- 1 **Title**: Trait-based patterns of microbial dynamics in dormancy potential and heterotrophic
- 2 strategy: case studies of resource-based and post-press succession
- 3 Running title: Microbial traits dynamics over succession
- 4 **Authors**: Patrick J. Kearns^{1,2} and Ashley Shade^{1,2,3,4,5}
- 5 **Affiliations**: ¹Department of Microbiology and Molecular Genetics; ²Plant Resilience Institute;
- ³Program in Ecology, Evolution, and Behavior; ⁴DOE Great Lakes Bioenergy Research Center;
- 7 and ⁵Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing
- 8 MI
- 9 Correspondence: shadeash@msu.edu
- 10 **Keywords**: primary succession, secondary succession, trait-based ecology, metagenome
- 11 reconstruction, metagenomics, ribosomal copy number, disturbance
- 12 **Conflict of interest statement:** Authors declare no personal or financial interests.
- 13 Abstract
- 14 Understanding the relationship between microbial community structure and function is a major
- challenge in microbial ecology. Recent work has shown that community weighted mean 16S
- 16 rRNA gene copies, as a proxy for heterotrophic growth strategy, is a microbial community trait
- that decreases predictably over successional trajectories that are underpinned by changes in
- 18 resource availability. However, it has been challenging to identify other microbial traits that are
- 19 predictive of community functions and have consistent patterns with succession. Trait-based
- 20 patterns of secondary succession (e.g., after a disturbance) are less often considered, and these
- 21 responses may be underpinned by abiotic drivers other than changes in resources. In this

perspectives piece, we present hypotheses about microbial traits important for microbial succession in resource-based and post-press disturbance scenarios, as synthesized from previous works and extended within this work. Using four case studies, we compare two traits, heterotrophic strategy and dormancy potential, and two different types of succession, resource-based (endogenous heterotrophic) and post-press. There were decreases in weighted ribosomal operon counts and in dormancy genes over resource-based succession. Both traits also were lower in post-press succession as compared to reference conditions, but increased with time from disturbance. Thus, dormancy potential may be an additional trait that changes predictably with succession. Finally, considering changes in microbial community traits over post-press succession is as important as over resource-based succession. These patterns need be interpreted carefully and reference and recovering samples can be collected to improve interpretation of changes in community traits over post-press succession.

Main Text

- 36 Approaching succession from the microbial perspective
- Microbial succession includes two categories that have been borrowed from studies of plant
 ecology: primary and secondary succession. These categories, however, do not fully capture the
 environmental context and physiology that distinguish microbial succession (Fierer et al., 2010).

 Fierer et al., (2010) delineated microbial primary succession based on resource dynamics into
 autotrophic succession and endogenous/exogenous heterotrophic succession. Autotrophic
 succession occurs when early colonizers are primarily autotrophic and generate a stable, slow
 changing carbon pool over time. Heterotrophic succession is dictated by the source of carbon and

the early colonization of heterotrophic taxa. Endogenous succession relies on the respiration of local carbon and succession is driven by changes in the carbon pool (e.g. as in colonization of a nutrient rich mesocosm; Nemergut et al., 2015). Exogenous succession relies on the resupply of external carbon and its variability. All three types of "primary" succession, however, are dictated by changes in resources and as such, we broadly refer to these as *resource-based succession* (Table 1). Fierer et al. 2010 also specified that these types of microbial succession initiate from a "blank-slate" environment that was either sterile or nearly-sterile, analogous to primary succession in plants.

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

In contrast to resource-based succession, microbial "secondary" succession occurs following a disturbance to a previously colonized ecosystem. In ecology, secondary successional patterns can depend on new immigrants that colonize the disturbed ecosystem, but local taxa can also play an important role. Local taxa that persist despite the disturbance, and/or gain a competitive advantage given the disturbance can affect community outcomes. Thus, resuscitated microbial taxa may contribute substantially to microbial secondary succession, which may be a point of distinction from "macrobial" succession (e.g., Nemergut et al., 2013). Local taxa that have historically or contemporarily contributed to the dormant pool provide an opportunity for legacy effects of previously successful community members (Lewis, 2010). Furthermore, resuscitation can allow for the proliferation of taxa that were not competitive before the disturbance. Thus, the dynamics of secondary succession in plants are considerably different than those of microbes, and bacterial and archaeal dynamics may be more influenced by the local source pool, rather than immigration of new taxa. Furthermore, post-disturbance microbial succession is not necessarily driven by changes in resources, but instead by resistance and resilience to the stressor by persisting populations. Because of these distinction between

microbes and plants, we offer a re-focusing of microbial secondary succession to *post-disturbance succession*, which can be further delineated into *post-press* (after a long-term disturbance that impacts multiple generations) and *post-pulse* (after short-term disturbance) disturbance scenarios (**Table 1**).

Microbial community traits that change with succession

The succession of microbial communities following a disturbance can have important implications for the recovery and maintenance of ecosystem function (e.g., Shade and Peter et al., 2012). Two potentially important microbial traits are dormancy potential and the number of ribosomal operons (hereafter "operon count"). Dormancy is the ability of microorganisms to decrease metabolic activity and maintain viability in a quiescent state (e.g. Lennon and Jones, 2011), and it has implications for a microorganism's ability to persist in the environment given unfavorable conditions. Operon count is the number of ribosomal operons within a cell, and has been used as a proxy for a microorganism's heterotrophic strategy and therefore the rapidity of its response to resources; copiotrophs are assumed to have relatively more copies than oligotrophs (Klappenbach et al., 2000). While rapid growth and operon count have been shown to be correlated in laboratory cultures of type strains (Roller et al., 2016), there is limited information about how the growth strategies of most environmental taxa relate to ribosomal operon count, especially in situ. However, mean weighted ribosomal operon count across taxa, as assessed by 16S rRNA gene amplicon sequencing followed by metagenome reconstruction, has been introduced as an aggregate microbial community-level trait for heterotrophy (Nemergut et al., 2015, DeAngelis et al., 2015).

