
Research Article

pubs.acs.org/journal/ascecg

¹ Characterization and Catalytic Transfer Hydrogenolysis of Deep ² Eutectic Solvent Extracted Sorghum Lignin to Phenolic Compounds

- 3 Lalitendu Das, Mi Li, Joseph Stevens, Wenqi Li, Yunqiao Pu, Arthur J. Ragauskas, And Jian Shi
- s [†]Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, Kentucky 40546, United
- 7 [‡]Joint Institute of Biological Science, BioEnergy Science Center & Center for BioEnergy Innovation, Biosciences Division, Oak
 8 Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- 9 \$Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- 10 Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture,
- 11 Knoxville, Tennessee 37996, United States

2 Supporting Information

ABSTRACT: Deep eutectic solvent (DES) is intrinsically cheaper than many ionic liquids (ILs) due to low precursor cost, simple synthesis, and improved recyclability. Meanwhile, DES can be as effective as ILs toward dissolving lignin from plant materials. However, the lignin depolymerization mechanism in DES, the structural and chemical properties of DES-extracted lignin (DES-EL), and the possible valorization pathways of DES-EL toward value-added products were not well understood. This study aims to characterize the lignin streams from DES (1:2 choline chloride:lactic acid) treated sorghum and further upgrade the extracted lignin to phenolic compounds. As revealed by HSQC, ¹³C, and ³¹P NMR analysis, DES cleaved nearly all ether linkages in native lignin, resulting in significant size reduction. We further catalytically upgraded DES-EL to phenolic compounds via catalytic transfer hydrogenolysis in the presence of isopropyl alcohol. Among the three tested catalysts (Ru/C, Pd/C, and Pt/C), Ru/C proved the most effective in deconstructing DES-EL, with oil, char, and gas yields of 36.3, 46.4, 17.3 wt %, respectively. Major lignin monomeric products in the oil were phenol, 4-ethylphenol, 4-ethyl-2-methoxyphenol, 2-methoxy-4-propylphenol, and 4-hydroxy-benzenepropanoic acid. This study provides a mechanistic understanding of lignin depolymerization in DES and demonstrates a possible way to catalytic upgrading of DES-EL to low molecular weight phenolic compounds.

KEYWORDS: Deep eutectic solvents, Hydrogenolysis, Lignin, Catalysis, Sorghum

27 INTRODUCTION

13

14

15

16

17

18 19

20

21

22

2.3

24

25

Lignin is a phenolic heteropolymer and is the second most abundant natural terrestrial biopolymer. Unlike cellulose, which is a polysaccharide consisting of several linear chains of β -(1–4)-linked glucose units, lignin is an amorphous and randomly branched polymer composed of phenylpropanoid units. Lignin constitutes up to 35% of a typical woody material by mass and 50% by energy, providing strength and rigidity to the plant cell wall. Lignocellulosic biomass has the potential to produce low molecular weight compounds, with lignin being the most promising element due to its unique aromatic backbone, which is transformable to an array of value-added chemicals. For more than a century, pulp and paper

industries have been pursuing research for efficient means to 40 upgrade lignin into value-added products. A recent thrust on 41 using lignocellulosic biomass as a feedstock for fuels and 42 chemicals has infused new incentives for lignin valorization. 4 43 However, challenges exist during lignin fractionation possesses 44 in retaining its native structural properties. Depending on the 45 conversion process, more structural complexity is added to the 46 physical and chemical properties of extracted lignin. These 47 complications have created many obstacles in the large scale 48

Received: April 19, 2018 Revised: May 28, 2018 Published: June 6, 2018

49 application of lignin; hence, a more effective and economical 50 lignin fractionation process that creates fewer structural 51 complexities will provide a new dimension to the lignin 52 recovery and its consequent valorization.

Recent advances in the application of deep eutectic solvents 54 (DES) for biomass deconstruction and subsequent lignin 55 extraction has given new tangent to the biomass pretreatment 56 process. 5-8 DES is a mixture of two or more hydrogen-bond 57 donors (HBD) and hydrogen-bond acceptors (HBA). Many 58 DESs share similar solvent characteristics of ionic liquids (ILs). 59 In addition, DES can be easily prepared with high purity and 60 low cost compared with ILs. 6,9 Certain DESs are capable of 61 retaining most of the advantages from ILs while at the same 62 time overcoming some of their limitations, which makes DES a 63 promising candidate for multiple applications including 64 biomass deconstruction. For instance, Zhang and co-workers 65 demonstrated that cholinium chloride:lactic acid based DES 66 acted as a mild dual acid-base catalyst that dictates the 67 controlled cleavage of aryl ether linkages in the phenylpropane 68 units, leading to the delignification of biomass. In a more 69 recent study, renewable DESs were synthesized from lignin-70 derived phenolic compounds for delignification of switch-71 grass. 10 Although lignocellulosic biomass pretreatment using 72 DES is still in nascent stage, results from several studies 73 indicate that DES may facilitate lignin dissolution from 74 cellulosic biomass thus improving the enzymatic hydrolysis 75 of the resulting biomass. 11-13 A better mechanistic under-76 standing and characterization of DES extracted lignin will pave 77 the way for further lignin conversion.

Catalytic lignin valorization has been widely investigated; 79 among them, catalytic hydrogenolysis has received increasing 80 attention. 14 During hydrogenolysis, reductive bond cleavage 81 takes place within lignin and/or lignin model compounds in 82 the presence of hydrogen as a reducing agent. 15 Heterogeneous 83 catalysts have been extensively investigated to aid the bond 84 cleavage. However, aryl ether cleavage of lignin by hydro-85 genolysis with H₂ requires high temperature and excessive 86 pressure due to the low solubility of H₂ in many organic 87 solvents, 16-18 posing safety concerns and operational hazards 88 toward application of this technology. As an alternative route, 89 catalytic transfer hydrogenolysis (CTH) has shown great 90 promise.¹⁹ In CTH reaction scheme, an equivalent of H₂ is 91 transferred from a donor molecule to the acceptor molecule. 92 Hydrogen donor molecules are often inexpensive organic 93 alcohols capable of readily generating hydrogen molecules and 94 the same time serving as solvents for lignin. 14 A variety of 95 hydrogen donating agents have been tested including formic 96 acid, methanol, ethanol, tetralin etc., among, which isopropyl 97 alcohol (IPA) remains a popular choice due to its relatively low 98 cost and easy subsequent separation from the reaction 99 mixture.²⁰

Lignin depolymerization via CTH in acids, bases and 101 supercritical alcohols have been investigated previously.²¹ 102 Depolymerization of lignin into monomeric phenols using 103 formic acid, methanol, or ethanol in the presence of transition 104 metal catalysts have been reported in several studies.²² An 105 aromatic monomer yield of 6.1 wt % was obtained from CTH 106 of concentrated acid hydrolysis lignin using Ru/C catalyst at 107 350 °C for 60 min and a 1:3 formic acid-to-lignin mass ratio.² 108 In a recent study, selective depolymerization of lignin to 109 alkylphenols via CTH was reported on lignin rich residues 110 recovered from cholinium lysinate IL pretreatment using Ru/C 111 catalyst in IPA at 300 °C. 20 Several nanoparticles (FeB, NiB,

and FeNiB) were applied for CTH of organosolv lignin in 112 supercritical ethanol at 320 °C. 14 Results suggest that in the 113 presence of FeNiB alloy, the number-average molecular weight 114 of lignin was reduced from 1800 to 317 Da, producing 115 monomeric phenols with intact deoxygenated aliphatic side 116 chains. 14 CTH of alkaline lignin using Pd/C catalyst combined 117 with metal chlorides at 260 °C was investigated and results 118 suggest that 24% of phenolic monomers was produced using 119 CrCl₃ catalyst; however, when combining with Pd/C catalyst 120 the phenolic monomer yield was increased to 28.5%, 24 likely 121 attributed to the interaction of CrCl₃ with oxygen electron pair 122 to promote the crack of methoxyl groups. These studies have 123 shed light on using platinum group noble metals and transition 124 metal catalysts in different combinations and on various 125 supports for assisting transfer hydrogenolysis and breakdown 126 of various types of lignins; however, the effectiveness of 127 catalysts and CTH conditions on DES extracted lignin has not 128 been investigated.

