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This paper explores an inverse approach to the problem of characterizing sediment sources’ (“source” 
samples) age distributions based on samples from a particular depocenter (“sink” samples) using non-
negative matrix factorization (NMF). It also outlines a method to determine the optimal number of 
sources to factorize from a set of sink samples (i.e., the optimum factorization rank). We demonstrate 
the power of this method by generating sink samples as random mixtures of known sources, factorizing 
them, and recovering the number of known sources, their age distributions, and the weighting functions 
used to generate the sink samples. Sensitivity testing indicates that similarity between factorized and 
known sources is positively correlated to 1) the number of sink samples, 2) the dissimilarity among sink 
samples, and 3) sink sample size. Specifically, the algorithm yields consistent, close similarity between 
factorized and known sources when the number of sink samples is more than ∼3 times the number of 
source samples, sink data sets are internally dissimilar (cross-correlation coefficient range >0.3, Kuiper V
value range >0.35), and sink samples are well-characterized (>150–225 data points). However, similarity 
between known and factorized sources can be maintained while decreasing some of these variables if 
other variables are increased.
Factorization of three empirical detrital zircon U–Pb data sets from the Book Cliffs, the Grand Canyon, and 
the Gulf of Mexico yields plausible source age distributions and weights. Factorization of the Book Cliffs 
data set yields five sources very similar to those recently independently proposed as the primary sources 
for Book Cliffs strata; confirming the utility of the NMF approach. The Grand Canyon data set exemplifies 
two general considerations when applying the NMF algorithm. First, although the NMF algorithm is able 
to identify source age distribution, additional geological details are required to discriminate between 
primary or recycled sources. Second, the NMF algorithm will identify the most basic elements of the 
mixed sink samples and so may subdivide sources that are themselves heterogeneous mixtures of more 
basic elements into those basic elements. Finally, application to a large Gulf of Mexico data set highlights 
the increased contribution from Appalachian sources during Cretaceous and Holocene time, potentially 
attributable to drainage reorganization. Although the algorithm reproduces known sources and yields 
reasonable sources for empirical data sets, inversions are inherently non-unique. Consequently, the results 
of NMF and their interpretations should be evaluated in light of independent geological evidence. The 
NMF algorithm is provided both as MATLAB code and a stand-alone graphical user interface for Windows 
and macOS (.exe and .app) along with all data sets discussed in this contribution.

 2019 Elsevier B.V. All rights reserved.

1. Introduction

One of the primary goals of detrital geochronology research 
is to identify sediment provenance and characterize sediment 
sources. The discipline is undergoing a revolution as quantitative 
methods are increasingly brought to bear to compare and interpret
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data sets. These methods have been used primarily in a descrip-
tive sense to characterize the degree of similarity among detri-
tal age distributions (e.g., DeGraaff-Surpless et al., 2003; Satkoski 
et al., 2013; Vermeesch, 2013; Horton et al., 2015; Kimbrough 
et al., 2015; Vermeesch et al., 2016; Andersen et al., 2018). 
Parallel research has focused on quantifying the contributions 
of well-characterized sediment sources (“source” samples, a.k.a 
“parent” samples) to equally well-characterized samples from a 
particular depocenter (“sink” samples, a.k.a. “daughter” samples)

https://doi.org/10.1016/j.epsl.2019.01.044
0012-821X/ 2019 Elsevier B.V. All rights reserved.
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(Amidon et al., 2005a, 2005b; Saylor et al., 2013; Kimbrough et al., 
2015; Licht et al., 2016; Sickmann et al., 2016; Capaldi et al., 2017;
Mason et al., 2017; Sharman and Johnstone, 2017; Sundell and 
Saylor, 2017). Despite recent advances in quantitative analysis of 
detrital geochronology data, most current methods either cannot 
characterize source samples’ age distribution, or require a priori
knowledge of the sources in order to determine their relative con-
tributions to sink samples.

In the geologic record, sediment sources are typically poorly 
preserved, whereas sediment sinks, by comparison, are typically 
well-preserved and can be easily characterized. Few studies have 
taken advantage of this feature of the geologic record to char-
acterize unknown source samples based on known sink samples 
(Sharman and Johnstone, 2017). However, several critical compo-
nents of the methods discussed by Sharman and Johnstone (2017)
warrant further exploration to promote their widespread imple-
mentation. In order for factorized sources to accurately reflect 
known sources there is a trade-off between the number of sink 
samples, the number of analyses per sink sample, and the dis-
similarity among sink samples. However, the relationship between 
these variables, and their combined effect on the success of the 
factorization has not been explored. More importantly, there is cur-
rently no method for determining the optimal number of source 
samples to be characterized based on a particular sink data set.

In this contribution we explore these questions using a mod-
ification of the non-negative matrix factorization (NMF) inverse 
unmixing approach discussed by Sharman and Johnstone (2017), 
which has been successfully applied to other geological questions 
(e.g., Paterson and Heslop, 2015). This method requires no prior 
knowledge of the sources, no supervision, and no training. Us-
ing synthetic data sets we explore the characteristics of sink data 
sets that yield a close correlation between factorized and known 
sources. We also develop a method of identifying the optimal num-
ber of sources that can be determined given a particular set of 
sink data. These methods are then applied to empirical data sets 
from the Book Cliffs, Grand Canyon, and circum-Gulf of Mexico. 
Algorithms are provided both as MATLAB code and stand-alone 
graphical user interfaces (GUIs) as an executable (.exe) file for Win-
dows and application (.app) file for macOS (Supplemental Files 1).

2. Methods

2.1. Mixture distributions

The unmixing algorithm discussed below takes mixture distri-
butions as its input. These can be kernel density estimates (KDEs), 
probability density plots (PDPs), or kernel functional estimates 
(KFE) (Jessberger et al., 1980; Hurford et al., 1984; Dodson et al., 
1988; Brandon, 1996; Sircombe and Hazelton, 2004; Gehrels, 2012;
Vermeesch, 2012). Details of how KDEs and PDPs are calculated is 
presented in the Supplemental Text.