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Case studies

We explored the patterns of two traits, ribosomal operon count and dormancy potential (measured as the abundance of genes conferring dormancy strategies), over microbial community succession in four previously published studies, three involving soils (Table S1). Two studies were examples of endogenous heterotrophic succession over changes in resource availability (Ferrenberg et al., 2013; Nemergut et al., 2015). In addition, we investigated two sites exposed to mild and extreme increased temperatures as examples of post-press succession (DeAngelis et al., 2015; Lee and Sorensen et al., 2017, respectively).

The studies of Ferrenberg et al. 2013 and Nemergut et al. 2015, are examples of succession driven by changes in type and availability of resources after colonization of a "blank slate" environment (Fierer et al., 2010). Nemergut et al. 2015 examined community succession over a 96-hour period in sterilized rich media mesocosoms deployed in a coastal forest on the Yucatan Peninsula, Mexico. Ferrenberg et al. 2013 collected samples following a forest fire on the eastern slope of the Colorado Front Range, CO, USA. The top 5 cm of soils were collected at reference sites and at a fire-affected sites 1, 4, 29, and 33 months post-fire disturbance. While this study would be classified as secondary succession based on the plant literature, we posit that, from the microbial perspective, the forest fire study more closely resembles endogenous heterotrophic (resource-based) succession for the soil microbial communities, as distinguished by Fierer et al. 2010: the top 5 cm of collected soil were likely sterilized from the fire (a "blank slate" environment), and there were reported changes in organic matter quality (lower C:N ratio) and other important nutrients (higher NH₄⁺, Ferrenberg et al. 2013), suggesting that the trajectory was primarily driven by the dynamics of available resources. It was previously reported by

Nemergut et al., (2015) that weighted mean operon count decreased over succession in both of these studies, suggesting a gradual replacement of copiotrophic colonizers with oligotrophs.

The studies from DeAngelis et al., (2015) and Lee and Sorensen et al., (2017) are examples of post-press succession studies in soils following heat disturbance. The study by DeAngelis et al. examined the effect of increased temperature (+5°C) on temperate forest soils (Harvard Forest LTER, Petersham, MA, USA) after 5, 10, or 20 years of warming. Soils were collected from the O (0-0.03m) and A (0.03-0.13m) horizons. The authors demonstrated a decrease in weighted mean operon count in heated O horizon soils relative to reference soils but found no change in the A horizon. They also reported no difference in operon count given duration of warming. Thus, we focused on O horizon soil communities and aggregated over years of warming. Finally, Lee and Sorensen et al., (2017) examined a chronosequence of surface soil impacted at different decades by the progression of the Centralia underground coal seam fire (Pennsylvania, USA). The fire underlies 150 acres of temperate forest and remaining town, and warms the surface soil (fire-affected temperatures ranged from ~20-60 °C). Samples were collected from the top 20cm of soil from un-vegetated sites that were fire-affected, recovered from fire, and reference. The original study did not analyze weighted mean operon count.

Results and discussion

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

For each study, we calculated weighted mean operon count by summing the relative abundance of each taxa multiplied by its copy number as determined by PICRUSt (Langille et al., 2013), replicating the previous analyses of copy number as a community-level aggregated trait (Nemergut et al., 2015; DeAngelis et al., 2015). We first reproduced the analyses that showed that operon count decreased over resource-based succession (**Fig S1A-B**; Nemergut et

al., 2015). In agreement with the previous reports, and, as expected, operon count decreased over succession with colonization of the sterile mesocosms and soils that had more recently experienced fire (4 months recovered) had higher operon counts than soils that were further removed from the time of disturbance (29 months recovered). This agrees with the previously posed hypothesis of copiotroph colonizers followed by oligotroph successors during resource-based primary succession (Nemergut et al. 2015).

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

We next reproduced the analysis that showed that operon count after experimental longterm soil warming at Harvard Forest had higher operon count in reference soils than in warmed soils, as an example of post-press succession (**Fig S1C**; Kruskal-Wallis test, p < 0.001, H = 19.38). We then added an analysis of our own published dataset of post-press succession in Centralia. In Centralia, fire-affected soils had lower operon count than recovered soils, which had lower operon count than reference soils (Fig 1A; p=0.002, H=12.07). This suggests that, over postpress succession, operon count decreases at/during disturbance and then increases during recovery. Thus, relative to reference soils, post-press succession can exhibit an opposite pattern than resource-based succession. An interpretation of this may be that the relative number of copiotrophs increases with time from disturbance in this scenario. During post-press succession, it may be that operon count patterns are conditional on 1) persistence of some members of the local community given the disturbance (e.g., an unsterile starting environment and the local pool of dormant organisms); 2) the contribution of important drivers other than changes in resource quality and availability; and 3) competitive differences in the community members to the disturbance, resulting in differential survivorship and proliferation.

Overall, these results agree with previous studies: operon count is an aggregated community trait that can inform patterns of microbial succession. However, we show that operon

count patterns over resource-based and post-press succession can be opposing. A more nuanced interpretation of operon count dynamics may be necessary to inform drivers of post-press succession, and a specific consideration of the conditions of resource-based succession (exogenous/endogenous and autotrophic/heterotrophic), driven by changes in resource availability from a "blank slate" environment (Fierer et al., 2010) will be informative for predicting trait-based outcomes. Furthermore, the correlation between copiotrophy and ribosomal operon count is still unclear and investigations into other genomic features such genomic architecture (e.g. position of genes) or genome size may provide a more complete picture (Klappenbach et al., 2000; Vieira-Silva and Rocha, 2010).

