ViTyAg, ON€ has that 2 kg rg, < 6(Xo) < VMo rg,, where we recall that
ko was chosen (depending only on the allowable parameters) so that (2.22) holds. In such a case,
dist(Xo, T () = ko ro,, hence the pole X, will be away from where the argument takes place. By
Lemma 2.23 and Harnack’s inequality there is Cyp > 1 depending on the allowable parameters and
My such that a))L(O(Qo) > Cy . We now normalize the elliptic measure and the Green function as
follows

(4.4) w := Co(Qo) w)’ and G() := Co0(Qo) GL(Xo, ).

Note that away from Xy, LTG(-) = Coo(Qo)L"Gr(Xp, -) = Coo(Qo)L"G(-,Xp) = 0 (see
Lemma 2.25). Moreover by our choice of Xy, Lemmas 2.32 and 2.34, (2.13), and (2.14) it fol-
lows that

6Xp) _w(Q)

4.5) ~ , Y0 e€Dy,.
(o) “o) CcPe

On the other hand, since wf“ 00Q) <1,

(4.6) 1<) e

— (Qo)



16 STEVE HOFMANN, JOSE MARIA MARTELL, AND TATIANA TORO

By assumption, w < o, and if kK = dw/do denotes the normalized Poisson kernel it follows that,
for My is large enough, (1.4), (2.13), and (2.14) yield

<][ k(y) d(f(y)> L <ty = Ko,
Qo

where C is the constant in (1.4). As a consequence of that, (4.6) and Holder’s inequality one can
derive

4.7) ( a(F)

wlF) =][ 1) k() dor(y) < Ko ) VF C Q.
Q0 Jo, (Q0)

Hence we can apply Lemma 3.5 to 4 = w and obtain a pairwise disjoint family Fo, = {Q;}; C
Dg, \ {Qo} verifying (3.7) and (3.8). Thus, as observed before (see Lemma 3.12) we wish to find
M independent of Qg such that

(4.8) Mo, 00) < Mi 7(Qo).

Hence, in what follows Qg € D and ¥y, is a pairwise disjoint family Fo, = {Q;}; C Dg, \ {Qo}
verifying (3.7) and

4.9) 1 D
2 00
which is (3.8) with u = w (see (4.4)).
Let us now fix Q € Dy, o, N B and a point z9 € Ag C Q. Set B := B(zg, r/4), with r :=rg ~
€(Q), and A := BN 3Q. Take ® € CF(B), with 0 < ® < 1, ® = 1 on 3B, and ||[VD|ls < '
Let 0 < € <« 1 to be chosen and setﬁ = |UQ,E|‘1 foQE AT(Y)VG(Y)dY. Recall that (see Section
2.3) Uge = Qe t(0)).0 Where Fo = @ and hence %(é £(Q)) is the collection of Q’ € D such that
€l(Q)/2 < £(Q") < €£(Q). In particular, Q € D%(EK(Q)),Q and (2.22) yields int(UQ) CUgeCTpcC
Bp. Notice that Wy, # @ and hence there is I € W, such that I C int(Ug) with €(Q) ~ (1)
and consequently |Ug (| = Loy, Keeping in mind the normalization (4.4), our choice of X( and
(2.30), we have that L™G = 0 in the weak sense in T, Thus, Caccioppoli’s inequality, Harnack’s
inequality and (4.5) yield that for every I € Wy, 0" € Dy C Dy,

<KoKi,  VQeDg, 0

GXA)
@.10) [ wemiar < nED < a0y 60xor ~ 1@ wt@),
and hence
@i Bisaor [[ wemnarsaerv S S [[ wemnar
To 0'eDg Iewy, VI
N ©
(ORDPra wQ) s T <1,
2 Q%;)Q 70

“«oH=2"*1Q)
where we have used that ‘W, has uniformly bounded cardinality and the last estimate follows from
(4.9) since Q € ngo,QO.
We next use Lemma 2.34, (2.31), and (2.30) (keeping in mind (4.4), (4.9) and moving slightly
the pole Xj if needed)

4.12)
o(0) ~ w(Q) ~ / Odw = — f f AT(X) VG(X) - VO(X) dX
Q Q

[7)
=—ff (AT(X)VQ(X)—E)-VGD(X)dx—f E-V@(X)dX+f B VO(X)dx
Q

R+l Qext
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=—ff (AT VG(X) —E)-VcD(X)dX+f B-VO(X)dX
Q

Qexl
= —JT+717.

We first estimate 77. By [HM1, Lemma 5.7], the failure of the cy-exterior Corkscrew property
implies that |Qey N B| < co #**!. This and (4.11) give

(4.13) 177 < Bl " Qe N Bl S o7 = coo(Q).

To estimate 7 we proceed as follows.

(4.14) 17 < r! ff |AT(X)VG(X) - | dx
QNB

<! (ff IAT(X)VG(X) - B dX + ff AT(X) VG(X) - B dx)
Uoe (Q\Ug)NB
= (T +1>).

For 7| we use Holder’s inequality, our choice of ﬁ Lemma 3.1 and the fact that 5(X) =, €(Q) for
every X € Uge:

(4.15)
nsa ([[ araoven -glax)’ <@ ([ v venpax)
Upe Upe

1
2

< C.ro(Q)? ( f fU VAT VeI 5(X)azx>i = C.ro(Q)? ‘r%,s.
Q.

Before estimating 7, we need to make the following observation. Let I € ‘W be such that
I N B # @ and pick Y € I* N B. In particular,
T Q) - dlam([)Q)‘
4 4 4M,
Recall the construction of Qj, the unique dyadic cube satisfying that z € Q7 and £(Q7) = (),

where z € 0Q is such that dist(/, Q) = dist(/,z). We claim that Q; C Q. To show this let us take
Z € I such that dist(/, 0Q) = |Z — z|. Then

4 diam(/) < dist(1,0Q) < |Y — zg| <

lz—xol <lz=Z|+|Z = Y|+ Y =zl + lzg — xg| < dist({, 0Q) + diam(I") + % +r<2r

This implies that z € A(xg,2r) C Q (cf. (2.13)) and since £(Q;) = {(I) < £(Q) it follows that
Q; C Q by the dyadic properties.

