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Abstract
Power diagrams, a type of weighted Voronoi diagram, have many applications
throughout operations research. We study the problem of power diagram detection:
determining whether a given finite partition of Rd takes the form of a power diagram.
This detection problem is particularly prevalent in the field of information elicitation,
where one wishes to design contracts to incentivize self-minded agents to provide hon-
est information.We devise a simple linear program to decide whether a polyhedral cell
complex can be described as a power diagram. For positive instances, a representation
of the cell complex as a power diagram is returned. Further, we discuss applications
to property elicitation, peer prediction, and mechanism design, where this question
arises. Our model can efficiently decide the question for complexes of Rd or of a con-
vex subset thereof. The approach is based on the use of an alternative representation
of power diagrams and invariance of a power diagram under uniform scaling of the
parameters in this representation.
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1 Introduction

Power diagrams play an important role in many disciplines within operations research,
ranging from balanced least-squares clustering [1–3] to multiclass classification [4–
9]. They have recently surfaced in the domain of information elicitation, where one
wishes to design contracts or mechanisms to incentivize a self-minded agent to reveal
their private information truthfully [10–14]. In the latter, power diagrams are shown
in various settings to characterize the possible sets of information that can be treated
identically under the mechanism; this characterization is an important step in under-
standing which mechanisms are or are not truthful, i.e., which elicit this information
effectively. Motivated by this application in particular, where one wishes to know
whether a given mechanism or contract could be truthful, we study the problem of
power diagram detection: deciding whether a given cell complex is in fact a power
diagram.

Informally, a cell complex is a partition ofRd into a finite set of j-faces of dimension
0 ≤ j ≤ d. A polyhedral cell complex is a cell complex where all faces are polyhedra.
For our purposes, it suffices to consider the full-dimensional d-faces, called cells. The
cells form a partition ofRd in the sense that their union isRd and only their boundaries
may intersect.

A power diagram is a cell complex defined by a set of sites, each with its own
weight. Each of the sites defines one of the cells. The cell corresponding to a site is the
set of all points which are closest to the site in squared Euclidean distance, discounting
by its weight squared; see also Definition 2.1. Geometrically, separating hyperplanes
between the cells are defined by the intersection of balls of varying radii around the
sites. The different weights correspond to the different radii. An example is depicted
in Fig. 1.

Any power diagram is a polyhedral cell complex. In particular, the shared boundary
of any pair of cells is either empty or is contained in a hyperplane and thus can be
described via linear constraints. The problem we consider is the following: given

s1

s2

s3

Fig. 1 A power diagram with three cells
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some polyhedral cell complex P , where the cells are described by linear inequalities,
determine whether or not P is a power diagram. In other words, determine whether
there is a representation of the cell complex P as a power diagram.

It is well known that all simple, polyhedral cell complexes in dimension 3 or higher
can be represented as a power diagram [15,16]. We want to stress that we do not
assume simplicity and we do not assume dimension 3 or higher. We do not know
whether a given cell complex is simple or not. Non-simple cell complexes may have
a representation as a power diagram, but they do not have to. In dimension 2, even
simple cell complexes may not be power diagrams. Moreover, all of these cases are
relevant for applications.

In this paper, we devise a novel linear program to solve this problem of power
diagram detection, detailed in Sect. 2, with a running time complexity that is (at
most) weakly polynomial. For positive instances, a representation of the cell complex
as a power diagram is returned. We treat two variants of the problem, where the
complex decomposes Rd , and where it decomposes a restricted convex subset of Rd .
We then present and discuss several applications to information elicitation in Sect. 3.
We conclude in Sect. 4with a brief reviewof our contribution and additional challenges
in practice.

2 Detection by Linear Programming

We begin with a formal definition of a power diagram [17].

Definition 2.1 (Power Diagram, Original) Given sites s1, . . . , sk ∈ R
d and weights

w1, . . . , wk ∈ R, we define the cell corresponding to site si as

cell(si ) =
{
x ∈ R

d : i ∈ argmin j‖x − s j‖2 − w2
j

}
. (1)

Acell complex P = (P1, . . . , Pk)ofRd is apower diagram, if there exist {si }ki=1 ⊆ R
d

and {wi }ki=1 ⊆ R so that for all i ∈ {1, . . . , k} we have Pi = cell(si ), as in Eq. (1).

