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ABSTRACT: With the daily release of data from whole genome sequencing projects, tools to facilitate comparative studies are hard-pressed to
keep pace. Graphical software solutions can readily recognize synteny by measuring similarities between sequences. Nevertheless, regions

of dissimilarity can prove to be equally informative; these regions may harbor genes acquired via lateral gene transfer (LGT), signify gene loss
or gain, or include coding regions under strong selection. Previously, we developed the software S-plot. This tool employed an alignment-free
approach for comparing bacterial genomes and generated a heatmap representing the genomes’ similarities and dissimilarities in nucleotide
usage. In prior studies, this tool proved valuable in identifying genome rearrangements as well as exogenous sequences acquired via LGT in
several bacterial species. Herein, we present the next generation of this tool, S-plot2. Similar to its predecessor, S-plot2 creates an interactive,
2-dimensional heatmap capturing the similarities and dissimilarities in nucleotide usage between genomic sequences (partial or complete). This
new version, however, includes additional metrics for analysis, new reporting options, and integrated BLAST query functionality for the user to
interrogate regions of interest. Furthermore, S-plot2 can evaluate larger sequences, including whole eukaryotic chromosomes. To illustrate some
of the applications of the tool, 2 case studies are presented. The first examines strain-specific variation across the Pseudomonas aeruginosa
genome and strain-specific LGT events. In the second case study, corresponding human, chimpanzee, and rhesus macaque autosomes were
studied and lineage specific contributions to divergence were estimated. S-plot2 provides a means to both visually and quantitatively compare
nucleotide sequences, from microbial genomes to eukaryotic chromosomes. The case studies presented illustrate just 2 potential applications
of the tool, highlighting its capability to identify and investigate the variation in molecular divergence rates across sequences. S-plot2 is freely

available through https://bitbucket.org/lkalesinskas/splot and is supported on the Linux and MS Windows operating systems.
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Background

Modern sequencing technologies can quickly and affordably
produce genomic sequences for species across the tree of life.
Consequently, many new lineages and poorly resolved areas of
the tree have been identified.! With tens of thousands of bac-
terial genomes now publicly available, comparative genomics
has produced numerous insights into microbial life.* Several
tools are currently used to detect genome similarity through
sequence alignment.”~® In addition, tools employing a graphical
“dot plot” approach, such as Gepard,’ Serolis,'® and SeqTools’
Dotter,!! can highlight genomic similarities and rearrange-
ments as well as gene duplications. These tools, however, have
their limitations: Serolis'” is limited in the size of sequence it
can analyze (4kbp), and Dotter! is significantly slower than
Gepard® for larger sequences. Nevertheless, alignment-free
approaches, including the aforementioned “dot plot” tools, have
a significant advantage over alignment-based methods: they
are less computationally expensive (regarding both time and
resources) and impervious to synteny-related problems (see
reviews of Vinga and Almeida'? and Bonham-Carter et al'3).

In addition to sequence similarities, the dissimilarities
between genomic sequences can be equally informative.!
These dissimilarities can indicate strain-specific genes hori-
zontally/laterally acquired rather than vertically inherited.
Lateral gene transfer (LGT) is an important force in the evolu-
tion of prokaryotes,!® including the exchange of defense mech-
anisms and virulence factors.41510 Although certainly less
prevalent (and fiercely debated), LGT between eukaryotes and
prokaryotes can also occur.!’2° Disparities between genomic
sequences can also be the result of gene loss, another pervasive
and often significant driver of evolution in prokaryotic??? and
eukaryotic species®® (see review Albalat and Cafiestro®*).
Moreover, recognition of substantial sequence divergence
between orthologous gene sequences can signify genes under
strong selection (see review Long et al®). Such genes can pro-
vide insight into phenotypic differences between species.?%?’

Previously we developed S-plot, a tool for the rapid analysis
and visualization of bacterial genomic sequences.?® This tool
was applied to the examination of Escherichia,?® Bacillus,*® and
Neisseria®® genomes, identifying regions of unusual nucleotide
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Figure 1. Comparison of Pseudomonas aeruginosa PAO1 (x-axis) and PA7 (y-axis) genomes. (A) “Genome approach” comparison with a window and
offset of 5000bp. (B) Genomic island present with the PA7 strain. (C) “Gene-by-gene approach” comparison of protein-coding gene sequences annotated
for the 2 genomes in panel A (*.faa files). Here, the window size is equivalent to a single coding region and k=3 is evaluated (the same color bar as shown
in panel A). The comparisons conducted here for both approaches were done using the Pearson correlation coefficient. Sequence similarity is measured
by the frequency of shared k-mers, with green signifying low similarity and red signifying high similarity.