We are now ready to estimate 7,. We first see that by choice of B we have that BN Q C Tp.
Indeed, let Y € BN Q and take I € W so that Y € 1. Note that by the previous observation Q7 C Q.
Note also that, as mentioned above, our construction guarantees that / € ‘W*;. All these yield
Yelcin(I*) cin(Ug;) C Tg.

Once we have shown that BN Q C T one can easily see that (Q\ Up)NB CTp\Upe C Z¢ :=
{XeQ:6(X) < el(Q)}. Therefore, if € is small enough,

(4.16) IzsﬁllBﬂZE|+ff IVGldX < e l(Q)" + I3 ~reo(Q) + I3,
BNX.

where we have used (4.11) and [HM1, Lemma 5.3]. To estimate /3, we use again the cubes Q; as
above associated with / € ‘W with I* N B # @. As already mentioned in such an scenario, Qj € Q
and [ € ‘W*Q;. We can then invoke (4.10) to obtain
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s > [ wewiaxs > wehaen= Y 2t S wop.
few:rngzo VYT [eW:I" \B%0 k2kseeQ)  I€W:INB0
UD<et(Q) thH<e t(Q) o(n=27*

Notice that for k fixed, the family {Q7};cy.¢()=2-« has bounded overlap, hence
(4.17) I3sw@Q Y 2*5elQw(Q) s era(Q),

k2% <e £(Q)

where the last estimate follows again from (4.9) since Q € DTQO,QO- Plugging (4.13), (4.14), (4.15),
(4.16) and (4.17) into (4.12) we conclude that

7(0) $ co(Q) + Ceor(Q)F Y, + € (Q).

If € and ¢ are taken small enough (we may assume for later use that € = 27Ne for some N, € N
large enough) the first and third term in the right hand side can be hidden and one easily arrives at

418) 0(Q) Seey Yo = f fU V(AT VE)(X)P 5(X) dX
Q.

< > f fU ) VATVOXP s dx = > Tg.

Q'eDy Q'eDg
€ L(Q)<UQN=UQ) € l(Q)<U0N=<Q)

Hence, it has been shown that for a choice of € and cg small enough, the previous estimate holds
forall Q € DTQO,QO N B(cp). This in turn gives

419) my@ry0)= >, 0D Seq D, Yo Tose Y. Yo

Q€Dy,, 0,NB(co) 0€Dsy 0 Q'eDg QeDge 4
R " e w)<00)<0) 0%

where ¥, is the pairwise disjoint family of Ne-descendants (recall that € = 27Ney of the elements
of Fg,:

75 = |J {Q €Dg: @) =260 =et(Q)}.

0<Fo,
We next claim that
w(Q)
(4.20) @ ~e 1, VQe Dféo,Qo’

that is, both estimates in (4.9) can be transmitted from D¢, o, to D«}‘éo’Qo, albeit with bounds that
may depend on e. To obtain that, fix Q € DT&O’QO. By (4.9), we may assume that Q ¢ Dy, ¢,. This
means that there is Q1 € g, C Dy, such that Q C Qy. Since Q; splits into its N-descendants, we
can find Q) € F such that 01 N Q # @ and €(Q}) = €£(Q1). In turn, since Q € DTQEO,QO’ it then
follows that Q] € Q C Q;. We use this, the AR property, the doubling property of w (Lemma 2.34)
and (4.9) (which holds for the dyadic parent of Q,, denoted by Ql, since Q1 € Fo, C Dg, \ {Qo})

W@  w@)
(@) o(Q))

This shows our claim.

Seta := {&Q}QEDQO with

Yo, if Q€Dge o,
421 do = { € a2

0, otherwise.
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and associate to @ the discrete measure g as in (3.10). Then, we may immediately see that (4.8)
follows from (4.19) and

(4.22) mz(Do,) Se 0(Qo).

Our goal is then to obtain (4.22) and in order to do that we shall distinguish between two cases
depending whether or not A is symmetric. The main idea is that when A is symmetric, in the
expression Y g we can replace 6(X) by G(X) for every X € Uy and for every Q € Dféo»QO' Doing

this, (4.22) will be obtained by an integration by parts argument. In the non-symmetric case, for
the integration by parts to work, we would need to do the same thing but rather than G (which is
essentially G7(Xo, -), hence a null solution for LT, cf. (4.4)), we would need to work with essentially
G17(Xo, ), hence a null solution for L. The latter would require to perform the stopping time in
Lemma 3.5 with wfﬁ. However, it is not clear that one can apply Lemma 3.5 simultaneously to a))L("

and a))L(Q and obtain a family of cubes whose complement is still ample. We are going to overcome

this by another use of Lemma 3.12, hence we will work in Q € Dy, and apply Lemma 3.5 to a)
with X being effectively a corkscrew point relative to Qo

4.1. The symmetric case. In this section we assume that A is symmetric.
We start observing that for every Q € DféO’QO and every X € Ugp we have that 6(X) ~ G(X) for

every X € Ugp in view of Harnack’s inequality, (4.5) and (4.20). This and the definitions of the sets
{U Q}QEDQO and Q% 0o (see Section 2.3) yield

423) Do)=Y Tose Y f f VAVGXP GX)dX

Q€D¢s .00 Q€D7_—e .00

<[[ [vaveworsax

We next take an arbitrary N large enough and define Fy := F, (2 N f(Qo)) as in Section 2.3.
That is, ¥y C Dy, is the family of maximal cubes of the collection ¥ augmented by adding

all dyadic cubes of size smaller than or equal than 2=V £(Qp). In particular, Q € Dgy .0, if and
only if Q € ]D¢e 0, and €(Q) > 27N €(Qy). Clearly, Dg, o, C Dg,,.0, if N < N’ and therefore

Qr.. 00 C Q;‘, 0 C Q* 0,- This and the monotone convergence theorem give that
(4.24) ff ‘V(A VGO X)I* G(X)dX = hm ff ‘V(A V3 (X)I? G(X) dX.