Next, we assessed the patterns of microbial pathways involved in initiating or regulating microbial dormancy (Lennon and Jones, 2011). We focused on: sporulation factors (*spo* genes) that are generally conserved among Firmicutes (Onyenwoke *et al.*, 2004); toxin-antitoxin systems (hipA/B, MazF/E, RelB/E, and DinJ/YafQ) that are phylogenetically distributed among Gram-positive bacteria, Gram-negative bacteria, and archaea (Pandey and Gerdes, 2005) and commonly detected in metagenomes (Lennon and Jones, 2011); and resuscitation promoting factors (*rpfC*) that are conserved among Actinobacteria with homologs among some Firmicutes (Ravagnani et al., 2005). While these are not an exhaustive set of dormancy genes, they represent the major known strategies and lineages of microbes capable of dormancy (Lennon and Jones, 2011). We used PICRUSt to reconstruct metagenome content for each study and queried these for dormancy genes. Over primary succession, there were general decreases in dormancy genes over time (**Fig 2A and B**). In the forest fire dataset, post-forest fire soils had more dormancy genes than reference soils (**Fig 2B**; *H*=8.23, *p*=0.004). Over secondary succession, there were relatively more dormancy genes in reference and recovered soils as compared to fire-affected

soils in Centralia (**Fig 1B**; H=41.093, p<0.01) and warmed soils in the Harvard Forest (**Fig 2C**; H=198.02, p<0.01). Inclusive of all studies, there was a positive relationship (Spearman's ρ = 0.44-0.78, p<0.001) between weighted mean operon count and dormancy gene abundance, suggesting a possible link between copiotrophy and potential for dormancy. Thus, we analyzed publicly available bacterial genomes to determine if there was a relationship between operon counts and dormancy potential (assessed using rrnDB; Lee et al., 2008). We found that genomes with more ribosomal operons were likely to also contain these dormancy genes (**Fig S2**; H=1326.6, p<0.01).

There are limitations in using metagenome reconstruction from 16S rRNA gene amplicon libraries and some discussion about the accuracy of ancestral state reconstruction for environmental microorganisms that are not well represented in genome databases (Langille et al., 2013). Thus, we performed complementary analyses to estimate ribosomal operon counts and dormancy genes using annotated metagenomes that also were sequenced from Centralia soils. We used the abundances of the tRNA genes instead of 16S rRNA genes due to the difficulties in assembling 16S rRNA genes. There was a strong correlation between 16S rRNA and tRNA abundance (r^2 =0.8 and 0.96 in our dataset), as previously reported (Lee et al., 2008). Additionally, we analyzed operon count in Centralia soils using the ribosomal operon database (rrnDB; Lee et al., 2008), and there was a strong correlation (ρ =0.86, p<0.01) between ribosomal operon counts estimated by PICRUSt and the rrnDB (**Fig S3**).

Normalized tRNA abundance was significantly higher in recovered soils than fire-affected soils (**Fig 1C**; F=127.19, p=0.005). This suggests that operon count per genome was decreased due to the fire and that fewer copiotrophic bacteria were present. We also observed more dormancy genes in reference and recovered soils than in fire affected soils (**Fig 1D**; toxins-

F=4.13, p=0.04, sporulation- F=27.18, p<0.01), however, no significant effect was found for resuscitation promoting factors (F=1.82, p=0.07). Our results show an unexpected agreement in pattern between metagenome analysis, rrnDB analysis, and metagenome reconstruction from 16S rRNA gene sequences (**Fig S3, Fig 1C**). This suggests that though databases may be limited, the metagenome patterns derived from 16S rRNA gene sequences were robust across multiple methodologies.

The results presented here suggest nuances in patterns of ribosomal operon count between resource-based and post-press microbial succession. In resource-based succession, fast growers with high ribosomal operon count are favored by the high resource availability in early succession (rich media and new resource availability following forest fire). Furthermore, early colonizers also had higher potential for dormancy, as assessed by dormancy gene abundances. Recent work suggests that many microorganisms have limited long-range dispersal capabilities, and that colonization of a blank-slate environment likely occurs from regional metacommunities (Martiny et al., 2006). The mesocosms investigated by Nemergut et al., (2015) had a diversity of colonizers. However, there was consistent detection of taxa from the endospore-forming Firmicutes phylum when nutrients were high, which is counterintuitive to what has been previously shown (Jones and Lennon, 2010). The early mesocosm colonization of taxa with dormancy potential may be reflective of the general hardiness and high dispersal potential of dormant cells (Müller et al., 2014), and their ability to grow rapidly.

In contrast to the patterns following resource-based succession, post-press succession case studies had a decrease in ribosomal operon count and dormancy traits with time and relative to reference soils. Increased temperature directly stresses cells and alters soil biogeochemistry. In Centralia, extreme temperatures impose a harsh environment that may also favor oligotrophic

growth. Though we do not know how representative they are, the post-press succession case studies presented suggests an overall reduction in microbiome dormancy potential after a press stressor. This is important because dormancy has been linked to the preservation of ecosystem function following disturbance (Aanderud et al., 2015; Kearns et al., 2016) and it suggests lower community resilience to future stressors. Data from the recovered soils in Lee and Sorensen et al., (2017) suggests partial recovery of dormancy genes following release of the stressor. A next step would be to determine whether the partial recovery of dormancy genes can be attributed to immigration from the regional species pool. Nonetheless, while dormant taxa and rare microbial taxa may provide reservoirs of microbial diversity and function (Shade et al., 2014), we propose that the loss of dormancy potential can alter subsequent post-disturbance successions and microbial functional responses to future disturbances.

Though, in some cases, dormancy genes and operon counts were positively correlated, we do not expect this to be universal for all microorganisms and ecosystems. The observed relationship between dormancy gene abundance and operon counts may be due to the general phylogenetic conservation of some of the dormancy genes (e.g., spo genes and rpf), as operon count often also is conserved or similar within lineages (Lee et al., 2008). While the operon counts of genomes containing toxin-antitoxin genes was higher (p<0.01, H=1326.6) than those from genomes in which no dormancy genes were detected, the overall correlation between toxin-antitoxin systems and operon count was low relative to the other dormancy genes (Spearman's p=0.44 compared to 0.78). Among the dormancy genes investigated here, toxin-antitoxin genes are most phylogenetically broad and least specific to dormancy strategies (e.g. involved in other pathways), suggesting that dormancy potential is not necessarily linked to operon count or heterotrophic strategy in all situations. We are yet unable to fully catalogue this trait because of

limitations in annotation of unknown, divergent and novel dormancy genes. An improved understanding of the phylogenetic conservation of dormancy genes will inform their relationship with heterotrophic strategy (Martiny et al., 2015).