2.2. Algorithm

We adopt the NMF approach widely used in signal processing 
and image analysis (Lee and Seung, 1999; Smaragdis and Brown, 
2003; Ozerov and Fevotte, 2010) and recently applied to detrital 
geochronology (Sharman and Johnstone, 2017). Given a matrix V
(composed of m features from n samples), NMF seeks to develop 
two matrices W (m-by-k) and H (k-by-n) such that

V ≈ WH (1)

(using matrix multiplication notation). In detail, however,

V = WH + E, (2)

Fig. 1. Factorization of KDEs of sink samples produced from known sources (black), 
successfully reproduces both the age distributions and weighting functions used to 
create the sink samples. A) Input (black) sources and factorized (white) sources from 
data set 10S presented as KDEs using a Gaussian kernel with a 20 Myr bandwidth. 
Factorized source samples based on 40 sink samples randomly mixed from the ten 
input source samples. B) Input and factorized weighting functions use to create or 
factorize the 40 sink samples. Data includes all trials of 10S with ≥3.5 times as 
many sink samples as sources (i.e., N ≥ 35). CC and V respectively indicate the 
Cross-correlation coefficient and Kuiper V value between the known source and 
the subjacent factorized source. Data for this figure are in Supplemental Table 1.

where E is the final residual (calculated as the matrix norm of 
V − WH). In terms of detrital geochronology, V is composed of m
probabilities at equal spacing along the mixture distribution (PDP, 
KDE, or KFE) for each of n samples. W then is composed of m
probabilities at the same spacing for each of k factorized com-
ponents. Finally, H is composed of the k weighting functions for 
each of the factorized components in the n samples. W and H are 
estimated by iterative update while seeking to minimize the er-
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Fig. 2. The similarity between known and factorized sources (z) increases with increasing size (x) and internal dissimilarity (y) of the sink data set. A) Scatter plot of the 
mean Cross-correlation coefficient between factorized and known sources as a function of number of sink samples and dissimilarity among sink samples. The number of 
sink samples is normalized to the number of known sources to facilitate comparison to other figures. The internal dissimilarity of the sink data set is shown as the range 
of Cross-correlation coefficients. The surface is a second order polynomial fit in which ∼95% of the data points fall above the surface (i.e., better fit). B) Contour plot of the 
surface in A. C) As with A, but using the Kuiper V value rather that Cross-correlation. The surface is a second order polynomial fit in which ∼95% of the data points fall 
below the surface (i.e., better fit). D) Contour plot of the surface in C. Data sets 5S, 6S, and 10S are included in this analysis and data are compiled in Supplemental Table 21. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

ror in the approximation V ≈ WH (i.e., minimize E). The distance 
between W H and V can be estimated using multiple functions in-
cluding, for example, a Euclidean distance

dEuc(W , H) =
1

2
‖V − WH‖2 (3)

which is subject to the constraints that W ≥ 0 and H ≥ 0. Follow-
ing the alternating non-negative least squares (NNLS) example of 
Kim and Park (2008), this problem can be iteratively solved start-
ing from random initial estimates for W and H and alternatively 
updating W and H until a stopping criterion is satisfied while 
minimizing the distance between V and WH . Alternatively solving 
for W and H guarantees that the solution converges to a station-
ary point.

In the following examples and the associated software appli-
cation, we adapted the NNLS algorithm of Li and Ngom (2013)
and Van Benthem and Keenan (2004) for geological application. 
We selected this algorithm because the NNLS optimization that it 
implements requires fewer input samples than some other opti-
mization routines (Kim and Park, 2007, 2008; Li and Ngom, 2013). 
Adaptations include normalizing the weighting functions so that 
the sum of the weighting functions for each group of samples is 
one, and normalizing the factorized mixture distributions so that 
the integral of each sample mixture distribution is one.

2.3. Comparison metrics

We use two statistical measures to compare the factorized 
sources (W ) to the initial sources and the reconstructed sink sam-
ples (WH) to input sink samples (V ): the Cross-correlation co-
efficient and the Kuiper V value. Cross-correlation is a widely 

used method in signal processing (Lewis, 1995), template matching 
(Briechle and Hanebeck, 2001), image matching (Zhao et al., 2006;
Pan et al., 2009), and geophysics (Troyan, 2010; Debella-Gilo and 
Kääb, 2011) and is essentially the equivalent of the normalized 
cross-correlation function with a zero lag. It was initially applied 
to detrital geochronology by Saylor et al. (2012) and is calculated 
as,

∑b
a(hi − h)( ji − j)

√

∑b
a(hi − h)2

√

∑b
a( ji − j)2

(4)

where h and j are the mixture distributions and [a, b] is the age 
interval under consideration. We include it here because it is sensi-
tive to differences between samples (Saylor and Sundell, 2016). The 
Kuiper test (Kuiper, 1960; Press et al., 2007) is a modification of 
the Kolmogorov–Smirnov (KS) test. Unlike the KS test, the Kuiper 
test is equally sensitive across the range [a, b] and so is preferable 
to the KS test in detrital geochronology applications (e.g., Wissink 
et al., 2018). The Kuiper V value is calculated as,

V (x) = max
−∞<∞

[

F1(x) − F2(x)
]

+ max
−∞<∞

[

F2(x) − F1(x)
]

(5)

where F1 and F2 are the empirical cumulative distribution func-
tions (ECDFs) of sample 1 and 2, respectively.