Biomass sorghum has received increasing attention from the 130 biofuel research community in the past decade. As an attractive 131 energy crop, sorghum is a promising source of biomass 132 feedstock for biofuels because fewer inputs (e.g., nitrogen) and 133 less water are required for growing sorghum when compared 134 with corn production.²⁵ Forage sorghum feedstock has the 135 potential of producing 530-700 gallons of ethanol per acre as 136 compared to the typical ethanol yield from switchgrass of 137 310–350 gallons per acre. ^{26,27} The lignin fractions in sorghum 138 contain a high abundance of ferulate and p-coumarate moieties 139 in addition to the S/G/H lignin structural units, demonstrating 140 a great potential for upgrading sorghum lignin to high value 141 chemicals for various applications. 28,2

With growing interest in using DES for lignin fractionation 143 and depolymerization, it has been demonstrated that DES can 144 selectively cleave ether linkages and the process can generate 145 lower and narrowly distributed molecular weight lignin. To 146 achieve the long-term goal of developing an efficient and 147 effective process for lignin depolymerization via DES, it is 148 important to further characterize DES-extracted lignin stream 149 (DES-EL) and explore ways to valorize DES-EL. However, to 150 our knowledge, the depolymerization of DES-EL using CTH 151 has not been reported. In this work, we aim to characterize and 152 perform CTH of DES extracted lignin from an attractive 153 energy crop, biomass sorghum, to low molecular weight 154 chemicals. The objectives of this study are to (1) fractionate 155 and characterize the lignin streams from DES treated sorghum; 156 (2) investigate the role of catalysts, catalyst loading, temper- 157 ature, and reaction time in the CTH of DES extracted lignin; 158 (3) identify and characterize DES-EL and the liquid/gas 159 products and the residual solids after CTH reaction. The 160 results from this study provide a better understanding of the 161 chemical and structural properties of DES-EL and a way to the 162 upgrading of DES-EL via CTH toward formation of phenolic 163 compounds. 164

MATERIAL AND METHODS

Materials. Biomass sorghum (Sorghum bicolor, forage variety 166 ES5200) was provided by the Bioenergy Feedstock Library, Idaho 167 National Laboratory (Idaho Falls, ID). Air-dried sorghum sample was 168 grounded to pass a 2 mm sieve using a model 4 Wiley mill, and stored 169 in Ziploc bags at room temperature for subsequent experiments. 170 Isopropyl alcohol, Ru/C (5 wt % Ru), choline chloride, and lactic acid 171 were purchased from TCI America, whereas acetone, ethanol, Pd/C 172 (5 wt % Pd), and Pt/C (5 wt % Pt) were purchased and used as is 173 from Sigma-Aldrich.

Pretreatment and Lignin Recovery. DES was prepared by 176 mixing choline chloride and lactic acid in its solid state in a molar 177 ratio of 1:2, followed by heating the mixture with constant stirring at 178 65 °C for 2 h in an oil bath as described elsewhere. 6,7 The mixture was stirred until no solids left, leading to a final transparent liquid (DES). 180 The DES was cooled down and kept in a desiccator for further use. 181 Pretreatment of sorghum was performed by mixing 2 g of biomass 182 with 18 g of DES (10 wt % solid loading) in a glass pressure tube 183 reactor. The pressure tubes were then sealed and the contents of the 184 tubes were stirred at 200 rpm at 145 ± 2 °C in a temperature 185 controlled oil bath for 6 h, according to a previous report. The 186 pretreated biomass was washed with 20 mL of ethanol and then manually squeezed through a 0.074 mm nylon filter (200 mesh) to separate the solids from the pretreatment liquid. Lignin was precipitated from the pretreatment liquid by adding water to the 190 liquid until reaching a water:ethanol ratio of 1:2. Precipitated lignin 191 was further purified, namely DES extracted lignin (DES-EL), by 192 washing 3 times with a 9:1 water/ethanol mixture and then freeze-193 dried for future use. All the experiments were performed in 194 duplicates.

Lignin Depolymerization by Catalytic Transfer Hydro-196 **genolysis.** Lignin depolymerization was carried out in a 100 mL 197 Parr reactor (4593 benchtop reactor, Alloy C276, Parr Instruments, 198 IL). In a typical reaction, 0.5 g of lignin and 20 mL of isopropyl 199 alcohol (IPA) were added to the reactor; subsequently, 0.01-0.1 g (2-20 wt %) of Pt/C, Ru/C, or Pd/C catalyst was added to the reactor. After purging the reactor with nitrogen, the reaction was carried out at 270 °C for 1 h at 250 rpm stirring speed. The heat-up 203 time for reactor to reach set reaction temperature was approximately 204 35 min, which was not included in the reaction time. After reaction, 205 the reactor was removed from the heating mantle and quenched 206 rapidly at first by forced air and then in an ice bath to prevent undesirable secondary reactions. Once the reactor was cooled, gas was collected in a 1 L Tedlar gas sampling bag (CEL Scientific, Cerritos, 209 CA); while liquid and solid residues were transferred to a beaker by 210 washing the reactor content with acetone. Separation of liquid and 211 solid residues were performed by centrifugation at 8000 rpm for 15 212 min. The acetone and IPA were removed from the liquid fraction in a vacuum oven at 20 $^{\circ}$ C for 24 h. After drying, the leftover liquid oil was 214 weighed to estimate the oil yield (eq 1). The oil was redissolved in 2-215 methyltetrahydrofuran (MeTHF) for GC-MS analysis. The residual 216 solid was further washed with 15 mL of acetone for 3 times and then 217 dried at 80 °C for 24 h to determine the solid yield (eq 2).

oil yield (wt%) =
$$\frac{\text{dry weight of bio-oil (g)}}{\text{dry weight of lignin (g)}} \times 100$$
 (1)

solid vield (wt%)

$$= \frac{\text{dry weight of solid residue (g) } - \text{ weight of catalyst (g)}}{\text{dry weight of lignin (g)}}$$

$$\times 100$$
 (2)

gas yield (wt%) =
$$100 - \text{oil yield (\%)} - \text{solid yield (\%)}$$
 (3)

Analytical Methods. Identification of the lignin depolymerization products from the CTH reaction were performed by Agilent 7890B 223 GC coupled 5977B MS with a HP-5MS (60 m × 0.32 mm) capillary column. The temperature program started at 50 °C and increased to 120 °C at 10 °C min $^{-1}$ with a holding time of 5 min; then, it was raised to 280 °C at 10 °C min $^{-1}$ with a holding time of 8 min and to 27 300 °C at 10 °C min $^{-1}$ with holding time of 2 min. Helium was used as a carrier gas with a flow rate of 1.2 mL min $^{-1}$. Calibration curves were created using commercially available pure compounds: guaiacol (C₆), vanillin (C₆C₁), syringaldehyde (C₆C₂), and 4-propylphenol (C₆C₃) (Sigma-Aldrich, St. Louis, MO). The effluent gases from hydrogenolysis were analyzed using a Micro GC (HP, Quad series, Refinery Gas analyzer) equipped with a TCD detector. Calibration curves were generated using pure C₁–C₇ olefins, H₂, CH₄, CO, and 200 CO₂.

Lignin Characterization. *Gel Permeation Chromatographic* 236 *(GPC) Analysis.* The weight-average molecular weight $(M_{\rm m})$ and 237 number-average molecular weight $(M_{\rm n})$ of the lignin samples were 238 determined by GPC. The samples were first acetylated using acetic 239 acid and acetyl bromide as previously described. An Ultimate 3000 240 HPLC system (Dionex Corporation, Sunnyvale, CA) equipped with 241 an ultraviolet (UV) detector was used. Separation was accomplished 242 in a mobile phase of THF at a flow rate of 0.5 mL min⁻¹, with a 243 Mixed-D PLgel column (5 μ m particle size, 300 mm \times 7.5 mm i.d., 244 linear molecular weight range of 200 to 400 000 u, Polymer 245 Laboratories, Amherst, MA) at 50 °C. Elution profile of materials 246 eluting from the column were calibrated using low molecular weight 247 polystyrene standards (Product No. 48937, Sigma-Aldrich) at UV 248 absorbance of 280 nm.

Fourier Transform Infrared (FTIR) Spectroscopic Analysis. FTIR 250 was performed by using a Thermo Nicolet Nexus 870 FT-IR ESP to 251 examine the chemical structure alternations of the lignin samples. 252 Samples were pressed to 12 psi using a spring loaded jack onto the 253 ATR crystal. Sample spectra were obtained using an average of 64 254 scans between 400 and 4000 cm⁻¹ with a spectral resolution of 1.928 255 cm⁻¹. The raw FTIR spectra were baseline corrected and normalized 256 using Omnic 6.1a software and compared in the range 750–4000 257 cm⁻¹.