In investigating patterns of post-press succession, informative comparisons are made to reference dynamics and recovered conditions. Operon count and dormancy gene abundance did not return to reference levels after 33 months of recovery in Ferrenberg et al. 2013 (Fig 3).

However, both post-press succession studies had a lower abundance of these traits relative to reference soils. Though data from Lee and Sorensen et al., (2017) indicate a partial recovery of traits following stressor release, the degree of recovery after mild soil warming is unknown yet (DeAngelis et al., 2015). We highlight the need for observation of reference communities to better understand the dynamics occurring during succession, and for inclusion of recovery time points to fully understand long-term trait dynamics and their associated ecosystem functions.

Post-disturbance succession, whether pulse or press, may necessarily be more nuanced towards disturbance characteristics and its specificity to hinder or advantage the growth of certain populations. For example, changes in community structure due to temperature increases will not be the same as changes due to salinity or pH, but in combining case studies, it may be possible to observe overarching patterns in the traits of taxa both sensitive and tolerant to disturbances.

In conclusion, we have presented a revised conceptual framework for microbial succession and four case studies to suggest that, in addition to weighted ribosomal operon count, dormancy potential is a microbial trait that could be useful for interpreting nuanced patterns of microbial succession. Because they may enhance ecosystem stability via member persistence, taxa that employ dormancy strategies likely play key roles in post-disturbance succession. In addition, regional taxa that employ dormancy strategies robust to dispersal may serve as

important pioneers in resource-based succession. The case studies here can speak only to endogenous heterotrophic succession, but autotrophic and exogenous heterotrophic succession may benefit from initially dormant pioneers as well. More synergistic analyses of studies are needed to understand the generalities of microbial succession, including autotrophic, exogenous heterotrophic, post-press, and post-pulse scenarios. Ultimately, linking changes in these and other microbial traits to changes in function will allow for improved prediction of ecosystem outcomes over both resource-based and post-press succession.

Acknowledgements

We thank Joseph Knelman for providing sequencing data from Ferrenberg et al., (2013) and members of the Shade lab for discussion of the manuscript.

Funding

This study was supported in part by the Michigan State University, the Michigan State Plant Resilience Institute, the US Department of Energy Joint Genome Institute's Community Science Project #1834, the National Science Foundation DEB #1749544, and the Michigan State University computational resources provided by the Institute for Cyber-Enabled Research. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231.

References

1. Aanderud ZT, Jones SE, Fierer N, Lennon JT. (2015). Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. *Front Microbiol* 6.

- 293 2. Aanderud ZT, Vert JC, Lennon JT, Magnusson TW, Breakwell DP, Harker AR. (2016).
- Bacterial dormancy is more prevalent in freshwater than hypersaline lakes. *Front*
- 295 *Microbiol* 7.
- 3. DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LT, Varney RM, Blanchard JL, et
- al. (2015) Long-term forest soil warming alters microbial communities in temperate
- forest soils. Front Microbiol 6.
- 4. Ferrenberg S, O'Neill SP, Knelman JE, Todd B, Duggan, S, Bradley, D, et al. (2013).
- Changes in assembly processes in soil bacterial communities following a wildfire
- 301 disturbance. *ISME J* 7: 1102-1111.
- 5. Fierer N, Nemergut D, Knight R, Craine JM. (2010). Changes through time: integrating
- microorganisms into the study of succession. *Res Microbiol* 161: 635-642.
- 6. Jones SE, Lennon JT. (2010). Dormancy contributes to the maintenance of microbial
- diversity. *Proc Natl Acad Sci USA* 107: 5881-5886.
- 7. Kearns PJ, Angell JH, Howard EM, Deegan LA, Stanley RH, Bowen JL. (2016). Nutrient
- enrichment induces dormancy and decreases diversity of active bacteria in salt marsh
- 308 sediments. *Nat Comm* 7: 12881.
- 8. Klappenbach JA, Dunbar JM, Schmidt TM. (2000). rRNA operon copy number reflects
- ecological strategies of bacteria. *Appl Environ Microbiol* 66: 1328-1333.
- 9. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. (2013).
- Predictive functional profiling of microbial communities using 16S rRNA marker gene
- sequences. *Nat Biotech* 31: 814-821.
- 10. Lee ZMP, Bussema III C, Schmidt TM. (2008). rrn DB: documenting the number of
- 315 rRNA and tRNA genes in bacteria and archaea. *Nucl Acids Res* 37: D489-D493.

- 11. Lee SH, Sorensen JW, Grady KL, Tobin TC, Shade A. (2017). Divergent extremes but
- convergent recovery of bacterial and archaeal soil communities to an ongoing
- subterranean coal mine fire. *ISME J* 11: 1447-1459.
- 12. Lennon JT, Jones SE. (2011). Microbial seed banks: the ecological and evolutionary
- implications of dormancy. *Nat Rev Microbiol 9*: 119.
- 321 13. Lewis K. (2010). Persister cells. *Ann Rev Microbiol* 64: 357-372.
- 14. Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al.
- 323 (2006). Microbial biogeography: putting microorganisms on the map. *Nat Rev*
- *Microbiol* 4: 102-112.
- 15. Martiny JB, Jones SE, Lennon JT, Martiny AC. (2015). Microbiomes in light of traits: a
- phylogenetic perspective. *Science 350*: acc9323.
- 16. Müller AL, De Rezende JR, Hubert CR, Kjeldsen KU, Lagkouvardos I, Berry D, et al.
- 328 (2014). Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean
- 329 currents. *ISME J* 8: 1153-1165.
- 17. Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman
- JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S. Patterns and processes of microbial
- community assembly. Microbiology and Molecular Biology Reviews. 2013 Sep
- 333 1;77(3):342-56.
- 18. Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, et al.
- 335 (2015). Decreases in average bacterial community rRNA operon copy number during
- succession. *ISME J* 10: 1147-1156.