Here ‖ · ‖ = ‖ · ‖2 refers to the Euclidean norm. Several basic observations follow
from this definition. First, note that cell(si ) depends on all sites s1, . . . , sk and weights
w1, . . . , wk . Second, by settingw1 = · · · = wk we recover the definition of a Voronoi
diagram, where points are assigned to a partition according to which site is closest
in Euclidean distance. Power diagrams exhibit many useful properties beyond these
observations above; see, e.g., [5,16–19].

We devise a linear program to check whether a given polyhedral cell complex can
be represented as a power diagram. For this, recall that polyhedra can be described
as the intersection of finitely many halfspaces. Let us begin with a formal problem
statement.

Problem 2.1 (Power Diagram Detection) Let P = (P1, . . . , Pk) be a polyhedral cell
complex defined by a set of separating hyperplanes between the cells. Let the index
sets Ji = { j : dim(Pi ∩ Pj ) = d − 1} give the adjacency structure in the complex.
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Finally, let ai j ∈ R
d and γi j ∈ R with

Pi =
{
x ∈ R

d : aTi j x ≤ γi j ∀ j ∈ Ji
}

. (2)

Decide: Is there a set of sites {si }ki=1 ⊆ R
d and weights {wi }ki=1 ⊆ R such that

Pi = cell(si ) for all i ∈ {1, . . . , k}?

Related questions have been studied for stronger input or the easier special case of
Voronoi diagrams in the literature:Aurenhammer proved that, based on the information
in an incidence lattice of a cell complex, it is possible to determine whether the cell
complex is the Voronoi diagram of a set of sites in time linear in the number of facets
of the cell complex [20]. A similar result, with time linear in the number of vertices
of the cell complex, holds in the dual setting of Dirichlet tesselations, as shown by
Ash and Bolker [21]. Hartvigsen [22] devised two algorithms, one of which runs
in strongly polynomial time, for the recognition whether a given cell complex is a
Voronoi diagram; see also [23]. The algorithms use input similar to the input for
Problem 2.1 and are based on linear programming, but they are quite different from
the methods we will present below. The main reason is the easier setting for Voronoi
diagrams, where the sites of two neighboring cells have to be of equal distance to the
separating hyperplane. This is a defining property for Voronoi diagrams, but not true
for power diagrams. It is the key idea to both algorithms. Finally, Rybnikov presented
an algorithm to decide whether a cell complex given through an incidence graph
with information on facets and (d−2)–faces is a power diagram [24]. The algorithm
is based on finding a feasible point in a set of equalities and strict inequalities. Its
running time is weakly polynomial, provided one can address its numerical instability
and the challenging implementation of a tailored interior point method.

In this paper, we devise a simple solution to Problem 2.1 that will give a straightfor-
ward resolution for applications such as those outlined in Sect. 3. The advantages lie in
a simple implementation, solvability by any linear programming algorithm, return of
a constructive solution, numerical stability, and a practical performance that matches
its (favorable) theoretical bound; see Theorems 2.1 and 2.2.

Our first tool is the use of an alternative definition of power diagrams, which has
been devised in different ways, ranging from pairwise linear separation in a multiclass
setting [4,5,18] to duality theory [19].

Definition 2.2 (Power Diagram, Alternative) For a given set of sites s1, . . . , sk ∈ R
d

and parameters γ1, . . . , γk ∈ R, we define the cell corresponding to site si as

cell(si ) =
{
x ∈ R

d : (s j − si )
T x ≤ γ j − γi ∀ j �= i

}
. (3)

Acell complex P = (P1, . . . , Pk)ofRd is apower diagram, if there exist {si }ki=1 ⊆ R
d

and γ1, . . . , γk ∈ R so that for all i ∈ {1, . . . , k} we have Pi = cell(si ), as in Eq. (3).
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It is easy tomatch this definitionwith the original notion of a power diagram through
a small transformation [5]: The cells Pi and Pj are separated by the hyperplane

Hi j :=
{
x ∈ R

d : ‖si − x‖2 − wi = ‖s j − x‖2 − w j

}

=
{
x ∈ R

d : 2(s j − si )
T x =

(
sTj s j − w j

)
−

(
sTi si − wi

)}
.