Cellulolytic Enzyme Lignin (CEL) Isolation. Cellulolytic enzyme 259 lignin (CEL) was isolated from the toluene/ethanol (2/1 by volume) 260 extracted sorghum according to the published literature proce- 261 dure. 31,32 In brief, the extractives-free samples were loaded to 50 mL 262 ZrO₂ grinding jar (including 10 × 10 ball bearings) in Retsch Ball Mill 263 PM 100. The biomass was then ball milled at 550 rpm in a frequency 264 of 5 min with 5 min pauses in-between for 1.5 h total time. The milled 265 fine cell wall powder was then subjected to enzymatic hydrolysis with 266 a mixture (1:1 by volume) of Cellic CTec2 and HTec2 (gifts from 267 Novozymes) in 5 mM citrate buffer (pH 4.8, 50 °C) under 268 continuous agitation at 200 rpm for 48 h. The residue was isolated 269 by centrifugation and was hydrolyzed once more with freshly added 270 enzymes mixture. The residue obtained was rich in lignin and was 271 washed with deionized water, centrifuged, and freeze-dried. The 272 lignin-enriched residue was extracted with dioxane-water (96% v/v, 273 10.0 mL/g biomass) for 24 h. The extracted mixture was centrifuged, 274 and the supernatant was collected. p-Dioxane extraction was repeated 275 once by adding fresh p-dioxane-water. The extracts were combined, 276 rotoevaporated to reduce the volume at less than 45 °C, and freeze- 277 dried. The obtained lignin samples, designated as CEL, was used for 278 further analysis.

Nuclear Magnetic Resonance (NMR) Spectroscopic Analysis. 280 NMR spectra of lignin samples and hydrogenolysis products were 281 acquired in a Bruker Avance III HD 500-MHz spectrometer and 282 spectral processing was carried out using a Bruker Topspin 3.5 (Mac) 283 software. CEL (20 mg) and hydrogenolysis product (9 mg) were 284 dissolved in 100 mg DMSO- d_6 in a micro-NMR tube independently. 285 DES lignin (40 mg) was dissolved in 0.5 mL of DMSO-d₆ in a 5 mm 286 NMR tube. Heteronuclear single quantum coherence (HSQC) 287 experiments were carried out with a Bruker pulse sequence 288 (hsqcetgpspsi2.2) on a N₂ cryoprobe (BBO 1H&19F-5 mm) with 289 the following acquisition parameters: spectra width 12 ppm in F2 290 (1H) dimension with 1024 data points (acquisition time 85.2 ms), 291 166 ppm in F1 (13C) dimension with 256 increments (acquisition 292 time 6.1 ms), a 1.0 s delay, a ${}^{1}J_{C-H}$ of 145 Hz, and 128 scans. The 293 central DMSO- d_6 solvent peak ($\delta_{\rm C}/\delta_{\rm H}$ at 39.5/2.49) was used for 294 chemical shifts calibration. Assignment and the relative abundance of 295 lignin compositional subunits and interunit linkage were estimated 296 using volume integration of contours in HSQC spectra according to 297 published literature.^{31,33} For volume integration of monolignol 298 compositions of syringyl (S), guaiacyl (G), p-hydroxyphenyl (H), p- 299 coumarate (pCA), and ferulate (FA), the cross peaks of S_{2/6}, G₂, H_{2/6}, 300 $pCA_{2/6}$ and FA_2 contours were used with G_2 and FA_2 integrals 301 doubled were integrated. The $T_{2'/6'}$ of tricin (T) was used for 302 quantification of tricin. The C_{α} signals were used for volume 303 integration for interunit linkages estimation. Detailed assignments of 304 the lignin ¹³C-¹H correlation signals observed in the HSQC spectra 305

Table 1. Effect of Reaction Parameters on the Oil, Char, and Gas Yield from DES-EL

catalyst loading (%)	temperature (°C)	time (min)	oil yield (%)	char yield (%)	gas yield (%)
2% Ru/C	270	30	22.51 ± 1.51	65.01 ± 0.09	12.48 ± 1.42
	270	60	26.42 ± 1.97	60.51 ± 1.69	13.07 ± 3.66
	270	180	19.36 ± 0.85	56.17 ± 1.59	24.47 ± 0.74
5% Ru/C	270	30	22.74 ± 1.59	60.04 ± 1.97	17.21 ± 0.38
	270	60	30.83 ± 0.62	56.47 ± 2.03	12.70 ± 2.64
	270	180	22.13 ± 1.56	54.92 ± 2.46	22.95 ± 4.02
	300	30	18.04 ± 0.83	57.38 ± 1.77	24.57 ± 2.60
	300	60	20.96 ± 0.54	53.73 ± 0.72	25.31 ± 1.26
	300	180	22.18 ± 1.02	52.70 ± 2.04	25.12 ± 1.05
15% Ru/C	270	30	24.72 ± 0.37	56.15 ± 1.32	19.13 ± 0.94
	270	60	36.28 ± 0.45	46.43 ± 1.65	17.29 ± 2.10
	270	180	31.55 ± 1.05	45.26 ± 1.41	23.19 ± 2.41
20% Ru/C	270	60	27.16 ± 0.25	55.57 ± 2.05	17.26 ± 2.30
5% Pd/C	270	60	20.15 ± 1.18	61.10 ± 1.12	18.74 ± 0.8
15% Pd/C	270	60	22.12 ± 0.48	59.46 ± 0.81	18.42 ± 1.29
5% Pt/C	270	60	20.81 ± 1.66	62.65 ± 1.53	16.54 ± 0.13
15% Pt/C	270	60	19.38 ± 1.31	60.94 ± 1.47	19.67 ± 2.78
no catalyst	270	60	20.04 ± 1.36	62.92 ± 1.67	17.04 ± 0.32
	300	60	20.19 ± 2.43	61.40 ± 0.82	18.41 ± 3.25

306 are listed in Table S1. The abundances of aromatics and side-chain 307 linkages were presented as percentage of total SGH units and total 308 side-chain linkages, respectively. The ³¹P NMR spectra of lignin and 309 hydrogenolysis products were measured after derivatization with 2-310 chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP). ³⁴ The 311 spectra of phosphitylated compounds were acquired using an 312 inverse-gated decoupling pulse sequence (Waltz-16), 90° pulse, 25-313 spulse delay with 64 scans. All chemical shifts reported are relative to 314 the product of TMDP with water, which has been observed to give a 315 sharp signal in pyridine/CDCl₃ at 132.2 ppm. The ¹³C NMR 316 acquisition was performed using a 90° pulse with an inverse-gated 317 decoupling pulse sequence, a 2.0 s pulse delay, and 30 000 scans at 27 318 °C. Approximately 0.01 mg/mL chromium acetylacetonate was added 319 to decrease relaxation time.

320 RESULTS AND DISCUSSION

Pretreatment and Lignin Recovery. The chemical 322 composition of sorghum was determined following NREL 323 standard protocol, 35 and its compositions (wt %) are glucan $324\ 35.2 \pm 0.1$, xylan 22.1 ± 0.1 , lignin 18.3 ± 0.1 , extractives 15.6325 \pm 0.7, and others 8.8 \pm 0.4. The glucan, xylan, and lignin 326 contents of sorghum are comparable to other lignocellulosic 327 biomass, such as corn stover and switchgrass. ²⁷ Several studies 328 have reported fractionation of sorghum using different 329 pretreatment methods such as dilute acid and alkaline 330 pretreatments.²⁷ Under the condition tested in this work, the 331 amount of lignin recovered from the liquid fraction following 332 DES pretreatment was 14.3 g (78%) on the basis of 100 g of 333 initial biomass. It was shown that a simple precipitation and 334 washing method using ethanol-water was effective for 335 obtaining high lignin yield and purity. A composition analysis 336 of the extract DES lignin (DES-EL) demonstrated very high 337 purity (>97%), with only trace amounts of carbohydrates and 338 residual DES (based on lactic acid content), and very low ash 339 content (<1%). These results are comparable to a previous 340 report on choline chloride/lactic acid (ChCl:Lac) based DES 341 pretreatment of woody biomass where lignin yields were 78% 342 for poplar and 58% for Douglas fir, respectively, using 1:2 of 343 ChCl:Lac. Moreover, the extracted lignin has 95% purity with 344 low and narrowly distributed molecular weight. In another 345 study, Kumar et al. 2015 used betaine/lactic acid (B:Lac) and

ChCl:Lac at different molar ratios for extraction of lignin from 346 rice straw. A maximum lignin extraction of $60 \pm 5\%$ of total 347 lignin was achieved with 1:5 ratio of ChCl:Lac based DES, 348 whereas a lower lignin yield of $52 \pm 6\%$ can be extracted with 349 B:Lac at its optimal ratio. In addition, Li et al. isolated lignin 350 from willow (*Salix matsudana* cv. Zhuliu) at high yield (91.8 351 wt 46) and purity (94.5%) using ChCl:Lac molar ratio of 352 1:10. Results from this work along with previous studies 353 demonstrate that DES pretreatment is capable of fractionating 354 lignin from a variety of biomass feedstocks, including sorghum, 355 with high lignin recovery and purity.