337	19. Onyenwoke RU, Brill JA, Farahi K, Wiegel J. Sporulation genes in members of the low
338	G+ C Gram-type-positive phylogenetic branch (Firmicutes). Archives of microbiology.
339	2004 Oct 1;182(2-3):182-92.
340	20. Pandey DP, Gerdes K. (2005). Toxin-antitoxin loci are highly abundant in free-living but
341	lost from host-associated prokaryotes. Nucl Acids Res 33: 966-976.
342	21. Ravagnani A, Finan CL, Young M. (2005). A novel firmicute protein family related to
343	the actinobacterial resuscitation-promoting factors by non-orthologous domain
344	displacement. BMC Gen 6:39.
345	22. Roller BR, Stoddard SF, Schmidt TM. (2016). Exploiting rRNA operon copy number to
346	investigate bacterial reproductive strategies. Nat Microbiol 1: 16160.
347	23. Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. (2012).
348	Fundamentals of microbial community resistance and resilience. Front Microbiol, 3.
349	24. Vieira-Silva S, Rocha EP. (2010). The systemic imprint of growth and its uses in
350	ecological (meta) genomics. PLoS Genetics 6: 1000808.
351	25. Yano K, Wada T, Suzuki S, Tagami K, Matsumoto T, Shiwa Y, et al. (2013). Multiple
352	rRNA operons are essential for efficient cell growth and sporulation as well as outgrowth
353	in Bacillus subtilis. Microbiol 159: 2225-2236.
354	

