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Background
Modern sequencing technologies can quickly and affordably 
produce genomic sequences for species across the tree of life. 
Consequently, many new lineages and poorly resolved areas of 
the tree have been identified.1–3 With tens of thousands of bac-
terial genomes now publicly available, comparative genomics 
has produced numerous insights into microbial life.4 Several 
tools are currently used to detect genome similarity through 
sequence alignment.5–8 In addition, tools employing a graphical 
“dot plot” approach, such as Gepard,9 Serolis,10 and SeqTools’ 
Dotter,11 can highlight genomic similarities and rearrange-
ments as well as gene duplications. These tools, however, have 
their limitations: Serolis10 is limited in the size of sequence it 
can analyze (4 kbp), and Dotter11 is significantly slower than 
Gepard9 for larger sequences. Nevertheless, alignment-free 
approaches, including the aforementioned “dot plot” tools, have 
a significant advantage over alignment-based methods: they 
are less computationally expensive (regarding both time and 
resources) and impervious to synteny-related problems (see 
reviews of Vinga and Almeida12 and Bonham-Carter et al13).

In addition to sequence similarities, the dissimilarities 
between genomic sequences can be equally informative.14 
These dissimilarities can indicate strain-specific genes hori-
zontally/laterally acquired rather than vertically inherited. 
Lateral gene transfer (LGT) is an important force in the evolu-
tion of prokaryotes,15 including the exchange of defense mech-
anisms and virulence factors.4,15,16 Although certainly less 
prevalent (and fiercely debated), LGT between eukaryotes and 
prokaryotes can also occur.17–20 Disparities between genomic 
sequences can also be the result of gene loss, another pervasive 
and often significant driver of evolution in prokaryotic21,22 and 
eukaryotic species23 (see review Albalat and Cañestro24). 
Moreover, recognition of substantial sequence divergence 
between orthologous gene sequences can signify genes under 
strong selection (see review Long et al25). Such genes can pro-
vide insight into phenotypic differences between species.26,27

Previously we developed S-plot, a tool for the rapid analysis 
and visualization of bacterial genomic sequences.28 This tool 
was applied to the examination of Escherichia,28 Bacillus,29 and 
Neisseria30 genomes, identifying regions of unusual nucleotide 
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composition corresponding to LGT events. Herein, we present 
the next generation of this tool: S-plot2. Similar to its prede-
cessor, S-plot2 creates an interactive, 2-dimensional heatmap. 
Similar to the aforementioned dot-plot tools, S-plot2 captures 
the similarities in nucleotide usage between genomic sequences, 
but unique to this tool is the fact that it also captures the dis-
similarities in nucleotide usage between genomic sequences. 
Through the examination of nucleotide usage, phylogenetic 
signals can be uncovered.31 In S-plot2, whole eukaryotic chro-
mosomes and smaller prokaryotic genomes can be efficiently 
compared. Furthermore, the new version includes functionality 
to extract, analyze, and automate BLAST queries of regions of 
interest within the heatmap. This facilitates the investigation of 
quickly evolving coding regions, novel coding regions, and lat-
erally transferred elements.

Implementation
Developed in Java, S-plot2 performs pairwise comparisons of 
genomic sequences (partial or complete) via a sliding window 
approach. Windows can be of a user-defined length (the 
“genome approach”) or confined to annotated coding regions 
(the “gene-by-gene approach”). The “genome approach” per-
mits windows to be either adjacent or overlapping. Regardless 
of the approach selected, each window’s k-mer (subsequence of 

length k) frequencies are enumerated. The similarity/dissimi-
larity between 2 windows is calculated based on these k-mer 
frequencies, using either the Pearson (r) or Spearman rank (ρ) 
correlation coefficient. The resulting values for each pairwise 
window comparison are then graphed as a 2-dimensional heat-
map using Glimpse32 (eg, Figure 1A). Windows with a similar 
k-mer usage are represented in the heatmap using colors at one 
end of the color spectrum, whereas windows with dissimilar 
k-mer usage are represented by colors at the other end of the 
spectrum. Draft genome sequences that include several scaf-
fold sequences can be examined using the “genome approach” 
in S-plot2. The scaffolds can be concatenated, separated by, eg, 
Ns, into a single FASTA sequence. S-plot2 does not calculate 
frequencies for windows in which greater than half of the 
sequence is not A, T, C, or G; thus, windows containing more 
than one scaffold will be ignored. The “gene-by-gene approach” 
is a new feature released in S-plot2, as is the Spearman rank 
correlation coefficient metric for sequence comparison.