Effect of Reaction Parameters on Yield and Lignin 357 Breakdown Products. Depolymerization of lignin and/or 358 lignin model compounds via catalyst including platinum group 359 noble metals and transition metals has been studied 360 widely. 18,36-40 The lignin depolymerization compounds are 361 mainly retained in the liquid/oil fraction after reaction while 362 the solid fraction contains unreacted lignin and undesirable 363 byproducts from lignin decomposition. The gaseous products 364 can be collected in gas fraction where most of the short chain 365 hydrocarbon and carbon oxides are retained. The mass yields 366 of the lignin depolymerization fractions (solid, oil, and gas) 367 from the CTH reaction are shown in Table 1. As a baseline, 368 t1 the oil yield was 20.0 wt % along with 62.8% solid and 17% gas 369 yields when the reaction was performed at 270 °C for 60 min, 370 in the absence of catalyst. Upon increasing the reaction 371 temperature to 300 °C for 60 min, no significant change was 372 seen on the oil yield (20.2 wt %). To improve the oil yield, we 373 tested a range of temperatures, reaction times and catalyst type 374 combinations, with specific emphasis on Ru/C catalyst. 375 Catalytic applications of Ru have been well documented, 376 including its effectiveness in CTH of lignocellulosic biomass 377 component. 41,42 Two other noble metal catalysts, Pd/C and 378 Pt/C catalysts, were also tested at selected reaction conditions 379 and the performances were compared with Ru/C catalyst.

Reaction Conditions Optimization with Ru/C Catalyst. To 381 evaluate the effectiveness of Ru/C catalyst in response to 382 reaction conditions, different catalyst loading (2, 5, 15, and 383 20%) combined with varying temperature (270 and 300 °C) 384 and reaction time (30, 60, and 180 min) were tested. 385

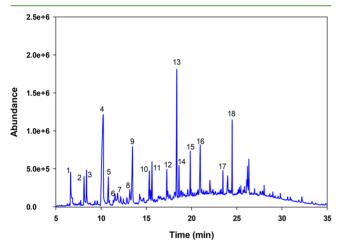
Table 2. Composition of Products in the Liquid Phase Determined by GC-MS^a

		wt% in liquid			
peak no.	product	Ru/C	Pd/C	Pt/C	no catalyst
1	phenol	2.63	0.83	1.88	0.75
2	p-cresol	1.74	0.97	1.13	0.82
3	2-methoxy phenol	2.14	0.42	1.31	0.77
4	4-ethyl-phenol	4.16	5.46	4.47	3.94
5	cresol	0.97	0.32	0.51	0.43
6	catechol	0.43	1.90	ND^{b}	ND^b
7	3-(1-methylethyl)-phenol	1.60	ND^b	ND^{b}	0.61
8	3-methoxy-1,2-benzenediol	0.58	ND^b	ND^{b}	ND^{b}
9	4-ethyl-2-methoxy phenol	4.38	ND^b	2.67	2.33
10	2,6-dimethoxyphenol	1.29	0.59	0.76	0.77
11	2-methoxy-4-propyl phenol	1.23	0.90	1.19	0.86
12	4-methoxy-3-(methoxymethyl)-phenol	1.41	0.54	0.53	0.72
13	butylated hydroxytoluene	stabilizer	stabilizer	stabilizer	stabilizer
14	1,2,3-trimethoxy-5-methyl-benzene	1.18	0.72	0.70	0.68
15	3,4-diethyl-, dimethyl ester, (Z,Z) -2,4-hexadienedioic acid	DNQ	DNQ	DNQ	DNQ
16	4-hydroxy-benzenepropanoic acid	3.64	1.58	1.55	1.50
17	13-methyl-, methyl ester pentadecanoic acid	DNQ	DNQ	DNQ	DNQ
18	isopropyl palmitate	DNQ	DNQ	DNQ	DNQ
	total lignin derivatives	27.39	14.23	16.68	14.17

^aReaction conditions: temperature at 270 °C, reaction time of 60 min, and 15% catalyst loading. ^bND, Not detected; DNO, did not quantify.

386 Temperature plays a crucial role in the catalytic depolymeriza-387 tion of lignin. In the presence of 5% Ru/C catalyst, it can be seen that in general the oil yields from reactions at 270 °C and different reaction times were higher when compared with the yields at 300 °C under similar reaction conditions (Table 1). 391 Higher reaction temperature increases the hydrogen produc-392 tion from that hydrogen donor molecules; 14 however, at the 393 same time it may lead to further decomposition of lignin 394 derived compounds to gaseous products or condensation to 395 char and tars. As a result, the oil yields were generally reduced 396 whereas the gas yield was increased while solid yields varied. 397 The optimal temperature for CTH reaction is dependent on 398 the type of lignin employed as well as the catalyst being 399 applied. For instance, Gosselink et al. investigated the 400 depolymerization of organosolv lignins from hardwood and 401 wheat straw in a supercritical fluid consisting of carbon 402 dioxide/acetone/water at 300-370 °C. 43 The results showed a 403 decrease in monomeric phenols at 370 °C and higher char 404 formation compared with the yields obtained at 300 °C. The 405 decrease in oil yield can be attributed to the formation of stable 406 char or tars due to condensation reaction of monomeric 407 phenols. Based on temperature screening results, we selected 408 270 °C and further tested the effects of catalyst type and 409 loadings.

Catalyst loading is another important factor controlling to CTH reaction; an increase in catalyst dosage creates more active sites that facilitate hydrogen evolution from donor molecules and cleavage of lignin linkage and side chains. Various catalyst loading (2, 5, 15, and 20%) were investigated at 270 °C to determine its effect on oil, solid, and gas yields. At catalyst loading, oil yields were in the range of 19.36–26.51 wt %; while with an increase in catalyst loading up to 5% under similar reaction conditions, oil yields increased to 22.13–30.83 wt %. Further increasing the catalyst loading to 15% led to the highest oil yields of 24.72–36.28 wt % depending on reaction times. However, at 20% catalyst loading, oil yield decreased to 27.16 wt % when compared to that of 15% catalyst loading at the same reaction condition of 270 °C and 60 min. Results are


in accordance with Kim et al.,²² that reported decreases in the 424 overall monomeric phenolic yields with an increase of catalyst 425 loading from 10 to 20%. Taking together, results suggest that 426 increase in catalyst dosage improved the oil yield, but excessive 427 catalyst loading may have caused side reactions, hindering the 428 production of monomeric phenolic compounds.⁴⁴ 429

Apart from catalyst loading and temperature, reaction time 430 also plays an important role in lignin depolymerization during 431 CTH reaction. Impact of reaction time, 30, 60, and 180 min on 432 oil yield was investigated at selected reaction temperatures and 433 catalyst loadings. As a general observation, the oil yield 434 increased when reaction time was increased from 30 to 60 min 435 at 270 °C with 2-15% Ru/C catalyst loadings; while further 436 increasing reaction time to 180 min, the oil yield decreased. 437 This trend is in general agreement with a previous study that a 438 10% increase in oil yield was reported when the reaction time 439 increased from 1 to 3 h at 300 °C with 5% Ru/C catalyst 440 loading.²⁰ It should be noted that other reaction parameters 441 (temperature and catalyst loading) also play a role in oil yield. 442 In another study, Kristianto et al. 45 explored Ru/C catalyst for 443 hydrogenolysis of acid lignin in ethanol/formic acid media; 444 varying the reaction time from 0 to 30 min led to an increase of 445 oil yield from 30.6% to 41.2%. Taken together, among all the 446 conditions tested for Ru/C catalyst, reaction at 15% catalyst 447 loading, 270 °C, and 60 min gave the highest oil yield of 36.28 448 wt %. This represents a 16% increase when compared with the 449 baseline oil yield of 20.04 wt % without catalyst. Results also 450 suggest that CTH transformation of DES extracted lignin to 451 phenolic compounds (oil) was facilitated by the presence of Ru 452 catalyst; however, the oil yield was dependent on reaction time, 453 catalyst loading, and temperature.⁴⁶