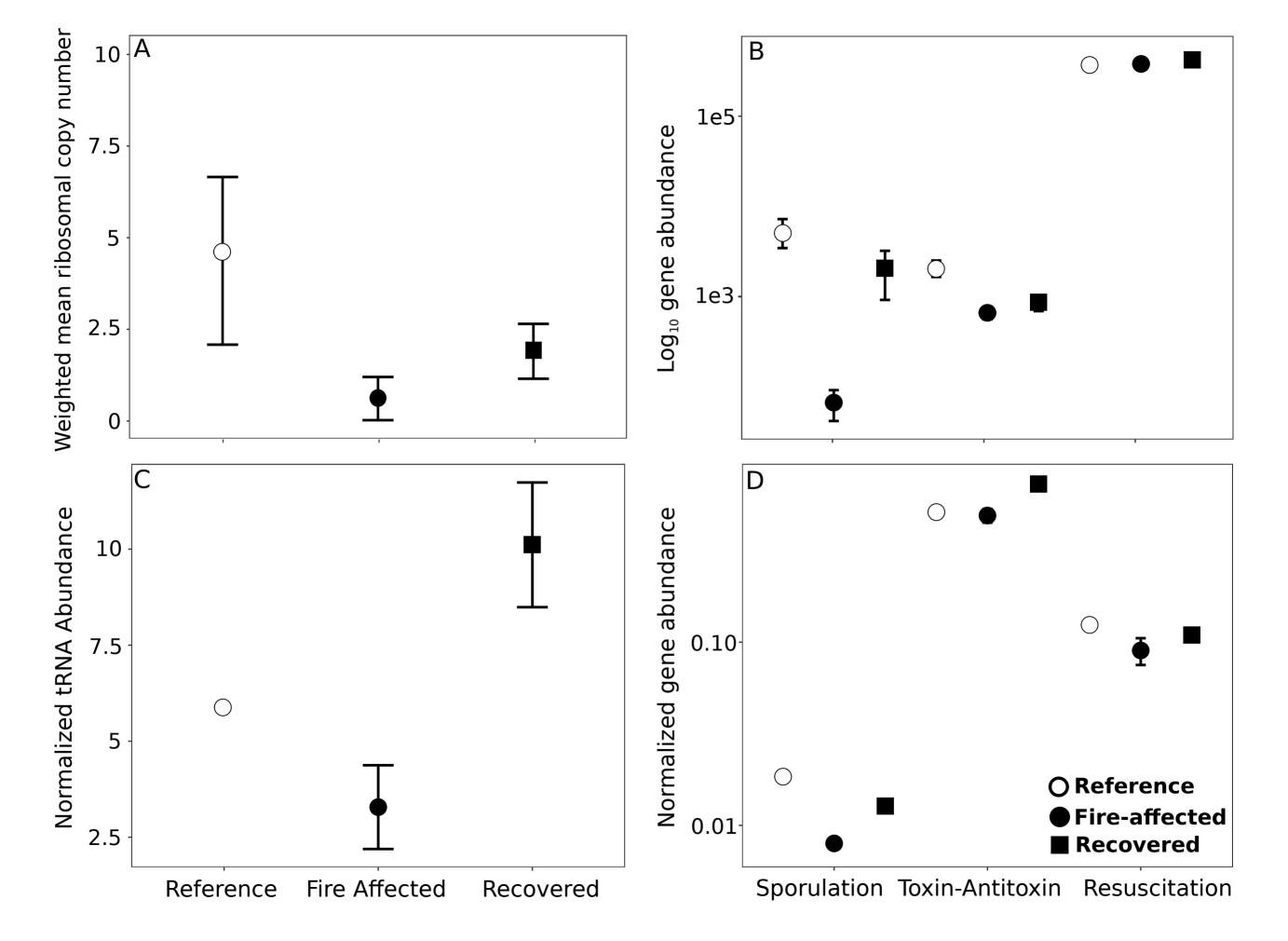
Figure legends

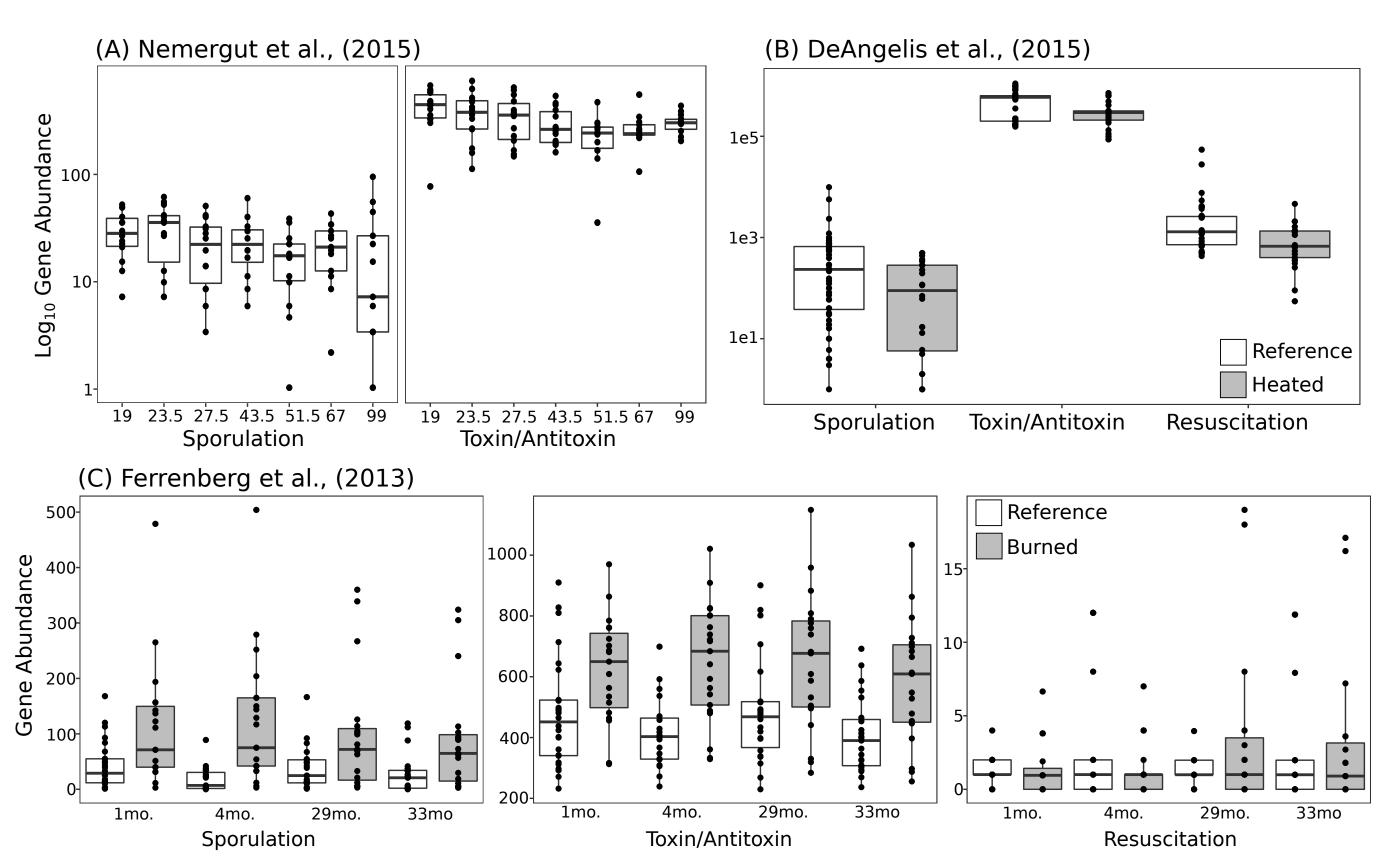
Figure 1- Two microbial traits, ribosomal operon count and dormancy potential, are depressed in fire-affected soils relative to recovering and reference soils. Plot of weighted mean ribosomal copy number (A) and log10 abundance of dormancy genes (B) in Centralia soils as estimated by PICRUSt, and metagenomic analysis of relativized tRNA abundance (C) and dormancy gene abundance (D). Relativized tRNA abundance is used in place of 16S rRNA operon count due to the difficulty assembling rRNA and the high correlation between tRNA and rRNA abundances. Points are means and error bars are standard error of the mean. Note differing scales between A-D.

Figure 2- Genes underlying dormancy strategies generally decrease during resource-based (A,C) and post-press succession (B). Dormancy genes (sporulation factors, toxin-antitoxin systems, and resuscitation promoting factors) were estimated using PICRUSt. Numbers above boxes in (A) show the times the mesocosms were sampled (h). No resuscitation promoting factors were found in (A). Note the differing y-axis ranges between panels.

Figure 3. Schematic of the dynamics of microbial traits in case studies of endogenous resource-based (A,B) and post-press (C,D) succession. All studies had decreases in ribosomal operon count and dormancy potential after disturbance, but the patterns were different with respect to reference soils. Specifically, operon counts and dormancy gene abundances over post-press succession studies were lower relative to reference, while they were higher in resource-based succession.

Table 1. Characteristics of microbial succession and their relationships to concepts in plant ecology and microbial ecology. For a conceptual model of these patterns based on the datasets included in this study, please see Figure 3.


Term used in this study	Resource-based succession	Post-disturbance succession	
Microbial ecology terms	e.g, Autotrophic, endogenous heterotrophic, exogenous heterotrophic (Fierer et al. 2010)	e.g., post-press, post-pulse (this work)	
Plant ecology term	Primary	Secondary	
Initial environment	Sterile/near sterile	Not sterile/previously colonized	
Primary Driver	Resource changes	Disturbance, indirect drivers eg. plants, pH	
Trophic progression	Copiotrophic to oligotrophic	Oligotrophic to oligotrophic or oligotrophic to copiotrophic expected for most soils, but will depend on the pre-disturbance conditions	
References	Fierer et al. (2010), Nemergut et al. (2015)	This work	
Case studies analyzed here	Ferrenberg et al. (2013): forest fire- affected bacterial communities and the subsequent recovery of these communities. Nemergut et al. (2015): shifts in rrn copy number in 4 nutrient-based succession studies	DeAngelis et al. (2015): mild warming affected bacterial communities after 20 years. Lee and Sorensen et al. (2017): shifts and subsequent recovery of bacterial communities in response to an underground coal fire.	