Functionality has been developed in S-plot2 to aid in the 
interpretation of the heatmap. Users can specify regions of 
interest based on window coordinates or select windows meet-
ing specific criteria (eg, regions exhibiting aberrant k-mer 
usage) and then output or BLAST33 these regions. For instance, 
a cluster of genes which appears in one genome and not the 

Figure 1.  Comparison of Pseudomonas aeruginosa PAO1 (x-axis) and PA7 (y-axis) genomes. (A) “Genome approach” comparison with a window and 

offset of 5000 bp. (B) Genomic island present with the PA7 strain. (C) “Gene-by-gene approach” comparison of protein-coding gene sequences annotated 

for the 2 genomes in panel A (*.faa files). Here, the window size is equivalent to a single coding region and k = 3 is evaluated (the same color bar as shown 

in panel A). The comparisons conducted here for both approaches were done using the Pearson correlation coefficient. Sequence similarity is measured 

by the frequency of shared k-mers, with green signifying low similarity and red signifying high similarity.
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other (indicative of a gene loss/gain), such as that shown in 
Figure 1B, can be queried; in the case in which a gene was 
acquired via LGT, the putative source can be identified. Queries 
to National Center for Biotechnology Information’s (NCBI) 
eUtils API were automated using JEutils.34 All BLAST que-
ries in S-plot2 use the blastn algorithm and remotely query the 
NCBI nucleotide collection (nr/nt) database. Users can also 
output statistics computed for the heatmap as well as generate 
multi-FASTA format files for windows with an r or ρ value 
within a user-defined range. The heatmap image itself can be 
saved to file as a TIF file, implemented using the iCafe 
package.35

An executable jar file, sample sequence data, and a tuto-
rial are freely available through https://bitbucket.org/
lkalesinskas/splot. S-plot2 was tested thoroughly on the 
Windows and Ubuntu operating systems. Due to the lack 
of support for compatibility profiles on MacOS, rendering 
and maneuvering within the S-plot2 heatmap are subopti-
mal (due to incompatibilities with the Glimpse visualiza-
tion version used) on MacOS. Exploration of the S-plot2 
heatmap (scrolling through a sequence, zooming in/out, 
etc) was optimized for use with the mouse on Windows and 
Ubuntu.

As the similarity between windows is calculated based on 
the correlation (either the Pearson or Spearman rank correla-
tion coefficient) of the frequency of shared k-mers, the condi-
tion 4k<<w where w is the window size must be followed. If 
w ⩾ 4k, then most k-mer frequencies will be 0 or 1 and thus 
unsuitable for the correlation analysis. Run time and memory 
usage are dependent on the number of windows. For a genome 
of size M, the number of windows, n, is M/w. Thus, for smaller 
window sizes, a larger heatmap will be generated. For each 
window, k-mer frequencies are enumerated for the original and 
reverse-complement sequences. Calculation of k-mer usage is 
linear and values are stored in a sorted array. The run time and 
memory usage estimate is Ο(n2). For instance, the heatmap 
generated in Figure 1A was generated in 42 seconds. It is 
important to note that for large sequences, the required RAM 
may exceed the RAM allocated or available for the Java Virtual 
Machine (particularly if the user has a 32-bit version installed) 
in which case the application will not execute. Nevertheless, a 
complete human chromosome can be compared using less than 
8 GB of RAM in a matter of minutes; S-plot2’s performance is 
significantly faster than other graphical alignment-free availa-
ble graphical tools.9,11

Results and Discussion
To illustrate the functionality and utility of S-plot2, we con-
ducted 2 case studies. In addition to providing a visualization 
of the genomic sequences under investigation, the new func-
tionality developed in S-plot2 can lead to a deeper under-
standing of the variation in molecular divergence rates across 
sequences.