Comparisons across Different Types of Catalysts. The 455 effectiveness of Pd/C and Pt/C catalysts on the CTH of lignin 456 was compared with Ru/C at 270 °C with reaction time of 60 457 min and catalyst loading of 5% and 15% (Table 1). When the 458 Pd/C catalyst was used, the yield of lignin hydrogenation 459 products (oil, gas, solids) with catalyst loadings of 5 and 15 wt 460 % at 270 °C for 60 min appeared similar to those without 461

462 catalyst and was much lower than that of Ru/C catalyst. 463 Similarly, oil yields obtained for Pt/C at 5% and 15% catalyst 464 loading were 20.81 and 19.38 wt %, respectively, which was 465 significantly lower than that of Ru/C. Several previous studies 466 had suggested that Ru is a highly active metal suitable for 467 hydrogenation and hydrogenolysis of lignin in the presence of 468 alcohols. 22,41,47 It is possible that the Ru/C promoted transfer 469 hydrogenation by releasing hydrogen from donor molecules 470 and meanwhile suppressed recondensation reactions leading to 471 char formation. Knowing that the reaction conditions for Pd/C 472 and Pt/C catalysts were not fully optimized in this study, 473 future work is warranted for optimal conditions that balance 474 the rate of lignin depolymerization and recondensation toward 475 desirable phenolic compounds products. Other noble or 476 transition catalysts may also be explored as suitable catalyst 477 for DES extracted lignin. 48,49

Chemical Analysis of the Liquid, Solid, and Gas Products.
Chemical composition of the oil from the CTH reaction of the DES extract lignin was identified by GC–MS, with the compounds listed in Table 2 at representative catalyst types and reaction conditions, and GC chromatogram shown in Figure 1 at a representative reaction condition (270 °C, 60).

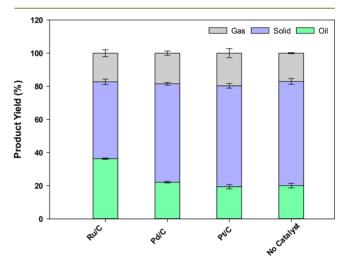


Figure 1. Representative GC–MS profile showing lignin breakdown products in the liquid oil recovered from catalytic transfer hydrogenolysis of DES extracted lignin. Reaction conditions: temperature at 270 °C, reaction time of 60 min, and catalyst (Ru) loading of 15%.

484 min, and Ru/C loading of 15%). The oil was composed of 485 primarily phenolic compounds irrespective of the catalyst and 486 reaction parameter. Among the GC detected compounds with 487 peak numbers, 14 out of 18 identified compounds (excluding 488 13, 15, 17, and 18) had a monomeric phenol structure. Peak 13 489 in the chromatogram (Figure 1) was assigned to butylated 490 hydroxytoluene, which is a stabilizer for MeTHF. The 491 distribution and total amount of lignin derived phenolic 492 compounds varied among catalyst types as compared to the 493 control without catalyst (Table 2). The main phenolic 494 compounds from Ru/C catalyzed CTH reaction were phenol, 495 2-methoxyphenol, 4-ethyl-phenol, 4-ethyl-2-methoxy phenol, 496 and 4-hydroxy-benzenepropanoic acid; whereas for Pd/C, 4-497 ethyl-phenol was the major compound. For Pt/C and no 498 catalyst conditions, 4-ethyl-phenol and 4-ethyl-2-methoxy 499 phenol were the main compounds. At selected reaction 500 condition of 270 °C, 60 min, and 15% catalyst loading, the 501 total yield of detected lignin monomer products (Table 2) for

no catalyst, Ru/C, Pd/C, and Pt/C were 14.17, 27.39, 14.23, 502 and 16.68 wt %, respectively. At similar reaction conditions for 503 Ru/C catalyst the mass fraction of identified compounds from 504 the hydrogenolysis oil is 0.05 g/0.5 g of starting lignin. For 505 example, the mass fraction of 4-ethyl-phenol and 4-ethyl-2- 506 methoxy phenol is 0.002 g/0.5 g of DES-EL.

In addition to monomeric phenols, certain long chain fatty 508 acids including 13-methyl-, methyl ester pentadecanoic acid, 509 isopropyl palmitate, and 3,4-diethyl-, dimethyl ester, (Z,Z)-2,4-510 hexadienedioic acid were also detected. In a previous study, 511 Kim et al. observed long chain fatty acids in hydrogenolysis of 512 Asian lignin samples derived from soda processing of 513 herbaceous crops such as wheat straw and sarkanda grass. 514 The authors attributed those long chain fatty acids to the 515 recondensation reaction between low molecular compounds 516 with reactive C—O or C=O bonds. ^{22,50} In this study, DES- 517 EL was thoroughly washed with ethanol and water; as a result, 518 the fatty acids in the raw biomass sorghum were likely removed 519 during DES pretreatment and washing steps. 51 We suspect that 520 fatty acids in the hydrogenolysis oil were derived from 521 reductive coupling reaction of lignin rather than from the 522 original lignin source. Taken together, our results suggest that 523 CTH of DES extract lignin led to formation of alkylphenols 524 due to the hydrogenolysis and stabilization of the primary 525 lignin depolymerization products.⁵² Ru/C catalyst proved to 526 be effective at producing higher oil yield and total phenolic 527 compounds (27.39 wt %) when compared to no catalyst 528 control and other catalysts (Figure 2).

Figure 2. Effect of catalyst on the distribution of reaction products at temperature of 270 $^{\circ}$ C, reaction time of 60 min, and catalyst loading of 15%.

The insoluble fraction obtained after the CTH reaction was 530 defined as solid residues. Overall, these results (Table 1) 531 suggest that the solid yields decreased with an increase in 532 reaction time and temperature for all the reaction conditions 533 with Ru/C catalyst. The lowest solid yields of 45–46% were 534 obtained at 270 °C for 60–180 min reaction time employing 535 15% Ru/C, which were significantly lower compared to the 536 solid yield of 62.92% for no catalyst control. Similar results 537 were reported by Kloekhorst et al., 53 where the solid yield 538 decreased by $\sim 30\%$ with presence of Ru/C catalyst at 400 °C 539 for 4 h as compared to noncatalyzed reaction. Generally 540 speaking, higher catalyst loading led to lower solid yield for a 541 given reaction temperature and time. Formation of less solid 542

543 residues is desirable as the solids contain mostly unreacted 544 lignin and condensation products like char or tar from the 545 repolymerization of low molecular weight phenolic com-546 pounds. 54,55 Furthermore, deposition of solid residues on the 547 surface of the catalyst may lead to catalyst deactivation thus 548 impair its activity. 56 The results from this study clearly 549 indicates that the selection of catalyst type and reaction 550 condition can help to reduce solid residue formation.

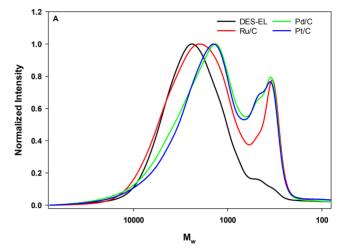

Table 3 shows the composition of gases collected from the 552 CTH reaction. Hydrogen was the major gas produced,

Table 3. Composition of Gas Products Derived from Hydrogenolysis of DES-EL in Isopropyl Alcohol at 270 °C, Reaction Time of 60 min, and 15% Catalyst Loading

		relative mol (%)	
gas	Ru/C	Pd/C	Pt/C
hydrogen	71.47	57.30	64.15
methane	3.15	5.30	4.93
carbon monoxide	4.60	6.21	5.54
carbon dioxide	6.89	5.29	5.06
n-propane	3.57	6.97	13.99
propylene	9.86	18.24	5.78

553 indicating that catalysts promoted the release of hydrogen 554 form IPA thus enabling the hydrogenolysis reaction. In the 555 presence of Ru/C catalyst, the gas products consisted of a 556 higher (71.47) relative mol % of hydrogen gas as compared to 557 57.30 mol % and 64.15 mol % for Pt/C and Pd/C, 558 respectively, which corroborates the higher oil yield obtained 559 with Ru/C catalyst. In addition to hydrogen, other gaseous 560 products included methane, carbon monoxide, carbon dioxide, 561 n-propane, and propylene. These gaseous products may be 562 derived from cracking of the side chain of the lignin. 20 In 563 general, gas product yields increased with increase in reaction 564 time irrespective of the catalyst loading and reaction 565 temperature, with the highest hydrogen release was observed 566 in the presence of Ru/C catalyst, which is consistent with a 567 previous study on CTH of organosolv lignin. 5