Supporting information accompanies this manuscript

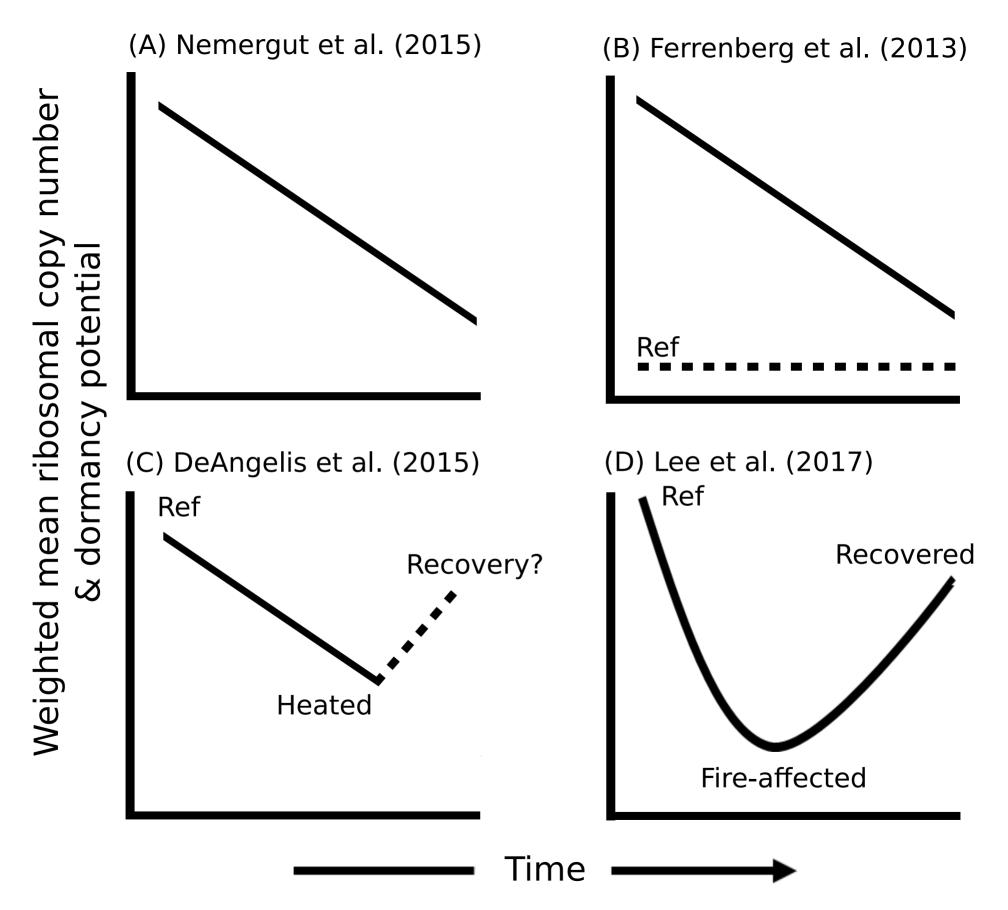

Supporting figure legends

Figure S1- As a community-level microbial trait linked to heterotrophic strategy, weighted mean community ribosomal copy number decreased over time in a nutrient-rich mesocosm experiment (A), increased relative to reference soils during resource-based succession (B), and decreased relative to reference soils during post-press succession (C). Weighted mean ribosomal gene copy number was calculated from 16S rRNA gene surveys for resource-based

388	succession studies (A) Nemergut et al., (2015) and (B) Ferrenberg et al., (2013) and for the post-			
389	press succession study from DeAngelis et al., (2015) (C).			
390	Figure S2- The number of ribosomal operons in cultivated bacteria is higher for taxa with			
391	dormancy strategies. Ribosomal operon counts for genomes in NCBI. The category 'none'			
392	refers to taxa without a significant BLASTn hit for any of the three dormancy strategies			
393	examined here. Letters indicate groups that are significantly different based on a Kruskal-Wallis			
394	test with a Dunn Test for multiple comparisons.			
395	Figure S3- There is agreement between methods to estimate ribosomal operon count based			
396	on 16S rRNA amplicon data. Biplot of weighted mean ribosomal operon count estimated using			
397	PICRUSt and the ribosomal operon database. Datasets have a strong correlation (ρ =0.86,			
398	<i>p</i> <0.01).			
399				
400	Supporting table			
401	Table S1- Case studies analyzed in this piece.			
402				
403				

Supporting Information for

Trait-based patterns of microbial dynamics in dormancy potential and heterotrophic strategy: case studies of resource-based and post-press succession

By Patrick J. Kearns and Ashley Shade

Supporting Methods

16S rRNA gene amplicon analysis

Paired-end reads from Lee and Sorensen et al., (2017) were joined and quality filtered with a partial UPARSE pipeline (Edgar, 2013) as described in that work. Data from DeAngelis et al., (2015), Ferrenburg et al., (2015), and Nemergut et al., (2015) were acquired in FASTA format and no additional quality filtering was performed beyond what the authors previously reported. Data from each study was clustered at 97% identity with uclust (v. 8.0; Edgar, 2010) against the 13.5 version of GreenGenes (DeSantis et al., 2006). The resulting OTU tables were uploaded to the Galaxy web server (https://huttenhower.sph.harvard.edu/galaxy/) and analyzed with PICRUSt (Langille et al., 2013). OTU tables were first normalized by ribosomal operon copy number before metagenome prediction. We calculated weighted mean copy number as described previously (Nemergut et al., 2015) by summing the relative abundance of each taxa multiplied by its copy number. Because the release date of the most recent GreenGenes database was from May 2013, we also assessed operon counts in the Centralia dataset by analyzing our data with the Ribosomal RNA Database (rrnDB; Stoddard et al., 2015). We uploaded representative OTU sequences to the rrnDB and used the estimated copy number for each OTU to calculate weighted mean copy number as described above. From the PICRUSt-estimated metagenomes, we focused

on genes associated with dormancy pathways using the KO identifiers K07699 (*spo0A*), K10715 (*rpfC*), K07154 (*hipA*), K03830 (*yafP*), K07172 (*mazE*), K06218 (*relE*), K01451 (*hipO*), K07473 (*dinJ*), K07171 (*mazF*), and K00951 (*relA*). Significant differences in the abundance of dormancy genes and operon counts were determined with either an ANOVA or a Kruskal-Wallis test in R (R Development Core Team).