composition corresponding to LGT events. Herein, we present
the next generation of this tool: S-plot2. Similar to its prede-
cessor, S-plot2 creates an interactive, 2-dimensional heatmap.
Similar to the aforementioned dot-plot tools, S-plot2 captures
the similarities in nucleotide usage between genomic sequences,
but unique to this tool is the fact that it also captures the dis-
similarities in nucleotide usage between genomic sequences.
Through the examination of nucleotide usage, phylogenetic
signals can be uncovered.! In S-plot2, whole eukaryotic chro-
mosomes and smaller prokaryotic genomes can be efficiently
compared. Furthermore, the new version includes functionality
to extract, analyze, and automate BLAST queries of regions of
interest within the heatmap. This facilitates the investigation of
quickly evolving coding regions, novel coding regions, and lat-
erally transferred elements.

Implementation

Developed in Java, S-plot2 performs pairwise comparisons of
genomic sequences (partial or complete) via a sliding window
approach. Windows can be of a user-defined length (the
“genome approach”) or confined to annotated coding regions
(the “gene-by-gene approach”). The “genome approach” per-
mits windows to be either adjacent or overlapping. Regardless
of the approach selected, each window’s £2-mer (subsequence of

length %) frequencies are enumerated. The similarity/dissimi-
larity between 2 windows is calculated based on these £-mer
frequencies, using either the Pearson () or Spearman rank (p)
correlation coefficient. The resulting values for each pairwise
window comparison are then graphed as a 2-dimensional heat-
map using Glimpse®? (eg, Figure 1A). Windows with a similar
A-mer usage are represented in the heatmap using colors at one
end of the color spectrum, whereas windows with dissimilar
k-mer usage are represented by colors at the other end of the
spectrum. Draft genome sequences that include several scaf-
fold sequences can be examined using the “genome approach”
in S-plot2. The scaffolds can be concatenated, separated by, eg,
NG, into a single FASTA sequence. S-plot2 does not calculate
frequencies for windows in which greater than half of the
sequence is not A, T, C, or G; thus, windows containing more
than one scaffold will be ignored. The “gene-by-gene approach”
is a new feature released in S-plot2, as is the Spearman rank
correlation coefficient metric for sequence comparison.
Functionality has been developed in S-plot2 to aid in the
interpretation of the heatmap. Users can specify regions of
interest based on window coordinates or select windows meet-
ing specific criteria (eg, regions exhibiting aberrant %-mer
usage) and then output or BLAST?3 these regions. For instance,
a cluster of genes which appears in one genome and not the
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other (indicative of a gene loss/gain), such as that shown in
Figure 1B, can be queried; in the case in which a gene was
acquired via LGT; the putative source can be identified. Queries
to National Center for Biotechnology Information’s (NCBI)
eUtils API were automated using JEutils.>* All BLAST que-
ries in S-plot2 use the blastn algorithm and remotely query the
NCBI nucleotide collection (nr/nt) database. Users can also
output statistics computed for the heatmap as well as generate
multi-FASTA format files for windows with an 7 or p value
within a user-defined range. The heatmap image itself can be
saved to file as a TIF file, implemented using the iCafe
package.®

An executable jar file, sample sequence data, and a tuto-
rial are freely available through https://bitbucket.org/
lkalesinskas/splot. S-plot2 was tested thoroughly on the
Windows and Ubuntu operating systems. Due to the lack
of support for compatibility profiles on MacOS, rendering
and maneuvering within the S-plot2 heatmap are subopti-
mal (due to incompatibilities with the Glimpse visualiza-
tion version used) on MacOS. Exploration of the S-plot2
heatmap (scrolling through a sequence, zooming in/out,
etc) was optimized for use with the mouse on Windows and
Ubuntu.