Case study 1: exploring the evolution of bacterial 
genomes

The genomes of the opportunistic bacterial pathogen 
Pseudomonas aeruginosa are highly mosaic and include regions 
of genomic plasticity.36 The P aeruginosa accessory genome 
exceeds that of its core genome.37 Figure 1 shows the pairwise 
comparison of the P aeruginosa strains PAO1 (NC_002516) 
and the known “taxonomic outlier” for the species, PA7 
(NC_009656).38 Two comparisons were conducted: the 
“genome approach” using a fixed window size (Figure 1A) and 
the “gene-by-gene approach” in which each window is an indi-
vidual gene (Figure 1C). As even closely related P aeruginosa 
strains can be distinguished by single-nucleotide polymor-
phisms, indels, and inversions,39,40 it is thus not surprising to 
observe genomic variation between the PAO1 and PA7 
genomes (Figure 1A and C). The nucleotide sequence of the 
PA7 region shown in Figure 1B was investigated using 
S-plot2’s automated BLAST functionality. This region 
includes numerous transposases and integrases as well as plas-
mid- and phage-associated genes. It corresponds to the previ-
ously identified genomic island RGP42 within the P aeruginosa 
PA7 genome.38 The region shown in Figure 1B is but one of 
the many genomic islands within these 2 strains. Users can 
recognize windows of unusual composition visually via the 
“genome approach” or individual genes of interest via the 
“gene-by-gene approach” and BLAST the sequences. 
Furthermore, S-plot2 can automatically identify such regions 
and BLAST their sequences.

Recombination within P aeruginosa species is frequent and 
previous research has found variation in the evolutionary his-
tories of regions of the P aeruginosa genome.41 To exemplify 
how S-plot2 can be used to investigate recombination, 7 
genomes included in the comparative genomic study of 
Dettman et al41 were selected (Table 1) and pairwise compari-
sons were performed. Sequence similarity was assessed for 
each window size of 5000 bp (base pairs) for k = 6 using the 
Pearson correlation coefficient. Figure 2 (panels B, C, and D) 
shows the pairwise comparisons for PAO1 and C3719, 
LESB58, and PACS2, respectively. These heatmaps illustrate 
the presence/absence of unique regions within the genomes 
and, most notably, rearrangements. The matrices generated by 
S-plot2 were saved and contiguous 0.2 Mbp regions along the 
PAO1 genome were evaluated. Thus, an alignment-free 
approach was used to identify and quantify similarity/dissimi-
larity between homologous regions of the PAO1 genome and 
other P aeruginosa strains. As shown in Figure 2A, different 
regions of the PAO1 genome are represented by different 
topologies. Consistent with prior alignment-based analyses,41 
we find that the evolution of the P aeruginosa genome is not 
uniform across the entire genome sequence. In this fashion, 
S-plot2 can provide evidence of evolution across a genome 
sequence both visually and quantitatively.

https://bitbucket.org/lkalesinskas/splot
https://bitbucket.org/lkalesinskas/splot
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Table 1.  Seven Pseudomonas aeruginosa genomes examined.

Strain Genome size, Mbp No. of scaffolds No. of coding regions Assembly

PAO1 6.26 1 5572 GCA_000006765

LESB58 6.60 1 6041 GCA_000026645

C3719 6.22 1 5648 GCA_000152525

PACS2 6.49 1 5913 GCA_000168335

JD316 6.19 1882 6590 GCA_000506125

JD317 6.49 2043 6979 GCA_000506145

JD320 6.41 2038 6876 GCA_000506165

Sequences were retrieved for genomes (*_genomic.fna.gz) and coding sequences (*_cds_from_genomic.fna.gz).42

Figure 2.  Evolution of the Pseudomonas aeruginosa chromosome. (A) Comparison of cluster topologies based on sequence similarity based on 6-mer 

usage for window size = offset size = 5000 bp over 0.2 Mbp regions of the PAO1 genome. Heatmaps for (B) PAO1 vs C3719, (C) LESB58, and (D) PACS2. 