Choosing γi = 1
2

(
sTi si − wi

)
for i ≤ k yields this new representation, which fits with

the definition of piecewise-linear separability [4], with the small exception that we
use weak instead of strict inequalities. The right-hand sides in the above take the form
γ j −γi . This means that the ability to devise a set of sites {si }ki=1 ⊆ R

d and γ1, . . . , γk
would be a positive resolution to Problem 2.1.

Our second tool is the invariance of power diagrams under scaling [18,25]. More
precisely, the above representation of power diagrams is invariant under scaling of all
si and γi , for all i ≤ k, with the same parameter. For our purposes, it is important
to note that in the representation of Hi j , all parameters can be scaled with a λi j > 0
without changing Hi j :

2(λi j s j − λi j si )
T x = λi jγ j − λi jγi

⇐⇒ λi j · 2(s j − si )
T x = λi j · (γ j − γi )

⇐⇒ 2(s j − si )
T x = γ j − γi .

Of course, the hyperplane specified by aTi j x ≤ γi j in Eq. (2) is similarly invariant
under joint scaling of the left-hand and right-hand sides.

These tools allow us to construct a linear program to check whether the cells spec-
ified by the given input can be represented as the cells of a power diagram. Recall
Eq. (2), which represents the cells of the input in the form

Pi =
{
x ∈ R

d : aTi j x ≤ γi j ∀ j ∈ Ji
}

.

We wish to match this form to the description of the cells from Eq. (3),

cell(si ) =
{
x ∈ R

d : (s j − si )
T x ≤ γ j − γi ∀ j �= i

}
.

By the above, we may use any joint scaling of ai j and γi j by a factor λi j in this match.
Consider the following linear program for power diagram detection

λi j · ai j = si − s j ∀i ≤ k, ∀ j ∈ Ji
λi j · γi j = γ j − γi ∀i ≤ k, ∀ j ∈ Ji

λi j ≥ 1 ∀i ≤ k, ∀ j ∈ Ji
(PDD)

First, note that the ai j and γi j are given constants. The {si }ki=1 ⊆ R
d , the γ1, . . . , γk ∈

R, and the λi j ∀i ≤ k,∀ j ∈ Ji are variables. Further, note that we do not specify an

123



Journal of Optimization Theory and Applications (2019) 181:184–196 189

objective function. We are only interested in finding a feasible solution, so a dummy
objective function or a Phase-0 formulation of this program will be sufficient.

For all hyperplanes in the form aTi j x ≤ γi j specified by the original input, this linear
program checks whether ai j and γi j can be jointly scaled to match Definition 2.2 of a
power diagram. These are the first two lines of the program.

Due to the invariance of power diagrams under joint scaling of all their parameters,
the constraints λi j ≥ 1 ∀i ≤ k,∀ j ∈ Ji may be imposed without losing the ability
to construct a power diagram (in the cases where this is possible). These additional
constraints guarantee that no trivial scaling λi j = 0 and s j = si is feasible, as well as
that no negative scaling λi j < 0 is feasible, so that the direction of the separation of
cells Pi and Pj cannot change.

The program (PDD) suggests the following algorithm, which we use to show the
weakly polynomial solvability of Problem 2.1.

Algorithm 1 Unrestricted Power Diagram Detection

Input: Ji ⊆ {1, . . . , k}, ai j ∈ R
d , γi j ∈ R for all i, j ∈ {1, . . . , k}

Set up an instance I of linear program (PDD) using the constants ai j , γi j , and Ji
if I is not feasible, return NO
Let {si }ki=1, {γ }ki=1, {λi j : i ≤ k, j ∈ Ji } be a feasible solution
Let wi = sTi si − 2γi for all i ∈ {1, . . . , k}
return {si }ki=1, {wi }ki=1

Theorem 2.1 For all rational input, Algorithm 1 solves Problem 2.1 in weakly poly-
nomial time, returning a representation of the power diagram for yes-instances.