We now formulate an auxiliary result that will easily lead us to the desired estimate. We note that
the following proposition was previously announced, with a sketch of the proof, in [ABHM]. In the
sequel, we shall present the full details, and treat also the non-symmetric case (see Proposition 4.36
below).

Proposition 4.25. Assuming that A is symmetric and given C1 > 1, one can find C depending on
C1 and the allowable parameters such that if ¥n C Dg,, N > 1, is a family of pairwise disjoint
dyadic cubes satisfying

(4.26) Crl < ZES; <C;  and  UQ)>2V€Qy), VYQeDgo,,
then
4.27) f f VA VEXP GX) dX < C o (Qo).

TN Q
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Assuming this result momentarily we see that (4.20) and the construction of Fy give (4.26).
Thus (4.22) follows from (4.23), (4.24), and (4.27). This completes the proof of Proposition 4.2
when A is symmetric, modulo obtaining the just stated proposition.

Proof of Proposition 4.25 for the Laplacian. The case when L is the Laplacian (that is, A is the
identity matrix and hence (a), (b), and (c) of Hypothesis 1.1 are trivial) is rather simple and models
the general case. To fix ideas, we first present this simple case.

Suppose for now that L is the Laplacian. We first observe that

X -
(4.28) SX)IVZG(X)|, IVG(X)| < g((X)) ~ 1, VX eQp 5 = Qy,
albeit with bounds that depend on C; and the allowable parameters but which are uniform in N.
To see the “<” we use the harmonicity of G, VG and V?@; interior estimates, and Caccioppoli’s
inequality (we recall that we chose X so that it is away from Téo and also that 27V £(Qp) < 6(X) <
£(Qo) for every X € Q,). The proof “~” is as follows: given X € Q,, there is Q € Dg, o, and
I € Wy such that X € I"*. Note that 6(X) ~ 6(Xg) ~ €(I) = €(Q) and |X — Xo| < {(Q). This,
Harnack’s inequality, (4.5), and (4.26) yield as desired

6X) _GXp) W@ _,

oX) Q) Q)

We now proceed to obtain (4.27) with A being the identity matrix. Write “0” to denote a fixed

generic derivative. We use that G and dG are harmonic in Q, to see that in that set the following
pointwise equalities hold

divV((66)%) = 2 div [(06) V(8G)] = 2IV(6)I*

and
[divV((06)*)] G = div [V((06)*) G] - V((88)*) - VG = div [V((06)*) G - (06)*VG] .

Note that Q, is a finite union of fattened Whitney boxes, thus, its (outward) unit normal v is well
defined a.e. on 9Q*. Hence the divergence theorem can be applied to obtain

@) 2 [[Ivegorgaoax = [ (v(@67) 6 - @67 v6) - var
Q*

0Q*

< / (IV’GIIVGIG +IVGF) dH" < H"(0Q*) < £(Q0)" ~ o(Qo),
O+
where we have used (4.28), that 9Q, is AR (cf. [HM1, Lemma 3.61]) and finally that diam(0Q,) =
€(Qo) (note that all bounds are independent of N). From (4.29), we immediately obtain (4.27) in
the case of the Laplacian. O

Looking at the previous argument the matrix A being non-constant (for both the symmetric and
non-symmetric cases) raises several issues. The first one appears in (4.28): the “~” is still correct
but one does not expect to have the “<” for general matrices A since, as opposed to the constant
coeflicient case, we no longer have that 4G is a null solution of L. As we shall see below in Lemma
4.40, under the assumption that A satisfies (b) of Hypothesis 1.1, one can prove that the estimate for
VG in (4.28) holds pointwise and the estimate for V2@ holds in a L?-average sense via a Caccioppoli
type estimate for second derivatives of solutions. The second issue is that the presence of A in (4.27)
makes the algebra significantly more difficult as one has to distributes derivatives and some of them
hit A. Finally, because the estimates for V>G hold in an average sense, we cannot integrate by parts
as in (4.29). We will solve this by producing some wiggling after incorporating a smooth cut-off of
the domain (see Lemma 4.44) which will have the effect of replacing integrals on the boundary by
“solid” integrals in a “strip” along the boundary.
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Proof of Proposition 4.25. We just need to invoke Proposition 4.36 below with Qy = Qo since
(4.37) follows at once from (4.26). Further details are left to the interested reader. |

4.2. The non-symmetric case. As explained above in the non-symmetric case we are going to
need to use again Lemma 3.12. Recall that our goal is to show (4.22). Applying Lemma 3.12 with
0 = Qo, it suffices to take an arbitrary Qo € Dy, and show that there exists a pairwise disjoint

family 7'" {Q]} C D \ {Qo} such that

@30 o(0\ | 0)2K'o@) ad  me®p g) < Moo
Q,-e?T‘QvO 0
In order to obtain this we note that 5(@0) < £(Qo) < diam(9Q)/Mj and set )N(o =X NN Recall
. 0
that by choice of M we have that 2 g 5, S 0(Xp) < VM, "5y where xy was chosen (depending
only on the allowable parameters) so that (2 22) holds. In such a case, dlSt(X(), T* ) 2Korg hence

the pole Xo will be away from where the argument takes place. By applylng Lemma 2.23 and

Harnack’s inequality we have wf$(éo) > 56 ! with 50 depending on the allowable parameters and
Mj. We now take a normalization of the elliptic measure and the Green function for L':

4.31) wr:=Coo(Q)wy  and  Gr() = Coa(Q0) Grr(Xo, -).