The same color scale as Figure 1 is used here: sequence similarity is measured by the frequency of shared k-mers, with green signifying low similarity 

and red signifying high similarity.
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Case study 2: exploring the evolution of primate 
chromosomes

S-plot2 is also capable of evaluating whole eukaryotic chromo-
somes. As such, it can be used to estimate chromosome-specific 
molecular divergence rates, estimate lineage specific contribu-
tions to divergence, and identify regions that are significant 
contributors to observed divergence. As a case study of S-plot2, 
we performed pairwise comparisons for all homologous human, 
chimpanzee, and rhesus autosomes (window size = offset 
size = 100 Kbp for k = 6 using the Pearson correlation coeffi-
cient). Each chromosome was also compared with itself using 
the same window size, offset size, and k. This self-sequence 
comparison provides a baseline for the variation within a 
chromosome relative to that observed between species (see 

Supplemental File 1). Prior whole genome comparison studies 
between human and chimpanzee found ≈1.4% sequence 
divergence43 and 23 inversions,44 as well as other differences 
(for a review, see the work by Kehrer-Sawatzki and Cooper45). 
Sequence analysis of human-chimpanzee chromosome pairs 
suggests that recombination, proximity to telomeres, bias in 
repair mechanisms, and GC content are all exerting influence 
on genetic variation.46–50

Here, we present a comparison between human chromo-
some 17, chimpanzee chromosome 17, and rhesus chromo-
some 16. As the heatmaps in Figure 3 show, the pericentric 
inversion previously found between these sequences44 can be 
identified through the pairwise comparisons of the human, 
chimpanzee, and rhesus autosomes. The heatmaps for these 3 
pairwise comparisons, however, do not readily present how 

Figure 3.  Comparison of human (Homo sapiens) chromosome 17 (H17), chimpanzee (Pan troglodytes) chromosome 17 (C17), and rhesus (Macaca 

mulatta) chromosome 16 (R16). Sequence similarity is measured by the frequency of shared k-mers, with green signifying low similarity and red signifying 

high similarity. The inlay shows the divergence between H17 and C17 (red), C17 and R16 (yellow), and H17 and R16 (blue), relative to the window’s GC 

content. The x-axis is representative of the divergence calculated for a window relative to its GC content.



6	 Evolutionary Bioinformatics ﻿

these chromosomes are evolving. For instance, the differences 
observed between the homologous human and chimpanzee 
chromosomes may be the result of changes within the chim-
panzee chromosome or changes within the human chromo-
some. Comparisons of both chromosomes to the rhesus 
chromosome let us distinguish between these 2 scenarios. If we 
oversimplify the process of species divergence to a single point 
in time (thus ignoring subsequent gene flow), one could assume 
that the chromosomal sequences are essentially identical. Thus, 
for a window in the human chromosome, its homologous win-
dow in the chimpanzee genome would have the same sequence 
(and thus nucleotide composition). As such, the heatmap for 
an individual chromosome compared with itself would be 
indiscernible from the comparison of the chromosome to its 
homolog. Post-speciation, the 2 genomes would begin to 
diverge and this divergence can be quantified by the cross-
species comparison value (eg, human vs chimpanzee) relative to 
the intraspecies comparison (eg, human vs human). The matri-
ces of r values were retrieved for each of the plots shown in 
Figure 3 and used to calculate the divergence between species 
(see Supplemental File 1 for details regarding this calculation). 
The inlay in Figure 3 shows the results of this calculation for 
human vs chimpanzee (red), chimpanzee vs rhesus (yellow), 
and human vs rhesus (blue). In this figure, the x-axis is repre-
sentative of the divergence calculated for a window relative to 
its GC content. As shown in the inlay in Figure 3, regions in 
the human genome with a GC content ≈45% are the most 
divergent windows from chimpanzee; these regions are evolv-
ing within the human lineage.

Conclusions
S-plot2 provides a means to visually and quantitatively com-
pare genomic sequences ranging from microbial genomes to 
eukaryotic chromosomes. These comparisons can be gener-
ated in a matter of seconds to minutes (depending on the size 
of the sequence under consideration). S-plot2 includes func-
tionally to aid in the analyses of genomic sequences, allowing 
users to quickly investigate their data and test hypotheses 
based on either observed patterns or statistics capturing both 
the similarities and dissimilarities of sequences. The case 
studies presented highlight just some of the applications of 
S-plot2. Furthermore, the analyses performed for the 
Pseudomonas genomes and human-chimpanzee-rhesus auto-
somes illustrate the variation in molecular divergence rates 
across sequences.
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