Metagenome analysis of Centralia soils

For the Centralia metagenomes, DNA was extracted using a phenol-chlorofom method (Cho et al., 1996) and purified with the MoBio DNEasy PowerSoil Kit (MoBio, Carlsbad, CA, USA) following the manufacturer's instructions. Metagenomic sequencing was performed by the Department of Energy's Joint Genome Institute (DOE JGI) on an Illumina HiSeq 2500.

Assembly and processing of raw reads were processed following JGI's standard operating procedures (http://www.jgi.doe.gov). Annotated dormancy genes were retrieved from IMG using KO identifiers K07699 (*spo0A*), K10715 (*rpfC*), K07154 (*hipA*), K03830 (*yafP*), K07172 (*mazE*), K06218 (*relE*), K01451 (*hipO*), K07473 (*dinJ*), K07171 (*mazF*), and K00951 (*relA*). tRNA and dormancy gene abundance were normalized to the single copy house-keeping gene *rplB*.

Data and workflow availability

16S rRNA gene data from each study was collected from either NCBI, FigShare, or through personal communication with the study's authors. Lee and Sorensen et al., (2017): NCBI SRA SRP082686, DeAngelis et al., (2015): NCBI SRA SRP040706, Nemergut et al., (2015):

https://doi.org/10.6084/m9.figshare.1556152.v1, and data from Ferrenburg et al., (2013) was acquired through personal communication with a co-author from this study (Joseph Knelman). Centralia metagenomes are available at JGI IMG (GOLD Study ID Gs0114513) and computational workflows for analysis of PICRUSt and operon counts

(https://github.com/ShadeLab/Centralia operons dormancy) and quality filtering of Centralia

16S rRNA gene data (https://github.com/ShadeLab/PAPER LeeSorensen ISMEJ 2017) are available on GitHub

References

Edgar RC. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. *Nat Methods* 10: 996.

Edgar RC. (2010). Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26: 2460-2461.

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. *Appl Environl Microbiol* 72: 5069-5072.

Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. *Nat Biotech* 31: 814-821.

Stoddard SF, Smith BJ, Hein R, Roller BR, Schmidt TM. (2014). rrn DB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. *Nucleic Acids Res* 43: D593-D598.

Supplemental Figures

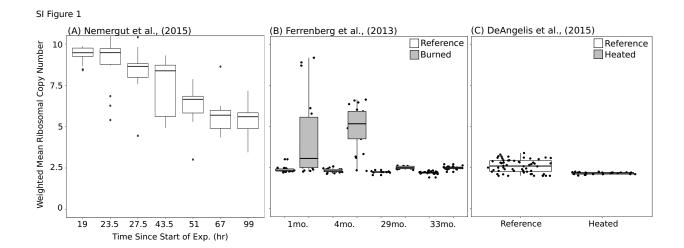


Figure S1. As a community-level microbial trait linked to heterotrophic strategy, weighted mean community ribosomal copy number decreased over time in a nutrient-rich mesocosm experiment (A), increased relative to reference soils during resource-based succession (B), and decreased relative to reference soils during post-press succession (C). Weighted mean ribosomal gene copy number was calculated from 16S rRNA gene surveys for nutrient-based succession studies (A) Nemergut et al., (2015) and (B) Ferrenburg et al., (2013) and for the post-press succession study from DeAngelis et al., (2015) (C).

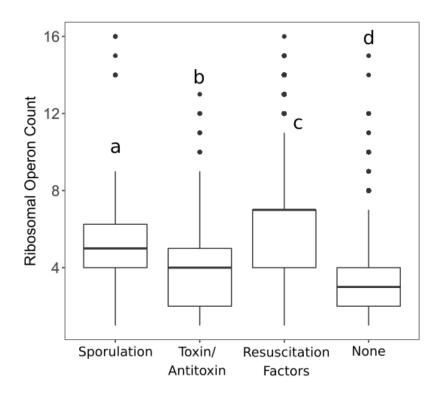


Figure S2. The number of ribosomal operons in cultivated bacteria is higher for taxa with dormancy strategies. Ribosomal operon counts for genomes in NCBI. The category 'none' refers to taxa without a significant BLASTn hit for any of the three dormancy strategies examined here. Letters indicate groups that are significantly different based on a Kruskal-Wallis test with a Dunn Test for multiple comparisons.

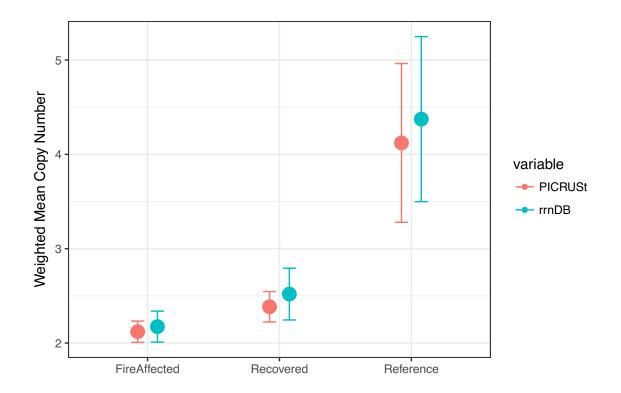


Figure S3. There is agreement between methods to estimate ribosomal operon count based on 16S rRNA amplicon data. Biplot of weighted mean ribosomal operon count estimated using PICRUSt and the ribosomal operon database. Datasets display a strong correlation (ϱ =0.86, p<0.01).

Supporting Tables

Table S1- Case studies analyzed in this piece.

	Ferrenberg et al.,	Nemergut et al.,	DeAngelis et al.,	Lee and Sorensen
	(2013)	(2015)	(2015)	et al., (2017)
Major driver of	Resource	Resource	Modest	Extreme
succession	availability and	availability and	temperature	temperature
	changes	changes	increase driving	increase driving
			biogeochemical	biogeochemical
			changes	changes
Succession Type	Endogenous	Endogenous	Post press	Post press
	heterotrophic,	heterotrophic,	disturbance	disturbance
	nutrient-based,	nutrient based,	(secondary)	(secondary)
	(primary, post-	(primary, "blank		
	sterilization)	slate")		