2.4. Inputs

In our tests we consider five synthetic data sets where the 
source samples are known. The synthetic data sets are based on 
mixtures of empirical data published by Laskowski et al. (2013)
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Fig. 3. The similarity between known and factorized sources (z) increases with increasing number of sink samples (x) and increasing sink sample size (y). A) Scatter plot of 
the mean Cross-correlation coefficient between factorized and known sources as a function of the number of sink samples and sink sample size. The number of sink samples 
is normalized to the number of known sources to facilitate comparison to other figures. The surface is a second order polynomial fit in which ∼85% of the data points fall 
above the surface (i.e., better fit). B) Contour plot of the surface in A. C) As with A, but using the Kuiper V value rather that Cross-correlation. The surface is a second order 
polynomial fit in which ∼85% of the data points fall below the surface (i.e., better fit). D) Contour plot of the surface in C. Data set 8S is included in this analysis and data 
are compiled in Supplemental Table 22. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

and Pullen et al. (2014), and synthetic data sets published by 
Saylor and Sundell (2016), and Sundell and Saylor (2017). For 
data set 5S, we divided up an existing data set from Pullen et 
al. (2014) into five potential sources (Fig. S1). For data set 6S we 
randomly subsampled 500 ages from each of the six of the charac-
teristic North American provenance groups identified by Laskowski 
et al. (2013) including the Mesozoic eolianites, U.S. passive mar-
gin, Canadian passive margin, Mogollon highlands, Cordilleran arc, 
and Yavapai–Mazatzal provenance groups (Fig. S2). For data set 10S 
we used the “complex synthetic” data set of Sundell and Saylor
(2017, their Fig. 4), comprised of 10 source samples with multi-
modal, overlapping age populations (black curves in Fig. 1A). In the 
latter data set, each of the 10 samples has 100 ages with uncer-
tainty between 2 and 12% at the 1σ level. For data set 8S, we used 
the following samples from Saylor and Sundell (2016): 5 Peaks, 11 
Peaks, 22 Peaks 2, 22 Peaks 4, 22 Peaks bimodal, 22 Peaks cen-
tral, 33 Peaks, and 44 Peaks. We used the same data for 12S but 
also added the following samples: 4 Peaks, 25 Peaks, 30 Peaks, and 
49 Peaks. All data sets can be found in the Supplemental Material 
(Supplemental Table 1).

We also consider three data sets for which the source samples 
are unknown. The first of these includes 24 samples from the Book 
Cliffs data set published by Bartschi et al. (2018). The second is 25 
samples from the Grand Canyon published by Gehrels et al. (2011). 
The final data set is a compilation of 111 Late Cretaceous–modern 
samples from the circum-Gulf of Mexico compiled from Iizuka et 
al. (2005), Craddock and Kylander-Clark (2013), Blum and Pecha
(2014), Wahl et al. (2016), Mason et al. (2017), Blum et al. (2017), 
and Xu et al. (2017) (Supplemental Table 2).

3. Model testing-methods

3.1. Model efficiency: number, dissimilarity, and size of sink data sets

The goals of Test 1 and 2 were to determine how the num-
ber of sink samples and dissimilarity between sink samples, re-
spectively, impacts the similarity between factorized and known 
sources. Tests 1 and 2 use the same data sets: 5S, 6S, and 10S. 
In each case, sources were assigned random weightings to each 
source to produce up to 25–40 sink samples (Supplemental Ta-
bles 3–20). We selected weighting functions (H from Equation (1)) 
using both the randfixedsum algorithm (Stafford, 2006) and the 
randomization algorithm developed by Sundell and Saylor (2017). 
For this test the number of factors (i.e., sources) was always equal 
to the known number of sources. After running the NMF algorithm 
we calculated Cross-correlation and V values to compare the fac-
torized sources to the known sources. For each trial, we calculated 
the mean and standard deviation of these metrics to assess the 
quality of the factorization. This resulted in a total of 3,050 inde-
pendent tests of the NMF approach (Fig. 2, Supplemental Table 21).

In Test 3 we evaluated the effect of sink sample size on the 
similarity between factorized and known sources using data set 
8S. From this large data set (n = 106 per sample) we drew be-
tween 25 and 1,000 ages and associated uncertainties per sample 
and produced between 8 and 40 sink samples using the random-
ization algorithm of Sundell and Saylor (2017). These were then 
factorized into eight sources which were compared to the eight 
known sources (Fig. 3, Supplemental Table 22).

We evaluated the effect of the number of sink data sets, sink 
data set size, and internal dissimilarity, by fitting a 3-dimensional 
surface to the factorized sources that are most dissimilar from the 
known sources. This surface encompasses the majority of the data, 



50 J.E. Saylor et al. / Earth and Planetary Science Letters 512 (2019) 46–58

Fig. 4. Correlation (R2) between known and factorized weightings increases with increasing number of sink samples but is not significantly affected by the sink sample 
dissimilarity. A) Scatter plot of the mean correlation coefficient between factorized and known weights as a function of the number of sink samples and sink sample size. 
The surface is a second order polynomial fit in which ∼85% of the data points fall above the surface (i.e., better fit). B) Contour plot of the surface in A. C) Scatter plot of the 
mean correlation coefficient between factorized and known weights as a function of the number of sink sample size and dissimilarity among sink samples. D) Contour plot 
of the surface in C. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

and we treat it as an envelope of the worst case (i.e., most dis-
similar) fits between known and factorized sources. In order to 
compare results from 5S, 6S, and 10S we normalized the num-
ber of sink samples to the number of known source samples for 
each data set. We selected the worst fits by considering matrices 
of results for discrete normalized numbers of sink samples (i.e., 
matrices of y and z values for each x interval in Fig. 2). For Tests 
1 and 2, matrices were comprised of mean Cross-correlation coef-
ficients or V values (z in Fig. 2) sorted by the range of coefficients 
or values of the input sink samples (y in Fig. 2). For Test 3 ma-
trices were comprised of mean Cross-correlation coefficients or V
values sorted by the size of the sink samples. From each matrix we 
subsampled the data by selecting the local extrema in mean Cross-
correlation coefficient or V value between factorized and known 
sources (i.e., local minima in z from Fig. 2) using the peakfind 
MATLAB algorithm. For Tests 1 and 2 this yielded 277 and 258 
data points of the original 3,050 trials for Cross-correlation and 
Kuiper, respectively (Supplemental Table 21). We fit a second-order 
3-dimensional surface to these data (Fig. 2). This surface encom-
passes ∼95% of the data points, and, as noted above, we treat it as 
an envelope of the worst case fits. For Test 3 this yielded 126 and 
117 of the original 462 trials for Cross-correlation and Kuiper, re-
spectively. Due to the lower data density, compared to Tests 1 and 
2, the surface for Test 3 encompasses ∼85% of the data points. For 
comparison of input to factorized weighting, we fit a polynomial 
curve to 115 of 3,456 total data points (Fig. 4A) or 112 of 417 data 
points (Fig. 4B).