GPC and FTIR Characterization of Lignin Streams. 569 Large molecular weight (MW) phenolics, which were 570 undetectable in the GC-MS analysis due to their low 571 volatility, can be captured via GPC. Hence, GPC analysis 572 was performed to investigate the molecular weight distribution 573 of the unreacted DES-EL, the solid residues and the liquid 574 fraction after CTH. Figure 3 shows the GPC chromatograms 575 of acetylated solid residues and liquid fractions after CTH 576 reaction catalyzed by Ru/C, Pd/C, and Pt/C in comparison 577 with the unreacted DES-EL. Molecular weight distribution 578 (MWD) of the solid residues from all the three catalysts shifted 579 to the right (i.e., lower MW) than the unreacted DES-EL 580 (Figure 3a). The average $M_{\rm W}$ of the DES-EL was 3037.1 g/ s81 mol; whereas the average $M_{\rm W}$ values of Ru/C, Pd/C, and Pt/C 582 catalyzed lignin residues were 2593.4, 2363.1, and 2182.7 g/ 583 mol, respectively (Table 4). The decrease in average MW of 584 solid residues indicates lignin depolymerization caused by 585 CTH reaction. The polydispersity index (PDI = 2.73) of DES-586 EL was, however, lower than the PDIs (in the range of 3.02– 587 3.23) of solid residues for all three catalysts. The increase in 588 PDI for the residual solids demonstrated a wider span of MW 589 after CTH reaction, suggesting that lignin depolymerization 590 and recondensation may occur at the same time. The liquid 591 fractions had much lower MW than the unreacted DES-EL,

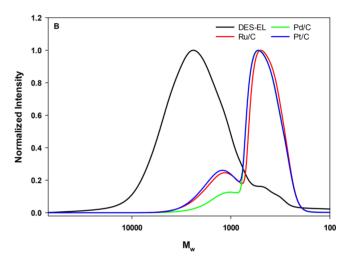


Figure 3. Molecular weight distribution of unreacted DES-EL and (a) residual solids and (b) liquid fractions from the catalytic transfer hydrogenolysis reaction; Reaction conditions: temperature at 270 °C, reaction time of 60 min, and catalyst loading of 15%.

Table 4. Molecular Weight Distribution of Residual Solid and Liquid Fractions Derived from Hydrogenolysis of DES-EL at 270 °C, 60 min Reaction Time, and 15% Catalyst Loading

Source	$M_{\rm w} ({ m g/mol})$	$M_{\rm n}$ (g/mol)	polydispersity index (PDI)
DES lignin	3037.05	1114.18	2.73
residual lignin (Ru/C)	2539.44	841.33	3.02
residual lignin (Pd/C)	2363.14	752.80	3.14
residual lignin (Pt/C)	2182.73	669.68	3.23
lignin in liquid stream (Ru/C)	681.62	478.08	1.43
lignin in liquid stream (Pd/C)	570.15	455.45	1.25
$\begin{array}{c} \text{lignin in liquid stream (Pt/} \\ \text{C)} \end{array}$	704.97	497.46	1.42

with an overall M_W between 570.2 and 705.0 g/mol (Figure 592 3b). The MWD curves of the liquid fractions for all the 593 catalysts showed very similar peak shapes, with PDI ranging 594 from 1.25 to 1.43. The reductions in MW for both acetylated 595 solid residues and liquid fractions in the presence of catalysts 596 indicate the depolymerization of DES-EL due to CTH 597 reaction. Combining the GPC profiles and GC/MS results, it 598

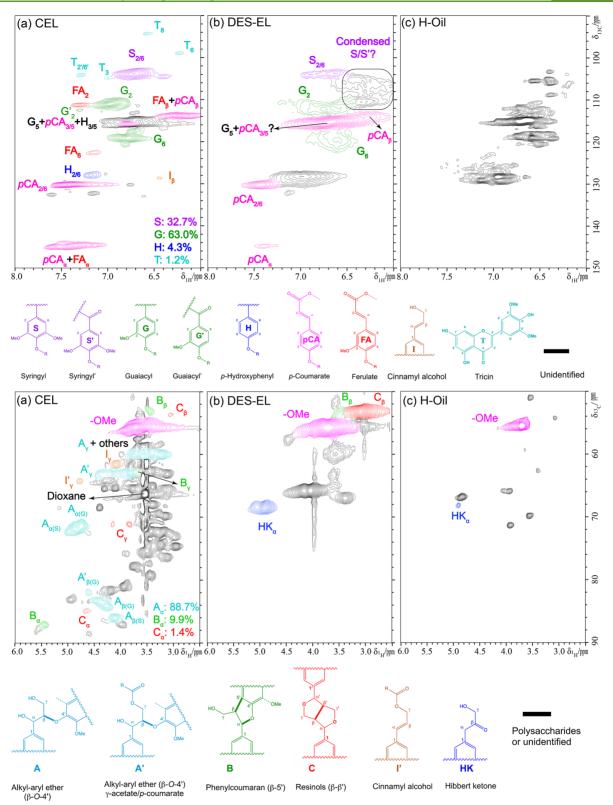
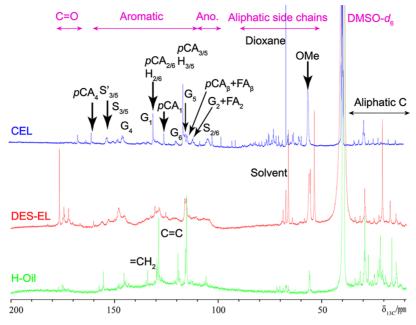



Figure 4. $^{13}C-^{1}H$ (HSQC) spectra of aromatic (top) and alkyl regions (bottom) of (a) sorghum cellulolytic enzyme lignin (CEL), (b) DES extracted lignin (DES-EL), and (c) hydrogenolysis oil (H-Oil).

599 can be inferred that CTH was effective in breaking down DES-600 EL to lower MW phenolic compounds.

The ATR-IR spectra of the unreacted DES-EL and the solid residues after hydrogenolysis are shown in Figure S1. Generally speaking, the IR spectra of the solid residues were significantly different from the IR spectrum of the unreacted DES lignin.

The peaks at 3400 and 2920 cm $^{-1}$ represent the stretching of 605 O—H and CH $_n$ bonds, respectively. The decrease in 606 absorbance in the 3400 cm $^{-1}$ region for the solid residues 607 can be attributed to the reduction of hydroxyl groups during 608 hydrogenolysis. The aromatic skeletal vibrations were 609 represented by signals between 1400 and 1700 cm $^{-1}$ while 610

I

Figure 5. ¹³C NMR spectra of CEL, DES-EL, and H-Oil from sorghum.

 $_{611}$ the bands at 1510 and 1595 cm⁻¹ can be assigned to C=C of 612 aromatic skeletal vibrations. 60 It appeared that the bands 613 around 1595 cm⁻¹ were retained for all the solid residues 614 derived from hydrogenolysis, suggesting that the aromatic ring 615 was not saturated by the hydrogenolysis. The peaks at 1420 616 and 1460 cm⁻¹ can be attributed to the C—H aromatic ring 617 vibrations and C-H deformation in CH, groups, 618 respectively; while the hydrogenolysis solid residue showed 619 notable decrease or no absorbance for these peaks when 620 compared to untreated DES-EL. Additionally, the spectra at 621 1030, 1110, and 1220 cm⁻¹ correspond to guaiacyl (G) and 622 syringyl (S) units of lignin; 62 all solid residues showed 623 significant reduction in absorbance in this range as compared 624 with unreacted DES lignin. Collectively, the FTIR results on 625 the residual solids illustrate that during CTH reaction, a 626 portion of the DES-EL lost its original structure and was most 627 likely condensed to char-like materials; while the other portion 628 depolymerized to lower molecular weight products as shown 629 by GPC and GC/MS results.