As before LG+ = 0 away from )~(0, and by our choice of fo, Lemmas 2.32 and 2.34, (2.13), and

(2.14) it follows that

G+(Xp) ~ wt(Q)
oo a(Q)’

Since a) (6(2) < 1, it follows that 1 < a)T(Qo)/O'(Q()) < Co This and the fact that w;+ (and
hence a)T) is in A (0Q) allow us to invoke much as before Lemma 3.5 with y = w to extract a

family of pairwise disjoint cubes 7" {Q il C D \ {Qo} such that

wr(Q)
ﬂQ)NL VQEDFQO

(4.32) VQeDyg

433 (e U éj)z(r(éo) and

Q[€T~

with implicit constants depending on Co and the A(8Q) character of w;-. Consequently, in view
of the previous considerations and Lemma 3.12, it remains to show ma(DT Q ) < M 1 o'(Qo)

Note first that if Qp ¢ DTéo,Qo then ag = O forevery Q € D , hence the des1red estimate follows
trivially since ma(}Df~ Qo) = 0. Thus we may assume that Qo € DT@),QO- Write ¥ to denote the
0y’

collection of maximal cubes in (F5 N Dy ) U 7?@0 so that Dygs 0, N D%O’ 5, = Dy, 5,- Hence,
@434 wa@z g)= >, Go= >, To
QeD¢Q 3o QeD¢5 0o D5 Bo
Z f f VAT VOO 5(X) dX < f f VAT VOXP G+(X) dX.
QED Fx.Q 0

Note that in the last estimate we have used that the sets {U Q}Qe%o have bounded overlap and that
Harnack’s inequality, (4.32) and the second estimate in (4.33) yield

G+(X)  Gr(Xo) _wt(Q)

X)) T UQ) Q)

~ 1, YXelUyp, VQEe€ D%ao,éo'
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As we did in the symmetric case we take N large enough and define ¥y = ¥ (2’N €(§0)) as
in Section 2.3 so that Q € IDgr ~ if and only if Q0 € D?’*,Qo and £(Q) > 27N €(Qp). Clearly,

.00
D C ]D ~ 1f N < N’ and therefore Q* c Q" - cQ* .. This and the monotone
convergence theorem give that

Fv.Qo FnrQ0 Dy, .00
ass) [ maTvePgax = im ([ [vaTve00f G-nax
Fx-00 Fn-0o
We can now state the analog of Proposition 4.25 in this non-symmetric case.

Proposition 4.36. Given C| > 1, one can find C depending on C| and the allowable parameters
such that if Fy c D oo N = 1, is a family of pairwise disjoint dyadic cubes satisfying

(4.37) il < “’Eg <Ci, crl < (TT((QQ)) < and  €Q) > 27N ¢(Qy),
forall Q € qu Oy then
(4.38) f f V(AT VG)X)P G+ (X)dX < C (D).

Fn-0o

Assuming this result momentarily, we note that (4.37) follows from (4.20), the second item in
(4.33) and the construcgon of ¥. Consequently, (4.38), (4.34), and (4.35) allow us to conclude
that 111a(1D)7,;~ Qo) < 0(Qop). As observed above, this was the only thing left to obtain (4.22) in the

Qy’

non-symmetric case and the proof of our main result is eventually complete.

Before starting the proof of Proposition 4.36 we need some auxiliary results, whose proofs are
postponed until the next section.

Lemma 4.39. Let Q be an open set and let A be a uniformly elliptic matrix in Q. Given K > 0,
there exists Cg depending only on ellipticity and K such that if
(4.40) sup [VA(X)|6(X) < K,
XeQ
then the following hold:

(i) Foreveryu € WIIO’CZ(Q) , u >0, verifying Lu = 0 in Q in the weak-sense,

(4.41) Vu(X)| < Ck Zgg, VXeQ.

(ii) Given any cube I c R™! if6I c Qandu e W1’2(6I) satisfies Lu = 0 in 61 in the weak-sense,

2 2 2
(4.42) f IV u(Y)|*dy < 5(1)2 f IVu(Y)I” dY.

Proof of Proposition 4.36. Write Q, = Q** & . Let us first prove that

Fn:Q0

GXx) Gr(X)
4.43 VX)) s == =1, VG+(X)| <
(4.43) IVG(X)| < 500 IVG+(X)| 50X)
albeit with bounds that depend on C; and the allowable parameters but which are uniform in N.
What |VG| < G/6 (respectively |[VG+| < G+/9) follows from Lemma 4.39 applied to u = G (resp.

u = G1) where the implicit constant depends on ellipticity and HlVAI o Hoo To justify the use of that

~ 1, VXeQ,,

lemma we first notice that (4.40) is just our assumption (b). Also, we recall we chose Xy and )N(o o)
that they are away from T’fQ* (indeed Xy is away from T > Ti‘Qf(‘)). Hence LG =0and LG =0
0

in the weak sense in TS" (cf. Lemma 2.25). Finally we observe that 2=V K(éo) < 6(X) S E(éo) for
- 0
every X € Q,
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To continue with the proof of (4.43) let X € Q,. Then there is Q € Dy .o and ] € W* such that
X € I'™". Note that §(X) =~ 6(Xp) = €(I) = £(Q) and |X — Xp| < €(Q). ThlS Harnack’s 1nequahty,
(4.5), (4.32), that Qo € Dg, and (4.37) yield as desired
G _GXg) 0@ _,  GrX) _Gr(Xo) wr(@
Xy U@  o(@ 6(X) {(Q) a(Q)
We now proceed to obtain (4.38). We note that by the boundedness of A,

[ Ivamvecorgruax

.00

o [[ macrveor 600 ax

7n-Q0

+ f f IV2G X)) G+(X)dX = T +IT.
Fn-Qo

The estimate for J is easy. Use (4.43) and (2.22) to conclude as desired

I's f f IVACOR 606 dX < |18 1 I A o (85) = 9418 1 IV A 07D
N

where the implicit constants are clearly independent of N.