3.2. Optimal number of factorized sources

In Test 4 we developed a method of determining the optimal 
number of source samples for a given sink data set. Selection of an 

appropriate number of source samples (i.e., the rank of the factor-
ization) critically affects both the success and potential accuracy 
of the factorization. We approached this problem by calculating 
the final residual between input and reconstructed sink samples 
over a wide range of ranks. Because NMF is intended to provide a 
low-rank approximation of the input data sets, our criterion is that 
the optimal number of source samples is the rank above which 
there is little or no decrease in final residual. This should yield 
two approximately linear segments: a lower rank segment over 
which there is rapid decrease in the residual and a higher rank 
segment over which there is little decrease in residual (Fig. 5A, 
Supplemental Table 25). The point at which these two segments 
meet is the optimal rank. This approach is similar to the more fa-
miliar “scree” plots applied to determine the optimum number of 
dimensions in multidimensional scaling (Borg and Groenen, 1997;
Hair et al., 1998; Steyvers, 2006). In order to identify the optimum 
breakpoint we plotted the final residual versus the rank and ap-
plied a segmented linear regression with one break. We assumed 
that the optimal breakpoint, and therefore the optimal number of 
sources, will be the point which optimizes the linear fit of both 
the higher and lower rank segments, and calculated the sum of 
squared residuals (SSR, Draper and Smith, 1998) for each segment 
as

SSR1 =

r=xb
∑

r=2

(

Rr − f (xr)
)2

(6)

and

SSR2 =

r=n
∑

r=xb

(

Rr −
(

g(xr)
)2

. (7)
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Fig. 5. Segmented linear regression (left) and summed sum of squared residuals 
(right) for A) a hypothetical sample, B) 10S, C) 6S, and D) 5S demonstrates that the 
optimum breakpoint coincides with the known number of source samples. On the 
left in each panel, the NMF final residual versus rank (number of sources) shows 
two approximately linear segments separated by a clear breakpoint. On the right 
in each panel, the plot of the summed sum of the squared residuals for the two 
segments versus the rank for the breakpoint shows a minimum at the optimum 
number of source samples for each data set. Data for this figure are in Supplemental 
Table 25.

In these equations xb is the breakpoint, which is calculated for all 
integers between 2 and n. n is the maximum rank being consid-
ered. Rr is the final residual for each rank (r). f (xr ) and g(xr ) are 
the expected final residual calculated by linear regression over the 
lower rank or higher rank segments, respectively. For xb = 2 and 
xb = n, f (xb) and g(xb) are equal to the final residual yielding SSR1
and SSR2 = 0, respectively. We identified the optimal rank as the 
xb which minimizes the sum SSR1 + SSR2 (Fig. 5A).

We first applied this test to the four data sets with known num-
bers of sources and then to data sets with an unknown number 
of sources. We initially considered the ability of this method to 
reconstruct the known number of sources when the mixture dis-
tributions are fully characterized (i.e., zero uncertainty in either 
source or sink mixture distributions) using data sets 5S, 6S, and 
10S. We then considered the effect uncertainty in the sink samples 
on the ability to reconstruct a known number of sources by vary-
ing sink sample sizes using data set 12S. We randomly selected 

between 2 and 10 sources from the 12 potential sources in the 
data set. From these sources we selected between 50 and 5,000 
ages from the 106 ages. From these ages, we constructed between 
2 and 24 sink samples. We determined the optimum number of 
sources to factorize for each of these trials as outlined above and 
compared this to the known number of sources.

4. Model testing-results

The NMF method yields close matches between known and fac-
torized source distributions (Fig. 1A, also Supplemental Figs. S1A, 
S2A, and S3A) and weighting functions (Fig. 1B, also Supplemental 
Figs. S1B, S2B, and S3B) when applied to finite mixture distribu-
tions (i.e., PDPs or KDEs) of detrital geochronology. Our experi-
ments implementing the NMF algorithm on ECDFs were unsuccess-
ful, as the resulting distributions were not cumulative with age. 
Therefore in the following section we focus on the results of fac-
torization of finite mixture distributions.

4.1. Model efficiency: number, dissimilarity, and size of sink data sets

Our first test yielded mean Cross-correlation coefficients be-
tween known and factorized sources >0.75 and Kuiper V values 
<0.15 when the number of sink samples is more than 3 times 
the number of sources (Fig. 2B and 2D) except where sink samples 
were very similar. Some trials yielded Cross-correlation coefficients 
>0.75 and V values <0.15 with fewer sink samples but results 
were inconsistent (Fig. 2A and 2C). Factorized weights also be-
come better correlated to known weights with increasing numbers 
of sink samples (Fig. 4B and 4D). The NMF algorithm yielded a 
close match between factorized and known source samples regard-
less of the elements constrained or the randomization algorithm 
used (Supplemental Tables 3–20). However, when sink samples 
were very similar to one another, as indicated by a low range 
of Cross-correlation coefficients or Kuiper V values between sink 
samples, the similarity between factorized and known sources was 
low (Fig. 2). We therefore investigated the relationship between 
the similarity of the input sink samples and the similarity between 
factorized and known sources in Test 2.