NMR Characterization of Lignin Streams. 2D ¹³C-¹H 631 HSOC NMR was used to characterize the structural changes of 632 lignin through DES treatment and hydrogenolysis reaction. 633 The spectra of sorghum CEL, DES-EL, and the H-Oils are 634 compared in terms of two regions: aromatic region between 635 6.0 and 8.0/90-150 ppm revealing lignin subunits, and 636 aliphatic region between 2.5 and 6.0/50-90 ppm, which 637 examines the nature of lignin side chain linkages (Figure 4). 638 The aromatic region of CEL revealed that sorghum lignin is 639 comprised of SGH type lignin with hydroxycinnamates (ferulate (FA), p-coumarate (pCA), and tricin (T)).⁶³ On a 641 basis of total SGH amount, the abundance of S:G:H was 642 33:63:4% and tricin of 1.2%, which is comparable with the 643 results presented by other researchers. 64 In addition, the 644 sorghum lignin had 51% pCA and 7% FA in the isolated CEL. 645 Lignin in herbaceous plants seems to have high p-coumarate 646 level. For example, del Rio et al. reported that p-coumarate 647 accounts for 68% and 48% of bagasse aromatic molecules 648 revealed from whole cell and MWL lignin HSQC spectra 65

while Samuel et al. found that p-coumarate accounts for \sim 32% 649 of switchgrass lignin aromatics. 650

After DES treatment, the lignin underwent significant 651 structural changes. For instance, the aromatic spectra of 652 DES-EL (Figure 4b) showed that the tricin units completely 653 disappeared while the signal intensity of hydroxycinnamates 654 was significantly reduced. In addition, the contours of S and G 655 units moved slightly downfield (~2-3 ppm) in ¹³C axis in 656 comparison to their chemical shifts in CEL. Previous studies 657 suggested that transformation of these structures accompany- 658 ing with chemical shifts changes are likely due to the 659 condensed/oxidized subunits. 66 After hydrogenolysis reaction, 660 the original S, G, or H subunits in CEL were almost completely 661 transformed, which was indicated by the loss or shift of their 662 signals in the spectra of the hydrogenolysis oil, supporting the 663 GC-MS results of the oil composed mostly of phenolic 664 compounds. These structural transformations may be 665 associated with demethoxylation or interactions of other 666 functional groups in the hydrogenolysis reaction.⁶⁷

The HSQC spectra of the aliphatic region in Figure 4 668 (bottom) denoted the changes of lignin linkages among CEL, 669 DES-EL, and H-Oil. Consistent with a previous study, 670 sorghum lignin contains side chains β -O-4', β -5' and 671 β - β 'linkages. ⁶⁸ In the case of DES-EL, methoxyl groups were 672 retained while β -O-4' aryl ether linkages were completely 673 depleted. The HSQC spectrum of the DES-EL also illustrated 674 that $\beta - \beta'$ linkages were the major interunit linkages with the 675 presence of a small amount of $\beta-5'$, while the signals from 676 their ether linkages (i.e., $C\alpha/H\alpha$) were not observed likely due 677 to its cleavage during DES treatment. This is in line with the 678 previous study on DES extracted lignin from Douglas fir. In 679 addition, the presence of Hibbert's ketone (HK) (68.6/4.93 680 ppm) in DES lignin corroborates the cleavage of β -O-4' 681 linkages by DES.⁷ The spectrum for H-Oil in Figure 4c 682 (bottom) revealed that the major interunit linkages in lignin 683 were not detected, and only the methoxyl groups were 684 retained. These contours in the aromatic region appeared to be 685 phenolic compounds after hydrogenolysis. The presence of 686 methoxyl groups is in agreement with the identified 687

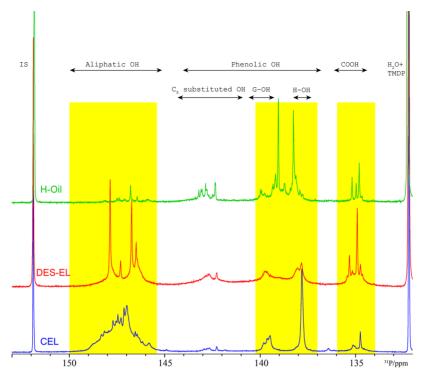


Figure 6. ³¹P NMR spectra of sorghum CEL, DES-EL, and H-Oil after phosphitylation.

688 alkylphenols via GC-MS such as 4-ethylphenol, 4-ethyl-2-689 methoxyphenol, and 2-methoxy-4-propylphenol.

¹³C NMR was also performed to provide supportive data to 691 HSQC-NMR. The lack of prominent signals between 72 and 692 90 ppm in the DES-EL compared with CEL confirms the 693 depletion of ether linkages (Figure 5). In comparison to CEL, 694 the DES-EL had a substantially increased carbonyl groups 695 (C=O); after hydrogenolysis, these C=O signals in DES-EL 696 were decreased significantly in hydrogenolysis products. This 697 suggested that lignin has been oxidized through DES treatment 698 and the resulting carboxylate groups were readily subject to 699 hydrogenolysis in the following catalytic reaction, in 700 accordance with previous literature, which shows that Ru 701 greatly improved the rate of hydrogenation of carbonyl 702 groups. ^{69,70} The ¹³C spectra also showed that the major lignin 703 structural units were retained in the DES-EL, but were not detected in the oil due to hydrogenolysis of these macro-705 molecules to phenolic monomers, suggesting a substantial 706 depolymerization of DES-EL through catalytic hydrogenolysis. 707 In addition, aromatic signals from phenolic compounds at 708 105-145 ppm along with a high level of saturated aliphatic 709 peaks at 15-40 ppm were observed in the ¹³C spectrum of H-710 Oil sample, which is in agreement with the previous HSQC

To further examine the structural characteristics of sorghum CEL, DES-EL, and H-Oil, ³¹P NMR was conducted on 714 phosphitylated samples to investigate the change of hydroxyl 715 groups in these samples (Figure 6 and Figure S2). The results 716 demonstrated that hydroxyl groups underwent a significant 717 change during DES treatment and hydrogenolysis reaction. For 718 example, the aliphatic OHs decreased remarkably from CEL to 719 DES-EL. The aliphatic OHs further decreased significantly in 720 H-Oils, which indicates there is negligible side chain hydroxyl 721 groups left in the hydrogenolysis products, which could be a 722 result of lignin degradation or cleavage of side chains in this 723 reaction. This is in line with the ¹³C spectra showing that an

increase of alkylated compounds in the H-Oils after catalytic 724 hydrogenolysis. In addition, the phenolic OHs (Ar-OH) 725 increased strikingly in hydrogenolysis oil compared with DES-726 EL indicating a breakdown of lignin into alkylphenolic 727 products in hydrogenolysis oil, in support of previous GC- 728 MS results. These results together suggest that DES treatment 729 depolymerized sorghum lignin by cleaving the ether bonds and 730 oxidized some lignin into carboxylate groups; the Ru/C 731 catalyst facilitated the hydrogenolysis reaction forming ketone 732 groups as well as a breakdown to alkylphenolic compounds. 733

CONCLUSIONS

734 Deep eutectic solvent was used to extract lignin from sorghum 735 and subsequently catalytic transfer hydrogenolysis (CTH) was 736 performed on the extracted lignin using platinum group noble 737 metals for production of lower molecular weight phenolic 738 compounds. Among tested catalysts, Ru/C proved to be most 739 effective as compared to Pd/C and Pt/C in the presence of 740 isopropyl alcohol. Results illustrate that temperature, catalyst 741 loading, and reaction time played roles in the depolymerization 742 of DES-EL during CTH. The highest lignin oil yield (36.3 wt 743 %) was achieved under a reaction condition at 270 $^{\circ}$ C, reaction 744 time of 60 min, and Ru/C catalyst loading of 15%, with the 745 main lignin degradation products identified as phenol, 4-746 ethylphenol, 4-ethyl-2-methoxyphenol, 2-methoxy-4-propyl- 747 phenol, and 4-hydroxy-benzenepropanoic acid. Molecular 748 weights of the solid residues and the hydrogenolysis oils 749 were lower than the unreacted DES-EL, demonstrating 750 depolymerization of DES-EL to lower molecular weight 751 products. NMR analysis of the DES-EL revealed a significant 752 structural alteration such as a considerable cleavage of the side 753 chain alkyl-aryl ether linkages of sorghum lignin, while 754 retaining methoxyl groups in the hydrogenolysis oil. The 755 hydrogenolysis oil has shown a further transformed structure 756 consisting of alkylated products, which indicates the break- 757 down of lignin into phenolics and alkylated compounds. The 758

759 results from this study provide a deep understanding of the 760 DES-EL and the hydrogenolysis of DES-EL to valuable 761 products that can be potentially upgraded to-the fuel molecules 762 and platform chemicals.

ASSOCIATED CONTENT

Supporting Information

765 The Supporting Information is available free of charge on the 766 ACS Publications website at DOI: 10.1021/acssusche-767 meng.8b01763.

FTIR spectra of DES-EL and solid residues collected 768 after hydrogenolysis reaction; lignin functional groups 769 determined by ³¹P NMR; quantitative results of lignin 770 hydroxyl groups (mmol/g lignin); assignments of the 771 lignin ¹³C-¹H correlation signals observed in the HSQC 772 spectra of the sorghum lignins (PDF) 773

AUTHOR INFORMATION

Corresponding Author

776 *Dr. Jian Shi, Email: j.shi@uky.edu.