As the similarity between windows is calculated based on
the correlation (either the Pearson or Spearman rank correla-
tion coefficient) of the frequency of shared Z-mers, the condi-
tion 4*<<<w where w is the window size must be followed. If
w= 4% then most 4-mer frequencies will be 0 or 1 and thus
unsuitable for the correlation analysis. Run time and memory
usage are dependent on the number of windows. For a genome
of size M, the number of windows, 7, is M/w. Thus, for smaller
window sizes, a larger heatmap will be generated. For each
window, £-mer frequencies are enumerated for the original and
reverse-complement sequences. Calculation of 4-mer usage is
linear and values are stored in a sorted array. The run time and
memory usage estimate is O(n2). For instance, the heatmap
generated in Figure 1A was generated in 42seconds. It is
important to note that for large sequences, the required RAM
may exceed the RAM allocated or available for the Java Virtual
Machine (particularly if the user has a 32-bit version installed)
in which case the application will not execute. Nevertheless, a
complete human chromosome can be compared using less than
8 GB of RAM in a matter of minutes; S-plot2’s performance is
significantly faster than other graphical alignment-free availa-

ble graphical tools.”1

Results and Discussion

To illustrate the functionality and utility of S-plot2, we con-
ducted 2 case studies. In addition to providing a visualization
of the genomic sequences under investigation, the new func-
tionality developed in S-plot2 can lead to a deeper under-
standing of the variation in molecular divergence rates across
sequences.

Case study 1: exploring the evolution of bacterial
genomes

The genomes of the opportunistic bacterial pathogen
Pseudomonas aeruginosa are highly mosaic and include regions
of genomic plasticity.3® The P aeruginosa accessory genome
exceeds that of its core genome.%” Figure 1 shows the pairwise
comparison of the P aeruginosa strains PAO1 (NC_002516)
and the known “taxonomic outlier” for the species, PA7
(NC_009656).% Two comparisons were conducted: the
“genome approach” using a fixed window size (Figure 1A) and
the “gene-by-gene approach”in which each window is an indi-
vidual gene (Figure 1C). As even closely related P aeruginosa
strains can be distinguished by single-nucleotide polymor-
phisms, indels, and inversions,?# it is thus not surprising to
observe genomic variation between the PAO1 and PA7
genomes (Figure 1A and C). The nucleotide sequence of the
PA7 region shown in Figure 1B was investigated using
S-plot2’s automated BLAST functionality. This region
includes numerous transposases and integrases as well as plas-
mid- and phage-associated genes. It corresponds to the previ-
ously identified genomic island RGP42 within the P aeruginosa
PA7 genome.? The region shown in Figure 1B is but one of
the many genomic islands within these 2 strains. Users can
recognize windows of unusual composition visually via the
“genome approach” or individual genes of interest via the
“gene-by-gene approach” and BLAST the sequences.
Furthermore, S-plot2 can automatically identify such regions
and BLAST their sequences.

Recombination within P aeruginosa species is frequent and
previous research has found variation in the evolutionary his-
tories of regions of the P aeruginosa genome.*! To exemplify
how S-plot2 can be used to investigate recombination, 7
genomes included in the comparative genomic study of
Dettman et al*! were selected (Table 1) and pairwise compari-
sons were performed. Sequence similarity was assessed for
each window size of 5000bp (base pairs) for £=6 using the
Pearson correlation coefficient. Figure 2 (panels B, C, and D)
shows the pairwise comparisons for PAO1 and C3719,
LESBS58, and PACS2, respectively. These heatmaps illustrate
the presence/absence of unique regions within the genomes
and, most notably, rearrangements. The matrices generated by
S-plot2 were saved and contiguous 0.2 Mbp regions along the
PAO1 genome were evaluated. Thus, an alignment-free
approach was used to identify and quantify similarity/dissimi-
larity between homologous regions of the PAO1 genome and
other P aeruginosa strains. As shown in Figure 2A, different
regions of the PAO1 genome are represented by different
topologies. Consistent with prior alignment-based analyses,*!
we find that the evolution of the P aeruginosa genome is not
uniform across the entire genome sequence. In this fashion,
S-plot2 can provide evidence of evolution across a genome
sequence both visually and quantitatively.
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Table 1. Seven Pseudomonas aeruginosa genomes examined.

STRAIN GENOME SIZE, MBP NO. OF SCAFFOLDS NO. OF CODING REGIONS ASSEMBLY

PAO1 6.26 1 5572 GCA_000006765
LESB58 6.60 1 6041 GCA_000026645
C3719 6.22 1 5648 GCA_000152525
PACS2 6.49 1 5913 GCA_000168335
JD316 6.19 1882 6590 GCA_000506125
JD317 6.49 2043 6979 GCA_000506145
JD320 6.41 2038 6876 GCA_000506165