Proof Recall that linear programs can be solved in weakly polynomial time through
some variants of interior point methods, or the Ellipsoid method. As all the parameters
in (PDD) are from the original input, it suffices to show that the number of variables
and constraints is strongly polynomial in the size of the input. Let p = ∑k

i=1 |Ji |.
There are exactly 3p constraints and k variable vectors of type si ∈ R

d , k variables of
type γi , and p variables of type λi j , giving a total of kd + k + p variables.

The variables {si }ki=1 ⊆ R
d and γ1, . . . , γk ∈ R of a feasible solution represent a

power diagram for a yes-instance, as in Definition 2.2. Further, corresponding values
for weights wi (as in Defintion 2.1) can be derived from the γi through the equality
γi = 1

2 (s
T
i si − wi ) for i ≤ k. �


In the next section, we exhibit a collection of applications in which power diagram
detection arises. The practical problems essentially fit with the statement of Prob-
lem 2.1, with the exception that often the domain is restricted, in the sense that the
cells Pi given are actually Pi ∩D for some (full-dimensional) domain D. We therefore
must address the problem of power diagram detection in restricted domains, where
one asks whether the given cells can be expressed as a power diagram restricted to D.
We formally capture this problem in the following.

Problem 2.2 (Power Diagram Detection for Restricted Domains) Let D ⊆ R
d be a

convex domain, and let P = (P1, . . . , Pk), Pi ⊆ D, be a polyhedral cell complex
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restricted to D defined by a set of separating hyperplanes between the cells. Let the
index sets J D

i = { j : dim(Pi ∩ Pj ) = d − 1} give the adjacency structure in the
complex. Finally, let ai j ∈ R

d and γi j ∈ R with

Pi =
{
x ∈ D : aTi j x ≤ γi j ∀ j ∈ J D

i

}
. (4)

Decide: Is there a set of sites {si }ki=1 ⊆ R
d and weights {wi }ki=1 ⊆ R such that

Pi = cell(si ) ∩ D for all i ∈ {1, . . . , k}?
This problem variant can be resolved through a small tweak to (PDD): the index

sets Ji are replaced with the index sets J D
i . We obtain the following linear program

for restricted power diagram detection (r-PDD) for the detection of a power diagram
in a restricted domain.

λi j · ai j = si − s j ∀i ≤ k, ∀ j ∈ J D
i

λi j · γi j = γ j − γi ∀i ≤ k, ∀ j ∈ J D
i

λi j ≥ 1 ∀i ≤ k, ∀ j ∈ J D
i

(r-PDD)

We now show that Problem 2.2 is also weakly polynomially solvable. On the one
hand, we do not find this result surprising, as the structure of the associated linear
program remains essentially the same as for Problem2.1. Onemust take care, however,
to understand the impact of the restricted domain and why the program does not give
false-positive answers.

Theorem 2.2 For all rational input, Algorithm 1, when run on the input ({J D
i }i , {ai j }i j ,

{γi j }i j ), solves Problem 2.2 in weakly polynomial time, returning a representation of
the power diagram for yes-instances.

Proof The running time claim, and the return of a representation of a power diagram
for yes-instances, follows analogously to the proof of Theorem 2.1. The single, yet
important, difference lies in the restricted domain D. We have to consider how the
index set J D

i in Problem 2.2 relates to the cells Pi in the restricted problem. More
precisely, we have tomake sure that a yes-answer to the problem corresponds precisely
to those inputs, where the polyhedral cells in the domain D come from the intersection
of a power diagram in Rd with the domain D.

To this end, let P ′ be a cell complex inRd as defined in Problem 2.1, and let Ji be the
corresponding index sets. Further, let J D

i be the index sets as defined in Problem 2.2.
Note J D

i ⊆ Ji . Thus any feasible solution (s, γ ) to (PDD) (for index sets Ji ) is also
a feasible solution to (r-PDD) (for index sets J D

i ). Recall that, by Definition 2.2,
a feasible solution (s, γ ) for (PDD) provides the parameters to represent a power
diagram P ′ in R

d . This implies that if there exists a power diagram P ′ in R
d with

P = P ′∩D, the corresponding (s, γ ) is a feasible solution to both (PDD) and (r-PDD)
and we correctly identify a yes-instance for Problem 2.2.