The second test indicates that similarity between the sink 
samples is a second control on the ability to successfully fac-
torize known sources, but not a significant control on the cor-
relation between known and factorized weightings. Trials with a 
range of Cross-correlation coefficients >∼0.3 yielded mean Cross-
correlation coefficients between known sources and factorized 
sources >0.75 (Fig. 2). Similarly, trials with a range of V values 
>∼0.35 yielded mean V values between factorized and known 
sources <0.15. In contrast, a range of Cross-correlation coefficients 
<0.3, or a range of V values <0.35 resulted in a wide range of 
similarity between known and factorized sources. Correlation be-
tween known and factorized weightings are independent of sink 
sample dissimilarity and depend only on the number of sink sam-
ples (Fig. 4C and 4D).

The results of Test 3 indicate that sample size plays an addi-
tional role in the ability to reliably factorize sources and weight-
ings. In addition to ∼3 times the number of sink samples as 
sources to be factorized, sink samples need to have >∼225 anal-
yses per sample to yield Cross-correlation coefficients >0.75 be-
tween known sources and factorized sources (Fig. 3). This criterion 
can be relaxed if either a lower Cross-correlation coefficient is ac-
ceptable or more sink samples are available. For example, a Cross-
correlation coefficient of ∼0.7 can be achieved with 2.5 times the 
number of sink samples as sources and sink samples that are ∼200 
analyses each. However, the same Cross-correlation coefficient can 
be achieved with 4 times as many sink samples as sources even 
if those sink samples have <100 analyses per sample (Fig. 3). Test 



52 J.E. Saylor et al. / Earth and Planetary Science Letters 512 (2019) 46–58

Fig. 6. Increasing the size of each sink sample results in a better fit between the 
reconstructed number of sources and the known number of sources (i.e., residual 
closer to zero). Note that the linear segmented regression approach appears to sys-
tematically underestimate the number of sources for more than six sources. Data 
for this figure are in Supplemental Table 26. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

3 also yields a positive correlation between sink sample size and 
the correlation coefficient between known and factorized weight-
ing functions (Fig. 4A and 4B).

4.2. Optimal number of sources

Results of Test 4 using synthetic data sets (10S, 6S, and 5S) indi-
cate that the minimum in SSR1 + SSR2 coincides with the known 
number of sources (Fig. 5, Supplemental Table 25). As expected, 
when plotting the final residual against the NMF rank we see two 
linear segments which meet at the known number of sources.

Selecting a finite number of ages to construct sink age distribu-
tions introduces additional uncertainty into the ability to identify 
the optimal number of sources (Fig. 6, Supplemental Table 26). 
Reconstructing the number of sources from small sink samples 
(<200 analyses per sample) resulted in residuals (model – known 
number of sources) of up to two. Larger sample sizes yielded a 
better fit (residual ≈0) for between three and six sources. Above 
six sources, the technique appears to systematically underestimate 
the number of sources, regardless of the sink sample size.

When applying this test to the empirical data sets we found 
that although the two linear segments in the final residual plots 
are not as clear as with the control data sets, there were still clear 
minima in the SSR1 + SSR2 plots (Fig. 7). These minima indicate 
that the optimal number of samples for the Book Cliffs data set 
is five (Fig. 7A). The Book Cliffs data set has a range of Cross-
correlation coefficients of 0.97 and a range of Kuiper V values of 
0.50. Using the Grand Canyon data set, the lowest SSR1 + SSR2

values occur at a rank of six (Fig. 7B). The Grand Canyon data set 
has a slightly lower range of Cross-correlation coefficients of 0.96 
and a range of V values of 0.71. The range of Cross-correlation co-
efficients for the Gulf of Mexico sink data set is 0.81 and the range 
of V values is 0.85. Finally, the Gulf of Mexico data set has a nadir 
in SSR1 + SSR2 at a rank of six (Fig. 7C).

5. Discussion

5.1. Sensitivity testing using synthetic data sets

Based on our analysis of samples mixed from known sources 
(Fig. 2 and Fig. 3) we conclude that the three factors which con-
tribute to a successful decomposition of sink distributions into a 
low rank approximation of the source samples are 1) the number 
of sink samples considered, 2) the degree of similarity between 
the sink samples, and 3) the size of the sink samples. The syn-
thetic data sets yield close matches between known and factorized 

Fig. 7. Segmented linear regression (left) and summed sum of squared residuals 
(right) for the three empirical data sets (Book Cliffs, Grand Canyon, and Gulf of Mex-
ico) indicate that the optimum number of sources that can be modeled from these 
data sets is five, six, and six, respectively. Data for this figure are in Supplemental 
Table 27.

source age distributions when the size (N) of the input sink data 
set is more than 3 times greater than the number of sources. 
With fewer sink samples, results are inconsistent (e.g. see scat-
ter in Fig. 2) and we therefore caution against use of small N
sink data sets. The conclusion above holds for all data sets except 
those that are very similar (i.e., range of Cross-correlation coef-
ficients <0.3 or V values <0.35) (Fig. 2). This latter observation 
indicates that the dissimilarity between the input sink samples 
is an important control on the similarity between factorized and 
known source age distributions. The relationship shown in Fig. 2
indicates that a range of Cross-correlation coefficients >0.3 or V
value >0.35 is needed to ensure a mean Cross-correlation coeffi-
cient >0.75 or mean V value <0.15 between known and factorized 
sources. In contrast, a range of Cross-correlation coefficients <0.3, 
or a range of V values <0.35 yields a wide range of similarity 
between known and factorized sources, meaning that one cannot 
have confidence, a piori, in the ability to factorize sources based 
on a data set with such similar age distributions. However, sink 
data set similarity appears to be less of a control on the simi-
larity between known and factorized weighting functions (Fig. 4). 
Sample size (n) appears to be an important third control on the 
ability to achieve close correlation between known and factorized 
source samples. Our analysis indicates that ideally the sink data set 
should have at least 3 times the number of sources, and each sam-
ple should be well characterized (n > 150–225). However, there 
is a trade-off between the number of sink samples and the sink 
sample size. Comparable similarity between factorized and known 
sources can be achieved by increasing the number of sink samples 
or sink sample size, even if the other variable decreases slightly 
(Fig. 3). Although the specific values determined above are de-
pendent on the comparison metrics employed, the similarity in 
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behavior suggests that the three factors that contribute to a suc-
cessful factorization are fundamental behaviors of NMF as applied 
to detrital geochronology.