To estimate 77 we need the following auxiliary lemma whose proof will be postponed until the
next the section.
Lemma 4.44. There exists ¥y € Cy° (R™1Y such that

(i) lor . SYn<lo~ _
FN-Qo FN-Q0

(i) Supyeq IVENX)|6(X) < 1.
(iii) SetX = GQ(FN@O,
445) Wy:= | W, Wyi={IeWy:ITe W\ Wy with dINdJ+0}.
QeDfN’QO
Then
(4.46) V¥y =0 in U r and > e < o (Qo).
IeWN\WS IeWs,

with implicit constants depending on the allowable parameters but uniform in N.

Now we are ready to estimate J 7. Using the previous lemma we have

n+1

175 ([ wewor gT<X>TN<X>dX<Z [ meg00r 6ro0wnen ax

Write “9” to denote a fixed generic derivative. The following observations will be used several
times in the proof. Observe that Lemma 4.39 and (4.43) give that G, G+,VG.VG+ € wh2(Q,) N
L®(€Q,). Observe also that ¥y is supported in Q,, thus G G+ ¥y € Wé’z(Q*). Hence we can find
{Gihe € CF(Qy) such that Gy — G G+ Py in W(Q,). Note also that [VA| € L¥(Q,) < oo by
our assumption (a). These observations will, in particular, justify that all the integrals below are
absolutely convergent.

We can now return to our task of estimating 7 7. By ellipticity and using (-, -) to denote the inner
product on L>(R™*!) it follows that
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Fy = fjl; . IVOGX)I* G+(X) ¥n(X) dX <p (ATV(0G), V(IG) Gr¥n)

1 ~ 1~
= (ATV(06), V(06 G=Pw)) = 5 (ATV(06)°), V(Gr¥n)) =: 1 = S IT.

To estimate 7 we write
T = (0ATVG), V(G G+¥N)) - (9ATVG, V(3G G-¥N)) =: I| — I>.
Controlling 7 1 it is not difficult as the previous observations along with (4.43) give
7y = lim (0ATVG). VGy) =: lim T,
On the other hand
Tix= f fR 0(ATVG - VGL) dX - (ATVG, YOG = Tii — Tia

Note that ATVG - VG, € W"2(Q,) and is supported in Q. Hence 7 1x1 = 0 by the divergence
theorem. Also, 714, = 0 since LTG = 0 in the weak-sense in Q, (cf. (4.4) and Lemma 2.25) and
0Gk € Cy(Q4). Therefore 71 = 0 and consequently 7| = 0.

We next estimate 75:
I, = (0ATVG, V(0G) Gr¥n ) +(0ATVG, VGG ¥ ) +(0ATVG, V¥ 3G G~) =: Ta1+1an+ 1.
Note that by (4.43), Lemma 4.44 and (2.22)

ol s [[ wAIVGPIVG-ewax < [[ walX < IWAloe o3 < VAl oG
)

where we have used hypothesis (c). Also by (4.43), Lemma 4.44 and (2.22), and Young’s inequality
we have

Tl < f f VAIIV@G)| Gr W dX
Rn+

( f f VAP G+ \PNdX)Z ( f f V@GP G ‘PNdX)2
R’”l n+l

2
1
f f IVAPs()dX | F3
%

1 1 1
IA16] 7. VAl ) (A5 )2 Fiy

A

A

A

~ 1
< Co(Qop) + 3 Fy.

Note that C depends on the 1-sided CAD constants, ellipticity,
in the statement of Proposition 4.36. Analogously,

VPSR ﬂ 1 [VA[[V¥NI6() dX < ﬂ IVA|dX < [IVAllei) o(Qo),
n+ T
2

IVAIS|| o > IVAllc(@) and Ci fixed

Collecting the estimates we have obtained we conclude that

T =T 7 £ = ~ 1
|Z] = |Z2| < [L21| + [L22| + |1 23] SCO‘(Q())—f—EFN.

We next estimate 77 :

IT = (ATV((06)?), VG-¥N) + (ATV((0G)?), V¥N G ) =: I T, + I1».
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For 77, we proceed as before, use (4.43), Lemma 4.44, (4.42), Caccioppoli’s and Harnack’s in-
equalities to obtain

1ol 5 f f IVPGIVENS(AX s ) f f V’GldX < ) '{I(';) < f fz . |vg|2dx)2

IeWs IeWs

Ik 1 G(xXm) .
2 <ff o dx) P OO Z (" s o(Qo.

IeWs, IeW W

Let us turn our attention to 7.7 : 1
1T, = (AVG,V((06)*)¥y) = (AVG+.V((0G)* ¥n)) - (AVG, V¥y (0G)*) =: I 11, - IT1,.

Notice that 77 1 = 0 since LGt in the weak sense in Q, (cf. (4.31) and Lemma 2.25) and
(0G)* Py € Wé’Z(Q*). Hence, another use of (4.43) and Lemma 4.44 produce

TT0 =110l s [[ | 19GRNGHITeyIax < > f [ spaxs ¥ wr s o,
leWy

Putting things together
LI < [I1H| + |1 12] s 0(Qo).

To conclude the proof we collect the obtained estimates
~ 1= ~ 1 = ~ 1
OSFN:I—EIIS |I|+§|II| SCO—(QO)"'EFN-

Here all the constants are uniform in N. Since Fly is finite by (4.43), Lemma 4.39 and the fact that
supp Py € Q, C Q we obtain

Fy 5 0(Q0)
which readily yields (4.38) with C depending on the 1-sided CAD constants, ellipticity, C; fixed in
and ||VA||C(Q). O

4.3. Proofs of Lemmas 4.39 and 4.44. In order to get the appropriate scale-invariant estimates in
Lemma 4.39 we first present the case of the unit cube and then extend it to Q by translation and
rescaling.