It remains to show that all no-instances are identified correctly, as well. Assume
there is a feasible solution (s, γ ) to (r-PDD), and let P ′ be the corresponding power
diagram in R

d . Let index sets Ji and J D
i represent the adjacency of cells of P ′ in
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R
d , respectively, in D, as defined in Problems 2.1 and 2.2. We have to show that

P = P ′ ∩ D.
By construction, Pi = {x ∈ D : (s j − si )T x ≤ γ j − γi ∀ j ∈ J D

i } and P ′
i ∩ D =

{x ∈ D : (s j−si )T x ≤ γ j−γi ∀ j ∈ Ji } for all i = 1, . . . , k. This gives (P ′
i ∩D) ⊆ Pi

for all i = 1, . . . , k.
Finally, recall that the cells P1, . . . , Pk decompose the convex domain D, i.e.,⋃k
i=1 Pi = D with int(Pi ) ∩ int(Pj ) = ∅ for i �= j . But as P ′ is a power diagram

of Rd , the (P ′
i ∩ D) also decompose D, i.e., we have

⋃k
i=1(P

′
i ∩ D) = D and

int(P ′
i )∩int(P ′

j ) = ∅ for i �= j . Togetherwith (P ′
i ∩D) ⊆ Pi , we obtain Pi = (P ′

i ∩D)

for all i = 1, . . . , k. This proves the claim. �


3 Applications to Information Elicitation

In the domain of information elicitation, onewishes to design contracts ormechanisms
to incentivize a self-minded agent to reveal their private information truthfully. Often
this private information comes in one of two varieties: a belief about some future
event, or a utility or valuation of a particular commodity or outcome. Power diagrams
play a central role in the design of such mechanisms, as characterization theorems
show that contracts or mechanisms are truthful (have the correct incentives) if and
only if they partition the information space (or type space) into cells that form a power
diagram. As the information space is typically not all of Rd , we will work with the
restricted version, Problem 2.2. In what follows, we show how to apply Theorem 2.2
to three such information elicitation scenarios where power diagrams arise.

3.1 Property Elicitation

One of the most basic information elicitation tasks is to design a contract to elicit some
function, or property, of an agent’s belief. The literature dates back to Savage [26] and
Osband [27], with its modern incarnation beginning with Lambert et al. [10,28]. Con-
cretely, consider a finite set of outcomesO, the set of probability distributions �(O),
a finite set of possible reports R, and a property � : �(O) → 2R which designates
a set of reports considered correct or desired for an agent with a particular belief. For
example, the map �(p) = argmaxo∈O p(o) is the mode functional, which one notes
is set-valued whenever there are multiple outcomes with the highest probability.

To elicit the property � from an agent, we wish to design a contract S : R×O →
R which determines the payment to the agent once the outcome materializes. The
protocol is thus: the score S is announced, the agent reports some r ∈ R, the outcome
o ∈ O is revealed, and the agent is paid S(r , o). We say that the score S elicits the
property � if for all beliefs p ∈ �(O), we have

�(p) = argmax
r∈R

Eo∼p[S(r , o)], (5)

that is, the agentmaximizes their expected score according to their belief p by reporting
r ∈ �(p). As a simple example, if one would like to know which of sun, rain, or
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sun rain

snow

D

Psun Prain

Psnow

(L)

sun rain

snow

D

Psun
Prain

Psnow

(M)

sun rain

snow

D

Psun Prain

Psnow

(R)

Fig. 2 (L) The cell complex corresponding to the mode functional, which is a power diagram (indeed, a
Voronoi diagram) intersected with D, the probability simplex over outcomes {sun, rain, snow} projected
onto R

2. (Take e.g., sites at the corners of the simplex, with equal weights.) (M) Another cell complex
which is a power diagram intersected with D, and therefore corresponds to an elicitable property. Note that
Jsun = {rain, snow} would be the index set in Problem 2.1, whereas J Dsun = {rain} in Problem 2.2. (R) A
cell complex, which is not a power diagram intersected with D, and therefore not an elicitable property

snow, is most likely for the weather tomorrow, one would set R = O = {sun, rain,
snow} and offer to pay the agent S(r , o) = 1{r = o}, as this score elicits the mode:
argmaxrEo∼p[1{r = o}] = argmaxr p(r).