Sequences were retrieved for genomes (*_genomic.fna.gz) and coding sequences (*_cds_from_genomic.fna.gz).4?
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Figure 2. Evolution of the Pseudomonas aeruginosa chromosome. (A) Comparison of cluster topologies based on sequence similarity based on 6-mer
usage for window size =offset size=5000bp over 0.2Mbp regions of the PAO1 genome. Heatmaps for (B) PAO1 vs C3719, (C) LESB58, and (D) PACS2.
The same color scale as Figure 1 is used here: sequence similarity is measured by the frequency of shared k-mers, with green signifying low similarity
and red signifying high similarity.
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Figure 3. Comparison of human (Homo sapiens) chromosome 17 (H17), chimpanzee (Pan troglodytes) chromosome 17 (C17), and rhesus (Macaca
mulatta) chromosome 16 (R16). Sequence similarity is measured by the frequency of shared k-mers, with green signifying low similarity and red signifying
high similarity. The inlay shows the divergence between H17 and C17 (red), C17 and R16 (yellow), and H17 and R16 (blue), relative to the window’s GC
content. The x-axis is representative of the divergence calculated for a window relative to its GC content.

Case study 2: exploring the evolution of primate
chromosomes

S-plot2 is also capable of evaluating whole eukaryotic chromo-
somes. As such, it can be used to estimate chromosome-specific
molecular divergence rates, estimate lineage specific contribu-
tions to divergence, and identify regions that are significant
contributors to observed divergence. As a case study of S-plot2,
we performed pairwise comparisons for all homologous human,
chimpanzee, and rhesus autosomes (window size=offset
size=100Kbp for 2=6 using the Pearson correlation coeffi-
cient). Each chromosome was also compared with itself using
the same window size, offset size, and 4. This self-sequence
comparison provides a baseline for the variation within a
chromosome relative to that observed between species (see

Supplemental File 1). Prior whole genome comparison studies
between human and chimpanzee found =~1.4% sequence
divergence® and 23 inversions,* as well as other differences
(for a review, see the work by Kehrer-Sawatzki and Cooper®).
Sequence analysis of human-chimpanzee chromosome pairs
suggests that recombination, proximity to telomeres, bias in
repair mechanisms, and GC content are all exerting influence
on genetic variation.4-0

Here, we present a comparison between human chromo-
some 17, chimpanzee chromosome 17, and rhesus chromo-
some 16. As the heatmaps in Figure 3 show, the pericentric
inversion previously found between these sequences* can be
identified through the pairwise comparisons of the human,
chimpanzee, and rhesus autosomes. The heatmaps for these 3
pairwise comparisons, however, do not readily present how
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these chromosomes are evolving. For instance, the differences
observed between the homologous human and chimpanzee
chromosomes may be the result of changes within the chim-
panzee chromosome or changes within the human chromo-
some. Comparisons of both chromosomes to the rhesus
chromosome let us distinguish between these 2 scenarios. If we
oversimplify the process of species divergence to a single point
in time (thus ignoring subsequent gene flow), one could assume
that the chromosomal sequences are essentially identical. Thus,
for a window in the human chromosome, its homologous win-
dow in the chimpanzee genome would have the same sequence
(and thus nucleotide composition). As such, the heatmap for
an individual chromosome compared with itself would be
indiscernible from the comparison of the chromosome to its
homolog. Post-speciation, the 2 genomes would begin to
diverge and this divergence can be quantified by the cross-
species comparison value (eg, human vs chimpanzee) relative to
the intraspecies comparison (eg, human vs human). The matri-
ces of r values were retrieved for each of the plots shown in
Figure 3 and used to calculate the divergence between species
(see Supplemental File 1 for details regarding this calculation).
The inlay in Figure 3 shows the results of this calculation for
human vs chimpanzee (red), chimpanzee vs rhesus (yellow),
and human vs rhesus (blue). In this figure, the x-axis is repre-
sentative of the divergence calculated for a window relative to
its GC content. As shown in the inlay in Figure 3, regions in
the human genome with a GC content =45% are the most
divergent windows from chimpanzee; these regions are evolv-
ing within the human lineage.

Conclusions

S-plot2 provides a means to visually and quantitatively com-
pare genomic sequences ranging from microbial genomes to
eukaryotic chromosomes. These comparisons can be gener-
ated in a matter of seconds to minutes (depending on the size
of the sequence under consideration). S-plot2 includes func-
tionally to aid in the analyses of genomic sequences, allowing
users to quickly investigate their data and test hypotheses
based on either observed patterns or statistics capturing both
the similarities and dissimilarities of sequences. The case
studies presented highlight just some of the applications of
S-plot2. Furthermore, the analyses performed for the
Pseudomonas genomes and human-chimpanzee-rhesus auto-
somes illustrate the variation in molecular divergence rates
across sequences.
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