Lemma 4.47. Let Iy := (—%, %)"“ c R™! and let A € Lip(ly) be a uniformly elliptic matrix
in Iy. Given K > 0 there exists Cg depending only on dimension, ellipticity and K such that if
IVA|lL=,) < K, then for every u € WL2(Io) N L®(1y), u > 0, such that Lu = 0 in the weak-sense in
Iy we have

(4.48) Sup [Vu(X)| < Cx inf w(X).

Xed Iy Xellp

and

(4.49) [[| wueopax<cx ([ wuopax
il 3o

Proof. To prove (4.48) we invoke [GW, Lemma 3.1] in the open bounded domain % Iy and there
exist Cx depending on n, ellipticity and K such that

sup [Vu(X)| dist (X,0(31)) < Cx sup u(X).
Xell Xeilo

This and Harnack’s inequality give at once (4.48).
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We next prove (4.49). Let us first observe that since A is Lipschitz in Iy, and u € W'2(Iy)
satisfies Lu = 0 in the weak-sense in Iy, it follows that u € Wz,z(% Ip) by [GT, Theorem 8.8]. With
this in hand we are going to use a Caccioppoli type argument. Let ¢ € Cg (R™1) be a smooth
cut-off of A%Io, that is, 1 v << 1% I with ||[Vgl||z» < Cp. Write “0” to denote a fixed generic

derivative and observe that since u € W“(% Iy) it follows that du <p2 € Wé’2(% Iy). Hence there
exists {uhy C Cy (% Ip) such that u; — du g02 in Wl’z(% Ip). If we write A for the ellipticity constant
of A, we then have

1= f f V@WX)P p(X)? dX < A f f AX) V(@u)(X) - V(@) (X) ¢(X)? dX
R"*l le

- A( f fR ACO V@) - [V (0ug?) (X) = 296(X) (Gu)(X) ¢(0)] dX) — AT, -21»).
For 7, we observe that by the Cauchy-Schwarz inequality
ITs| = ( f L ACO V@) - TE(X) (Gu)(X) 9(X) dx‘ <ACyI? ( f ﬁ . IVu(X)2 dx) :
For 7| we use the sequence {u}; introduced above and note that 2

Ik = f f AX) V(Ou)(X) - Vug(X) dX
Rn+1

= ff (A Vu - Vur)(X) dX ~ ff AX) Vu(X) - V(@ur)(X) dX
R+l n+l
- ff AAX) Vu(X) - Vur(X) dX
R+l
- _ f AX) Vu(X) - Vur(X) dX.
Rn+]

Here we have used that since {u;} C Cg’( % Ip) both terms in the second line vanish. In fact the first
term is the integral of a derivative of a WH2(R™*!) compactly supported function, and the second
term because Lu = 0 in Iy in the weak sense and duy € C (% Iy). To continue with our estimate we
observe that by Cauchy-Schwarz

171l = | Jim %] = ’fﬂw GACO) Vu(X) - ¥ (9 ) (X) dX|

< IVAllz= o) <ffRM IVuCONV (@) (X)| 9(X)? dX +2 ffl IVuCOP V()] ¢(X) dX)

1
< VA=) (I%( f ﬁ |Vu(X)|2dX)2+2C0 f f |Vu(X)|2dX>.
2o 210

Collecting all the obtained estimates we conclude that

1
T < A (IIVAllz=qp) +2 CoA) I%( f ﬁ |Vu(X)|2dX) " +2ACoIVAIlL~ai f ﬁ IVu(X)P dX.
>1lo 20

From here we can use Young’s inequality with epsilon in the first term on the right hand side, hide
I (which is finite since u € Wz,z(% Ip)) and the desired estimates follows easily. O
Proof of Lemma 4.39. This result follows easily from Lemma 4.47. For (i), first u € L5 (Q) by
interior regularity. We take J, any Whitney cube in Q, and translate and rescale 2 J so that it
becomes Ij. Note that (4.40) translates into the boundedness of the gradient of the corresponding
matrix in Lemma 4.47 (up to some dimensional constants). Hence (4.48) and Harnack’s inequality
give as desired (4.41).
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The proof of (4.42) follows easily from (4.49) by rescaling and translation, again interior regu-
larity gives that u € L;> (61). Details are left to the reader. O

loc

Proof of Lemma 4.44. We recall that given /, any closed dyadic cube in R™! we set I'* = (1+2 )]
and I = (1 + 4 A)I. Let us introduce 7** = (1 + 3 2)I so that

(4.50) I** Cint(I*) C I** C int(I**).

Given Iy := [, 51" ¢ R™!, fix o € CF(R™") such that 1, < ¢ < 1= and [V4o| < 1
(the implicit constant will depend on the parameter 1). For every I € W = W(Q) we set ¢;(-) =
¢0( ';gg”) so that ¢; € CO(R™), 1+ < ¢; < I and [V¢y| < £(D)~" (with implicit constant
depending only on n and A).