A natural question is thus the following: which properties � are elicitable in the
sense that one can devise a score which elicits it? Perhaps surprisingly, the answer
is simple: the elicitable properties � are precisely those for which the partition P =
(Pr )r∈R given by Pr = {p : r ∈ �(p)} forms a power diagram [10,12]. More
precisely, after projecting toR|O|−1 (e.g., by dropping the last coordinate) the partition
forms apower diagram intersectedwith theprojectedprobability simplex. SeeFig. 2(L)
for an illustration of such a projection for the mode. The rough intuition for this
elicitability result is as follows: Eq. (1) can be expressed via an argmin over k affine
functions of x by dropping the irrelevant ‖x‖2 term, and then as the negation of an
argmax of affine functions. As the expected score is linear (and therefore affine) in
the agent’s belief p, the distributions p which share the same optimal report (i.e., the
same argmax) must form a cell of a power diagram.

As a practical matter, the question remains of how to test whether a given property
is elicitable. Assuming the property is given as a polyhedral cell complex, which
divides the probability simplex into regions with the same report, in light of the above
characterization, this test can be done via Theorem 2.2, where the restricted domain
D is the probability simplex, D = {x ∈ R

d : ∑d
i=1 xi = 1, xi ≥ 0 ∀i ≤ d}.

(Technically, we would first project everything onto Rd−1, as described above.) Note
that the restricted domain can indeed change the index sets from (PDD) to (r-PDD),
and even when Pi ∩ Pj �= ∅, one could still have j /∈ J D

i , as we illustrate in Fig. 2(M).
Essentially, the same formalism as described above arises in machine learning as

well, in the context of designing loss functions for classification or ranking tasks [13,
29,30]. Here, one may wish to assign certain distributions over the labels (or classes)
to different reports, and one may ask, for which such assignments does there exist
a loss function which, when minimized, would yield these reports. This is again the
same question as whether the property corresponding to this assignment is elicitable,
where we simply negate the score to obtain a loss.
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t(o2)

t(o1)

p1

p3

p2

t(o2)

t(o1)

p1

p0

p3

p2

Fig. 3 An allocation rule “skeleton” which cannot be completed to an implementable allocation rule for any
distinct choices of pi (left), and one which could be so completed for appropriate choices of pi (right). Here
t denotes the type of an agent, and t being in the cell corresponding to pi implies the allocation f (t) = pi

3.2 Peer Prediction

A problem closely related to property elicitation is peer prediction, where one has
access to several agents rather than one, but no direct access to objective information.
Instead of designing a contract which scores an agent’s report based on some observed
outcome, one will never see the outcome and therefore must score the agents based
on each other’s reports [31,32].

To make headway, one typically assumes some structure about the underlying
Bayesian (or pseudo-Bayesian) process through which agents form their beliefs. In
particular, one assumes that agents receive some signal S ∈ O about the true outcome
(like the quality of a hotel, or the correct label for an image classification task), and
from this signal form a posterior belief p(·|S) about the true outcome, or about what
another agent’s signal was. Through assumptions about the possible values of this
posterior, one can design mechanisms with a truthful equilibrium, in which each agent
simply reports their signal S.

Constraints on the possible posteriors in the literature often take the form p(·|S =
o) ∈ Po for some sets {Po : o ∈ O}, dubbed a belief model constraint in
Frongillo and Witkowski [14]. Their work shows that there exists a mechanism with
a truthful equilibrium if and only if the sets {Po} form a power diagram [14, Corol-
lary 3.5]. (More precisely, there must exist a power diagram with sites so such that
Po ⊆ cell(so) for all o ∈ O. We restrict attention to maximal constraints, where every
distribution could be the posterior following some signal, i.e.,

⋃
o∈O Po = �(O).)