5.2. Selection of optimum rank

Comparison of the factorized and known number of sources in-
dicates that the segmented linear regression method (Test 4) is 
able to reconstruct a known number of sources (Fig. 5). How-
ever, reconstruction is degraded by uncertainty in the sink samples 
(Fig. 6). Although the method involves some uncertainty, we rec-
ommend it as a guide, as it provides a first order sense of how 
many sources can reasonably be factorized from a given data set. 
This approach also maximizes the user’s ability to interpret the 
results of segmented linear regression in light of independent geo-
logical information.

5.3. Application

In the section below we compare the factorized source age dis-
tributions for the Book Cliffs, Grand Canyon, and Gulf of Mexico to 
empirical potential sediment sources for each of these basins. The 
goal is not to definitively identify sediment sources for any of these 
regions; such an undertaking would require detailed consideration 
of the geologic context including at a minimum the depositional 
environments, tectonic setting, paleocurrent measurements, and 
paleogeographic linkages between the proposed sources and sinks. 
Rather, our goal is to show that the factorized sediment sources 
are consistent with existing potential sediment source data. This in 
itself is a remarkable accomplishment, given the fact that the al-
gorithm is completely unsupervised and has no training data sets.

The success in factorizing the Book Cliffs data set into five 
sources provides an important intermediate step between com-
pletely controlled and completely unknown situations, indicating 
that the algorithm factorized this data set into geologically mean-
ingful factors. Previous work by Bartschi et al. (2018) used six 
provenance groups to model the data from the Book Cliffs using 
DZmix (Sundell and Saylor, 2017). These included the Mogollon 
highlands, Magmatic arc, Mesozoic eolianites, US Paleozoic passive 
margin, Canadian Paleozoic passive margin, and Late Cretaceous 
foreland basin composite (TSA3) from Laskowski et al. (2013) and 
May et al. (2013). However, Bartschi et al. (2018) found that there 
was consistently little input from the Canadian Paleozoic passive 
margin provenance group. Our findings confirm this result, indi-
cating that only five provenance groups are needed to successfully 
account for the majority of the variability in the Book Cliffs data 
set (Fig. 7A). Our results further confirm that the provenance group 
that is not included in the factorization of this data set is the Cana-
dian Paleozoic passive margin (Fig. 8A).

Although several Book Cliffs factorized sources have clear cor-
relatives in known provenance groups, others have non-unique 
potential sources or are best matched by subsets of the prove-
nance groups proposed by Laskowski et al. (2013). For example, 
the first, second, and third factorized sources have clear correl-
atives in the Late Cretaceous foreland basin composite, Mesozoic 
eolianites, US Paleozoic passive margin provenance groups, respec-
tively (Fig. 8B, C, D). On the other hand, the fourth factorized 
source is poorly correlated to the full Mogollon highlands sources 
(Fig. 8Eii), but matches well to either a US Paleozoic passive mar-
gin source (Fig. 8Eiii), or to a subset of the Mogollon highland 
source that does not include the <250 Ma ages (Fig. 8Ei). Sim-
ilarly, the fifth source is poorly correlated to the full southern 
US Magmatic arc source (Fig. 8Fii), but is well correlated to the 
<250 Ma component from the Mogollon highlands (Fig. 8Fi). How-
ever, the division of the Mogollon highlands source into <250 Ma 

Fig. 8. Comparison of potential sediment sources (black or gray filled KDEs) to fac-
torized sources (inverted unfilled KDEs) for the Book Cliffs data set of Bartschi et 
al. (2018). Black-filled PDPs are our preferred matches to factorized sources. Poten-
tial sources are all from Laskowski et al. (2013, Canadian passive margin, Mesozoic 
eolianites, US passive margin, Mogollon highlands, and Magmatic arc provenance 
groups) and May et al. (2013, TSA3 Late Cretaceous composite). Note that, con-
sistent with the findings of Bartschi et al. (2018) the Canadian Paleozoic Passive 
Margin source is not included in the factorization of the Book Cliffs data set. CC 
and V respectively indicate the Cross-correlation coefficient and Kuiper V value be-
tween the known source and the subjacent factorized source. KDEs are constructed 
with a Gaussian kernel with a bandwidth of 20 Myr. Data for this figure are in Sup-
plemental Table 28.
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Fig. 9. Comparison of potential sediment sources (black or gray filled KDEs) to factorized sources (inverted unfilled KDEs) for the Grand Canyon data set. Black-filled KDEs 
are our preferred matches to factorized sources. References for potential sources include (A1) Laskowski et al. (2013), (A2) Blum et al. (2017), (A3 and B) Becker et al. (2005, 
Pottsville Formation), Becker et al. (2006, Washington and Greene formations), Park et al. (2010, Price, Stony Gap, and Princeton formations), A4) Lawton et al. (2010, Caddy 
Canyon Quartzite), C) Bush et al. (2016, RB105 and RB301 Sangre de Cristo Formation), D) Kissock et al. (2018, FCB-D4 Floris Formation), F1 and G2) Lawton et al. (2010, 
UT06-6 Prospect Mountain Quartzite), F2) this study, G1) Laskowski et al. (2013, US Passive Margin provenance group). CC and V respectively indicate the Cross-correlation 
coefficient and Kuiper V value between the known source and the subjacent factorized source. KDEs are constructed with a Gaussian kernel with a bandwidth of 20 Myr. 
Data for this figure are in Supplemental Table 28.

and >250 Ma components yields potential sources that are con-
sistent with the subdivision of the Yavapai–Mazatzal provenance 
group by Laskowski et al. (2013), suggesting that this provenance 
group is itself a mixed group.