For every X € Q, we let O(X) := )4y ¢1(X). It then follows that ® € C}5.(Q) since for every
compact subset of Q the previous sum has finitely many non-vanishing terms. Also, 1 < ®(X) 5 C,

for every X € Q since the family {F }1ew has bounded overlap by our choice of 4. Hence we can
set ®; = ¢;/® and one can easily see that ®; € C° (R, (o5 N <@ < < 1y and [VO,| < 6(I)” I
With this in hand and by recalling the definition of ‘W in (4 45) we set

quy ¢1(X)
Py(X) = OX)=—2X . XeQ.
,;;N 2 4%

We first note that the number of terms in the sum defining Wy is bounded depending on N. Indeed,
ifQeDg 5 then Qe D~ and 27 NK(QO) < Q) < f(Qo) which implies that Dgt 0o has finite
cardmahty Wlth bounds dependmg only on the AR property and N. Also, by construction W, has
cardinality depending only in the allowable parameters. Hence, #Wy < Cy < oo. This and the fact
that each ®; € C° (R"™1) yield that ¥y € cy (R™1). Note also that (4.50) and the definition of Wy
in (4.45) give

supp¥; C UF: U Ufﬁcint( U UI***)zint( U U*Q*> Q;:NQO

IeWy QeID)TN@O IGW"Q QEDTN,QO IEW*Q QEDTN@)
This, the fact that Wy c ‘W and the definition of ¥ immediately gives that ¥y < IQ _ . On the

other hand if X € Q* ~ then the exists / € Wy such that X € I** in which case lPN(X) > d)I(X) >
C/{l. This completes the proof of (7).
To obtain (ii) we note that for every X € Q

VN0 < D VDI s D> D™ 1500 6007
IeWy Iew

where we have used that if X € I** then 0(X) = €(I) and also that the family {F} 1ew has bounded
overlap.
Let us finally address (iii). Fix I € (WN\(WIZ\, and X € I, and set Wy :={J € W : ¢;(X) # 0}.

We first note that Wy c “Wy. Indeed, if ¢;(X) # O then X € J**. Hence X € I*** N J*** and our
choice of A gives that 9/ meets dJ, this in turn implies that J € Wy since I € Wy \ ’WIE\, All these
imply

> $s(X) > 9i(X) > 9i(X)

‘P (X) _ JeWy _ JeWnnWy _ JeWnnWy _
Y SeX Y a0 Y e
Jew JeWnWy JeWnnWy

Hence WYy/|,... = 1 forevery I € Wi\ "W%, This and the fact that ¥y € Cy (R immediately
give that VWy = 0'in Ujeqp s I
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To complete the proof we need to estimate the sum in (4.46). Recall that ¥ = 8(2; G, © Q and
N>

let I € (W%/ We claim that there exists Z; € Z such that dist(Z;, I) = £(I) = 6(Z;). To prove this
we first observe that int(/**) C Q* . c Qsince I € ‘Wy. On the other hand, I € (W,ZV implies
0

that there is J € ‘W \ Wy such that Il NdJ # @. In particular, X(J) € R Q* ~ (by our
choice of 1) where X(J) is the center of J. Then we can find Z; € X with Z; in the segment joining
X(J) and X(I). Note that dist(Z;, 1) < |Z; — X(I)| < |X(I) — X(J)| < €{) since I N dJ # @ implies
that £(I) ~ £(J) by the nature of the Whitney cubes. On the other hand since int(/**) C fo 8o
we have that Z; ¢ int(/**), thus dist(Z;, I) > €(I) (with implicit constant depending on A). Finally,
() = €(J) ~ 8(Zp).

One we have chosen Z; we let AT = B(Z;,8(Z;)/2) N X, which is a surface ball with respect to
the domain Q’; B centeredon Z; € ¥ = 89; B . Since 8Q ~ 1s AR (cf. [HM1, Lemma 3.61])

with bounds that do not depend on N, then it follows that

et > 6@yt~ Y HYAY.

IeWs IeWs IeWs,

We next see that the family {A?} Tew?, has bounded overlap. Indeed, suppose that A?l N Ai # (@ and
take Y in that intersection. Assume for instance that £(/;) < €(I). then,

1 3
6(212) < |Z12 - Yl + |Y - lel + 6(211) < 5 6(212) + E 5(Z11)
which implies that £(l2) ~ 6(Zy,) < 8(Z;,) = €(I1). Thus, £(I1) = {(I). Moreover,
dist(y, ) < dist(I1,Zy,) + |Zy, = Y| + |Y = Z,| + dist(l2, Z,) < €(1)) + €() = €(1h) = £(1).

By the properties of the Whitney cubes it then follows that the family {A¥} TeWs has bounded over-
lap. Thus,

~ z > _ * . * ~
S~ > Heh s (| AF) € H'®) = H'09;, 5) < diam@Q;, 5 )" < (00",
IeWs, IeWs, IeWs,

where we have used again that (')Q; 5 is AR and also that this set is bounded with diameter
N>¥20

controlled by £( Qo). This completes the proof of Lemma 4.44. O

APPENDIX A. THE A, PROPERTY IN LIPSCHITZ DOMAINS: THE KENIG-PIPHER ARGUMENT

The result of [KKiPT] allows for a slight condensation of the proof of the results of [KP], al-
beit with the very same ideas. For the reader’s convenience, we supply the shortened proof here
following the key part of [KP] essentially unchanged. To be precise, we shall prove the following.

Theorem B. ([KP]). Let Q c R™! be a Lipschitz domain, and suppose that L = —divAV is
an elliptic operator in Q satisfying Hypothesis 1.1, but with property (c) replaced by the weaker
condition (1.8). Then elliptic measure is absolutely continuous with respect to surface measure o on
0Q, and the Poisson kernel satisfies Hypothesis 1.3, with constants depending only on dimension,
the Lipschitz character of Q, and the constants in the modified version of Hypothesis 1.1 that we
assume here.

Sketch of Proof. Since the estimate to be proved, namely (1.4), is local, we may reduce matters to
working in a single co-ordinate patch, and thus we may suppose that Q = {(x,7) € R™! : t > p(x)},
where ¢ is a Lipschitz function. We may then further suppose that Q = R™*!, the upper half-space,
by pulling back under an appropriate mapping (see, e.g., [DKPV]) which preserves the class of



As IMPLIES NTA FOR A CLASS OF VARIABLE COEFFICIENT ELLIPTIC OPERATORS 29

coefficients satisfying the modified Hypothesis 1.1 (i.e., with property (c) replaced by (1.8)). By
[KKiPT], we may further reduce matters to proving the Carleson measure estimate

1 [l
(A.1) sup — / / \Vu(x, ) tdxdr < Cllull%,,
o 10l Jo Jo

for any bounded weak solution of the equation Lu = 0 in R"*!, and the supremum runs over all
cubes QO c R". At this point we follow the argument of [KP] essentially verbatim.