The problem of detectingwhether a beliefmodel constraint supports amechanism, and
constructing said mechanism if so, thus reduces to detecting and constructing a power
diagram in a restricted domain (again the probability simplex), to which Theorem 2.2
applies.

3.3 Mechanism Design

In mechanism design, one wishes to design an algorithm to choose an outcome based
on the reports of the participants, but in a way which is robust to strategic misreports.
From the well-known revelation principle, we may assume without loss of generality
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that the reports or “bids” submitted to a mechanism take the form of utility functions:
each participant reports their utility for each possible outcome. From the reported
utilities (called types) of the agents, the mechanism then chooses a distribution over
outcomes (called the allocation) as well as a payment owed the mechanism by each
participant. For simplicity, we will consider the case of a single agent.

Given the agent’s type t ∈ R
O which encodes their utility t(o) following each

outcome o, the mechanism wishes to choose a random allocation from some set O of
outcomes, as well as the amount the agent should pay. Formally, given a finite outcome
space O and a convex type space T ⊆ R

O, a (direct, randomized) mechanism is a
pair ( f , p) where f : T → �O is the allocation rule and p : T → R is the payment
function. We typically assume that the agent’s utility is quasi-linear in the sense that
their net utility upon allocation o and payment c is the difference t(o) − c. Note
that the expected utility can be written U (t ′, t) = f (t ′) · t − p(t ′), where the inner
product is between elements of RO, where we consider f (t ′) ∈ �O ⊂ R

O to be the
vector form of the allocation distribution. We say the mechanism ( f , p) is truthful if
U (t ′, t) ≤ U (t, t) for all types t, t ′ ∈ T .

A fundamental question in mechanism design is implementability: given a desired
allocation rule f , can one find a payment function p such that the pair ( f , p) is
a truthful mechanism? In other words, can one design payments to implement the
desired allocation rule while being robust to the incentives of the agents? If given
the proposed allocations themselves, one can use the fact that weak monotonicity
(WMON) is sufficient and perform checks in O(n2) time [33]. We instead consider
the following variant of this classic question: given a “skeleton” of an allocation rule,
that decides upon “cells” of types to assign the same allocation but not what that
allocation should be, could there be any assignment of allocations to cells such that
the resulting allocation rule is implementable? See Fig. 3 for an illustration. More
formally, given the skeleton g : T → {1, . . . ,m}, could there be any implementable
allocation rule of the form f = h◦g for some h : {1, . . . ,m} → �(O)? From [12,33],
such skeletons must form a power diagram, and thus, given g in the form (4) where
D = T is the type space, this problem can also be solved as stated in Theorem 2.2.

4 Conclusions

We have presented a simple linear program for power diagram detection, the prob-
lem of deciding whether a polyhedral cell complex given by linear equalities can
be represented as a power diagram. The problem of power diagram detection arises
in information elicitation applications, and we have detailed three such applications:
property elicitation, peer prediction, andmechanism design. In each of these problems,
the domain is typically restricted to a subset D ofRd , and thus, we have also addressed
the restricted power diagram detection problem (Problem 2.2 and Theorem 2.2), to
determine whether a given complex can be represented as a power diagram restricted
to D. Combined, our results give a constructive, (weakly) polynomial time algorithm
to determine whether a given property is elicitable, whether a given belief model
constraint corresponds to a truthful peer prediction mechanism, or whether a given
allocation “skeleton” could extend to an implementable allocation rule.
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As a practical concern, we note that information elicitation problems do not nec-
essarily exhibit polyhedral representations of their cells. More precisely, it is possible
that the cells of a proposed property, belief model constraint, or allocation rule are not
convex polyhedra and thus could not possibly be represented as those of a power dia-
gram. Even when they allow a polyhedral representation, the input may be given in a
form such that this is not obvious. For example, given a representation of a polyhedron
as the convex hull of its vertices, it typically is not efficient to devise a representation
as the intersection of halfspaces. In many applications, expert knowledge will allow
a viable resolution of these issues, before the methods presented in this paper will
be applied. In general however, they pose significant challenges before obtaining a
broader detection algorithm in practice.
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