The Grand Canyon data set is best modeled with six prove-
nance groups (Fig. 7B). The first source is best matched by a sam-
ple of Proterozoic Caddy Canyon Quartzite exposed in the Sevier 
thrust belt (Lawton et al., 2010) (Fig. 9Aiv). Alternatives, includ-
ing a Paleozoic composite comprised of multiple samples from the 
Appalachian Basin (Becker et al., 2005, 2006; Park et al., 2010), a 
representative sample from the Gulf of Mexico (Blum et al., 2017), 
or the US Paleozoic passive margin (Laskowski et al., 2013) have 
lower V values but also lower Cross-correlation coefficients and 
clear mismatches in modal ages (Fig. 9Ai–Aiii). The second fac-
torized source is most consistent with sources in the Appalachian 
basin (Fig. 9B). The third factorized source is most consistent with 
Proterozoic basement current exposed in the Sangre de Cristo 
mountains (Bush et al., 2016) (Fig. 9C). The fourth source is most 
consistent with samples from Paleozoic strata from mid-continent 

basins (Fig. 9D), which may be derived ultimately from basement 
sources in New England or Newfoundland (McLennan et al., 2001;
Pollock et al., 2007; Fyffe et al., 2009). The fifth source is closely 
correlated to both Cambrian metasedimentary rocks characterized 
by the Prospect Mountain Quartzite or Proterozoic basement of the 
Uncompahgre Uplift (Fig. 9Ei and Eii). The sixth source is equally 
well matched by either a Paleozoic composite source indicating lo-
cal recycling and mixing (Fig. 9Fi) or Cambrian metasedimentary 
rocks potentially resulting from mixture during transcontinental 
sediment transport (Fig. 9Fii) (Gehrels et al., 2011).

The Gulf of Mexico data set is successfully factorized into six 
provenance groups which have possible correlatives in Lauren-
tian detrital zircon data sets (Fig. 10). The first provenance group 
is dominated by 1.25–0.95 Ga and 0.5–0.3 Ga ages that broadly 
overlap with Grenville, peri-Gondwanan, and Appalachian sources 
(hereafter termed ‘Appalachian affinity’ Fig. 10A). This provenance 
group is consistent with detrital zircon ages derived from the 
modern Appalachian Mountains region and recycled from older 
sedimentary sequences in the western U.S. (e.g., Mesozoic units 
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Fig. 10. Comparison of potential sediment sources (black or gray filled PDPs) to 
factorized sources (inverted unfilled PDPs) for the Gulf of Mexico data set. Black-
filled PDPs are our preferred matches to factorized sources. References for potential 
sources include A1) Becker et al. (2005, Pottsville Formation), Becker et al. (2006, 
Washington and Greene formations), Park et al. (2010, Price, Stony Gap, and Prince-
ton formations), A2) Laskowski et al. (2013, Mesozoic eolianite provenance group), 
B1) Escalona-Alcázar et al. (2016, CZ-01), Copeland et al. (2011, FC52), Donahue
(2016, MSD-CO-2011-17), B2) May et al. (2013, TSA3 Late Cretaceous composite); 
D, F1, and G1) Laskowski et al. (2013, Mogollon highlands provenance group), and 
F2 and G2) Lawton et al. (2009, Difunta Group). CC indicates the Cross-correlation 
coefficient between the known source and the subjacent factorized source. Data for 
this figure are in Supplemental Table 28.

in the Sevier fold-thrust belt; Fig. 10). Four of the provenance 
groups (Fig. 10B, C, E, and F) are dominated by age distributions 
<300 Ma that correspond with major pulses of Cordilleran arc 
volcanism during middle Jurassic (175–160 Ma), Late Cretaceous 
(100–70 Ma), Eocene (58–57 Ma), and Oligocene (33–35 Ma) time. 
Such ages are widespread in western North America, including in 
the U.S. Cordilleran foreland basin, U.S. Sevier fold-thrust belt and 
magmatic arc, and in Mexican arc terranes (Fig. 10). Finally, a sixth 
provenance group is dominated by ages 1.8–1.35 Ga with peaks at 
1.71 and 1.43 Ga that suggests derivation from Yavapai–Mazatzal 
and/or Midcontinent sources (Fig. 10D). This group also includes a 
significant <300 Ma age component reflecting Cordilleran arc mag-
matism with a dominant peak from 80–60 Ma.

The Gulf of Mexico data set also indicates that proportions of 
potential sources (as indicated by the factorized weighting func-
tions) vary systematically in both space and time, and can be 
correlated to long-term tectonic changes and geological events 
(Fig. 11). Middle Cretaceous samples are dominated by Source 
1, consistent with an interpretation of a dominantly Appalachian 
source to these units (Blum and Pecha, 2014; Blum et al., 2017)
(Fig. 11B). Paleocene–lower Eocene samples show a dominance 
of Sources 2–6 (western North American affinity) in the western 
Gulf of Mexico which correlates broadly with peak Laramide ex-
humation, and recycling of Sevier foreland basin strata (Lawton, 
2008). This mixes with Source 1 (Appalachian affinity) in the east-
ern Gulf of Mexico with a well-defined mixing zone extending 
from the Alabama–Mississippi border to the Louisiana–Texas bor-
der (Fig. 11B). This trend continues during continued tectonic ac-
tivity in the Oligocene and lower Miocene. Furthermore, the pro-
nounced increase in abundance of Sources 2 and 3 in Oligocene 
samples and subsequent decrease in lower Miocene samples likely 
reflects the Oligocene ignimbrite flare-up event within the west-
ern U.S. and Mexico (Fig. 11B). Samples from rivers that drain 
into the northern Gulf of Mexico also display similar contribu-
tions from potential sources as has been noted in previous re-
search (e.g., Blum and Pecha, 2014; Blum et al., 2017; Sharman and 
Johnstone, 2017; Xu et al., 2017; Fig. 11B). These modern rivers 
display notably higher proportions of Source 1 than their older, 
Cenozoic counterparts (Fig. 11B). We speculate that this change 
could reflect increased recycling of older sedimentary sequences 
(e.g.,. Fig. 11Ai) and decreased primary derivation from western 
U.S. Cordilleran arc and Precambrian sources. Although the driver 
of this change remains uncertain this may point to significant 
drainage reorganization since the Miocene, and potentially linked 
with integration of the Rio Grande River (Repasch et al., 2017;
Fan et al., 2018).