Fix u a bounded weak solution of the equation Lu = 0 in R**!. Note that by the preceding
reductions, A = (a;j)1<; j<n+1 satisfies the modified Hypothesis 1.1 in R’fl, with X = (x,1) €
R" x (0, ), and 6(x, t) = ¢. In particular, by property (b), which now becomes |[VA(x, 1)| < 1/t, we
have that |Vu(x, )| < ™" ||ulle, uniformly in x (see (4.41)).

Observe that if we set A’ := (an+ 1,n+1)_1A (note that ap+1 441 = A1>0 by ellipticity), then

1 1 1
Lu—V< )'AVMZ—V< >~AVu,
Ap+1,n+1 Ap+1,n+1 Ap+1,n+1

since Lu = 0;i.e., L'u+ B - Vu = 0, where B = (By, B>, ..., B,;+1), with

n+l 9 1
Bk=ZaX< >aj’k, 1<k<n+1,
i

= Ap+1,n+1

L'u=—-divA'Vu = —

and X,+1 = t. Then by our current assumptions on A, |B| < 1/, and IB|%tdxdt is a Carleson measure
in R+,

Thus, after relabeling A”, L’ as A, L, and normalizing so that ||u||l., < 1, we may suppose that
(A.2) Apsiper =1, Lu+B-Vu=0, llulloo + £l[Vu(, Dlleo < 1,

where L = —div AV, [B| < 1/¢, and |B*tdxdt is a Carleson measure.

Fix a cube Q c R", we define standard and two-sided Carleson boxes respectively, by
Rg :=0x(0,40Q), Ry = 0% (- UQ),U0Q).
Let ® = @y € CS"(R"“) be a smooth cut-off adapted to Ry, so that supp® C Ry, @ = 1 in Ry,
0<®<1,and||VD|l < 1/£(0).
Set
du(x,t) := [VA(x, ) tdxdt,  dv(x, 1) := B(x, 0| tdxdt,
and define their respective Carleson norms by

v(Rg)
(A.3) llulle == sup —=, IVlle := sup —=.
Hie =22 "l <= Tl

To prove the corresponding estimate in (A.1) for Q, it is routine to see that we can work with
uy, A, and B, in place of u, A and B, defined by u,(x,1) := u(x,t + 1), etc., and then let p — 0*
provided all our estimates are independent of 7. To simplify the presentation we abuse the notation
and use u, A and B to denote respectively u;,, A, and B,,. Notice that (A.2) remains true with bounds

uniform in 7, and also that u = u,, is continuous in RZ*!. We use ellipticity and then the second
equation in (A.2) to write

(A4)

f \Vul tdxdt < f f \Vul? © t dxdt
Rg R+

< f (AVu,Vu) ® t dxdt
]R:’_H
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f fR - (AVu,V(u®t)) dxdr - f fR - (AVu,V(®1)) udxdt

- ff B -Vuudrtdxdt — ff (AVu,V®) utdxdt — ff (AVu, e,1) u®dxdt
Hiﬁ+l H21+1 H{ﬁ+l

= -1 -1,-13,,
where e, denotes the standard unit basis vector in the positive ¢ direction.
We first treat term J». By the last item in (A.2), and the construction of @, we find that

1
|| < — f 1 dxdt < |Q].
22010 Jry,

Next, we consider term J 3, which we rewrite as
n
Iy = fo a1, j (Ou) u® dxdt + ff (du) u®dxdt =: 1T +I11,
n+1 n+l
o IR R

since we have reduced to the case that a,11 ,+1 = 1. Then, since u is continuous in R

1 1 1
1771 = f ('),(uz)(Ddxdt = —ﬂ ((')td)) uzdxdt—/ W ddx,
2 ]R1+1 2 Rﬁfl 2 R»

whence it follows that |[777| < |Q|, by the properties of @, and the normalization |[|u|lcc < 1. We
also have

I7 = Z ff ane1,j 0 (u*) ® dxdt
= _;;ﬂl;’rl 0; (ans1,;0;(u*) @) tdxdt
=-;fo i (ans1 ;) 9;(u? cptdxdz—foRm ans1,; 01 (0;(u?)) ©tdxdr
= I
_fo ans1,;0;(u?) (0,@) t dxdt

= _,Z (IIjy+II;+11;3),
j=1
where we have integrated by parts in ¢ in the second line. Exactly as for term 7,, we find that
|71 ;3] <10, for each j. Integrating by parts horizontally, we find that

Il = ff an+1] at( )@tdxdt—fLﬁ+l anﬂ,ja,(;,ﬂ) (Bj(D) tdxdt =: II;,z +II;{2.

Note that |71 ;le < |Q, for each j, exactly as for term 5.

It remains to treat the terms 11, 77 j;, and 71 ’-’2, for which we have the cumulative estimate
|I1|+|II]1|+|II 2|<ff |B|+|VA|) |Vu| |u| ® t dxdt

1

&

(u(RQQ)w(RgQ) e f f \Vul* @t dxdt,
Rﬁ+l
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where ¢ is at our disposal, and where we have used the definition of ® and the normalization

llulloo < 1.

Choosing & small enough, we may then hide the small term on the left hand side (more

precisely in the second term) in (A.4); note that this is finite since we are working with u,, A;, and

B,. Also,

by taking 0 < 7 < £(Q), clearly u(Rag) + v(Rag) < (lllc + IMIc) Q] uniformly on 7.

Collecting our various estimates, letting  — 0" and since Q was arbitrary, we find that (A.1) holds
with C % [|ullc + [IVllc. O
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