Two general conclusions can be drawn from the analysis of the 
Book Cliffs, Grand Canyon, and Gulf of Mexico data sets. The first is 
that although the NMF algorithm is able to identify detrital zircon 
source signatures, it cannot discriminate between primary or recy-
cled sources (Dickinson et al., 2009). This is exemplified in the case 
of the Grand Canyon data set, where possible sources include ei-
ther sediment recycled from the Appalachian basin to the east and 
that sourced directly from Proterozoic metasedimentary sources 
(Fig. 9Aiii and Aiv) or between local recycling or transported ad-
mixture (Fig. 9Fi and Fii). The second observation is that the NMF 
algorithm will identify the most basic elements of the mixed sink 
samples and so may subdivide sources that are themselves het-
erogeneous mixtures of more basic elements into those basic ele-
ments. This conclusion is demonstrated in the Grand Canyon data 
set where sources that may have been mixed in a local basin or 
during transport to the Grand Canyon depocenter are divided into 
their constituent components including a late Proterozoic–early Pa-
leozoic component and ∼1000 Ma components (Fig. 9B and D). 
It is also observed in the Book Cliffs data set where the closest 
matches for sources five and six are the <250 Ma and >250 Ma 
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Fig. 11. A) Location and age of 111 samples used in the Gulf of Mexico case study. 
The dark black line shows the approximate location of the late Paleocene shelf edge 
(Galloway et al., 2011) and white circles indicate 100 km increments of distance 
measured along this paleo-shelf edge from southwest to northeast. B) Proportions of 
detrital zircon U–Pb ages (left) and modeled provenance sources (right) for the 111 
samples shown in (i). Source PDPs are shown in Fig. 10A. The x-axis corresponds to 
the projected location of each sample along the late Paleocene shelf edge as shown 
in (i), used to normalize sample position along the rim of the northern Gulf of 
Mexico. Abbreviations: AL – Alabama; L. – Lower; LA – Louisiana; M – Mississippi; 
TX – Texas. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

subsets of the Mogollon highlands source (Fig. 8Ei and Fi). Finally, 
sources identified for the Gulf of Mexico are not recycled Creta-
ceous strata from the Sevier foreland basin but rather end-member 
components from the circum-Gulf of Mexico region, including the 
Appalachian Basin, Laramide basins, Mogollon highlands, US mag-
matic arc, and Mexican magmatic arc (Fig. 10). Interestingly, al-
though factorization of the Book Cliffs data set yielded sources 
that were similar to subdivisions of the southern US magmatic arc 
source (Fig. 9Ei and Fi), factorization of Gulf of Mexico data set the 

does not subdivide the Mogollon highlands source in this manner. 
This may point to thorough mixing and homogenization of this 
source, potentially in Sevier or Laramide basins, prior to its intro-
duction into the Gulf of Mexico sedimentary system.

6. Conclusions

We introduce a new implementation of non-negative matrix 
factorization (NMF) to detrital geochronology to characterize sed-
iment sources based on mixed (“sink”) samples. The algorithm is 
unsupervised and requires no training data. Application of this al-
gorithm to samples mixed from known sources indicates that the 
algorithm can fully recover the source components given only the 
sink samples. This is true even with complex, multi-modal data 
sets with overlapping age modes. Sensitivity testing indicates that 
analyses conducted with 3 or more times as many sink samples 
as source samples yield a close match between known and fac-
torized sources. However, factorized and known sources become 
less similar with increasing sink sample similarity. We conclude 
that a range of Cross-correlation coefficients of >0.3 and/or a 
range of V values >∼0.35 consistently yields close similarity be-
tween known and factorized sources. Finally, sink samples must 
be well-characterized (i.e., n > 150–225 per sample) or the num-
ber of samples in the sink data set must be high (i.e., N > 3 times 
the number of sources) to yield close similarity between known 
sources and factorized sources.

We also introduce an approach to determine the optimum 
number of sources based on minimizing the summed sum of 
squared residuals of two linear segmented fits to the NMF final 
residual. Application of this approach to samples with a known 
number of sources confirms that the summed sum of squared 
residuals is minimized when the breakpoint between the linear 
segments coincides with the known number of source samples. 
Application of this approach to the Book Cliffs data set confirms 
independent previous research that the Book Cliffs data set can 
be successfully modeled using five source provenance groups and 
that the Canadian Paleozoic passive margin strata are not signif-
icant contributors to Cretaceous Book Cliffs strata. The method’s 
success in this intermediate step between a fully controlled and 
fully unknown application gives confidence that when applied to 
empirical data sets the results are robust.

Application of the NMF algorithm to empirical data sets from 
the Book Cliffs, Grand Canyon, and Gulf of Mexico confirm that 
the algorithm recovers plausible source age distributions from each 
of these data sets. However, while the algorithm can factorize the 
sink samples into plausible source samples, it cannot discriminate 
between identical or very similar sources. Furthermore, it may 
factorize heterogeneous mixed sources into their most basic ele-
ments, potentially obscuring an intermediate mixing and recycling 
step. However, it may be “blind” to mixing if the mixed sources 
are themselves relatively homogeneous. Finally, although the al-
gorithm reproduces known sources and yields reasonable sources 
for empirical data sets, inversions are inherently non-unique. These 
caveats highlight the importance of a thorough understanding of 
the geological context of both sink samples and potential sources 
prior to drawing conclusions based on NMF.
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