778 Arthur J. Ragauskas: 0000-0002-3536-554X

779 Jian Shi: 0000-0003-3022-4446

780 Notes

781 The authors declare no competing financial interest.

ACKNOWLEDGMENTS

783 We acknowledge the National Science Foundation under 784 Cooperative Agreements 1355438 and 1632854 for partially 785 supporting this research. The information reported in this paper is part of a project of the Kentucky Agricultural 787 Experiment Station and is published with the approval of the 788 Director. Oak Ridge National Laboratory is managed by UT-789 Battelle, LLC under Contract DE-AC05-00OR22725 with the 790 U.S. Department of Energy (DOE). This work was partially 791 supported by the BioEnergy Science Center (BESC) and the Center for Bioenergy Innovation (CBI). The BESC and CBI 793 are U.S. DOE Bioenergy Research Centers supported by the Office of Biological and Environmental Research in the DOE Office of Science. The views and opinions of the authors 796 expressed herein do not necessarily state or reflect those of the 797 United States Government or any agency thereof. Neither the 798 United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or 800 assumes any legal liability or responsibility for the accuracy, 801 completeness, or usefulness of any information, apparatus, 802 product, or process disclosed, or represents that its use would 803 not infringe privately owned rights. We acknowledge Idaho 804 National Laboratory for providing sorghum biomass samples 805 and Dr. Muthu Gnanamani for assistance on gas composition 806 analysis.

807 REFERENCES

(1) Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; 809 Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, 810 M.; et al. Lignin valorization: improving lignin processing in the 811 biorefinery. Science 2014, 344 (6185), 1246843.

(2) Zakzeski, J.; Bruijnincx, P. C.; Jongerius, A. L.; Weckhuysen, B. 813 M. The catalytic valorization of lignin for the production of renewable 814 chemicals. Chem. Rev. 2010, 110 (6), 3552.

- (3) Beckham, G. T.; Johnson, C. W.; Karp, E. M.; Salvachúa, D.; 815 Vardon, D. R. Opportunities and challenges in biological lignin 816 valorization. Curr. Opin. Biotechnol. 2016, 42, 40-53.
- (4) Behling, R.; Valange, S.; Chatel, G. Heterogeneous catalytic 818 oxidation for lignin valorization into valuable chemicals: what results? 819 What limitations? What trends? Green Chem. 2016, 18 (7), 1839-820
- (5) Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, 822 R. K. Deep eutectic solvents formed between choline chloride and 823 carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. 824 Soc. 2004, 126 (29), 9142-9147.
- (6) Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. New natural 826 and renewable low transition temperature mixtures (LTTMs): 827 screening as solvents for lignocellulosic biomass processing. Green 828 Chem. 2012, 14 (8), 2153-2157.
- (7) Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; 830 Ramasamy, K. K.; Wolcott, M.; Zhang, X. Unique low-molecular- 831 weight lignin with high purity extracted from wood by deep eutectic 832 solvents (DES): a source of lignin for valorization. Green Chem. 2016, 833 18 (19), 5133-5141.
- (8) Xu, G.-C.; Ding, J.-C.; Han, R.-Z.; Dong, J.-J.; Ni, Y. Enhancing 835 cellulose accessibility of corn stover by deep eutectic solvent 836 pretreatment for butanol fermentation. Bioresour. Technol. 2016, 837 203, 364-369.
- (9) Zhang, Q.; Vigier, K. D. O.; Royer, S.; Jérôme, F. Deep eutectic 839 solvents: syntheses, properties and applications. Chem. Soc. Rev. 2012, 840 41 (21), 7108.
- (10) Kim, K. H.; Dutta, T.; Sun, J.; Simmons, B.; Singh, S. Biomass 842 Pretreatment using Deep Eutectic Solvent from Lignin derived 843 Phenols. Green Chem. 2018, 20, 809-815.
- (11) Kumar, A. K.; Parikh, B. S.; Pravakar, M. Natural deep eutectic 845 solvent mediated pretreatment of rice straw: bioanalytical character- 846 ization of lignin extract and enzymatic hydrolysis of pretreated 847 biomass residue. Environ. Sci. Pollut. Res. 2016, 23 (10), 9265-9275. 848
- (12) Tian, D.; Chandra, R. P.; Lee, J.-S.; Lu, C.; Saddler, J. N. A 849 comparison of various lignin-extraction methods to enhance the 850 accessibility and ease of enzymatic hydrolysis of the cellulosic 851 component of steam-pretreated poplar. Biotechnol. Biofuels 2017, 10 852 (1), 157.
- (13) Li, T.; Lyu, G.; Liu, Y.; Lou, R.; Lucia, L. A.; Yang, G.; Chen, J.; 854 Saeed, H. A. Deep Eutectic Solvents (DESs) for the Isolation of 855 Willow Lignin (Salix matsudana cv. Zhuliu). Int. J. Mol. Sci. 2017, 18 856 (11), 2266.
- (14) Regmi, Y. N.; Mann, J. K.; McBride, J. R.; Tao, J.; Barnes, C. E.; 858 Labbé, N.; Chmely, S. C. Catalytic transfer hydrogenolysis of 859 organosolv lignin using B-containing FeNi alloyed catalysts. Catal. 860 Today 2018, 302, 190-195.
- (15) Molinari, V.; Clavel, G.; Graglia, M.; Antonietti, M.; Esposito, 862 D. Mild Continuous hydrogenolysis of kraft lignin over titanium 863 nitride-nickel catalyst. ACS Catal. 2016, 6 (3), 1663-1670.
- (16) Galkin, M. V.; Samec, J. S. Selective Route to 2-Propenyl Aryls 865 Directly from Wood by a Tandem Organosolv and Palladium- 866 Catalysed Transfer Hydrogenolysis. ChemSusChem 2014, 7 (8), 867 2154-2158.
- (17) Xu, C.; Arancon, R. A. D.; Labidi, J.; Luque, R. Lignin 869 depolymerisation strategies: towards valuable chemicals and fuels. 870 Chem. Soc. Rev. 2014, 43 (22), 7485-7500.
- (18) Zhang, J.; Asakura, H.; van Rijn, J.; Yang, J.; Duchesne, P.; 872 Zhang, B.; Chen, X.; Zhang, P.; Saeys, M.; Yan, N. Highly efficient, 873 NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. 874 Green Chem. 2014, 16 (5), 2432-2437.
- (19) Barta, K.; Matson, T. D.; Fettig, M. L.; Scott, S. L.; Iretskii, A. 876 V.; Ford, P. C. Catalytic disassembly of an organosolv lignin via 877 hydrogen transfer from supercritical methanol. Green Chem. 2010, 12 878 (9), 1640-1647.
- (20) Kim, K. H.; Simmons, B. A.; Singh, S. Catalytic transfer 880 hydrogenolysis of ionic liquid processed biorefinery lignin to phenolic 881 compounds. Green Chem. 2017, 19 (1), 215-224.

- 883 (21) Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Catalytic 884 Transformation of Lignin for the Production of Chemicals and Fuels. 885 *Chem. Rev.* **2015**, *115* (21), 11559–624.
- 886 (22) Kim, J.-Y.; Park, J.; Kim, U.-J.; Choi, J. W. Conversion of lignin 887 to phenol-rich oil fraction under supercritical alcohols in the presence 888 of metal catalysts. *Energy Fuels* **2015**, 29 (8), 5154–5163.
- 889 (23) Kristianto, I.; Limarta, S. O.; Lee, H.; Ha, J.-M.; Suh, D. J.; Jae, 890 J. Effective depolymerization of concentrated acid hydrolysis lignin 891 using a carbon-supported ruthenium catalyst in ethanol/formic acid 892 media. *Bioresour. Technol.* **2017**, 234, 424–431.
- 893 (24) Shu, R.; Xu, Y.; Ma, L.; Zhang, Q.; Wang, C.; Chen, Y. 894 Controllable production of guaiacols and phenols from lignin 895 depolymerization using Pd/C catalyst cooperated with metal chloride. 896 Chem. Eng. J. 2018, 338, 457.
- 897 (25) Wu, L.; Arakane, M.; Ike, M.; Wada, M.; Takai, T.; Gau, M.; 898 Tokuyasu, K. Low temperature alkali pretreatment for improving 899 enzymatic digestibility of sweet sorghum bagasse for ethanol 900 production. *Bioresour. Technol.* **2011**, 102 (7), 4793–4799.
- 901 (26) Bennett, A. S.; Anex, R. P. Production, transportation and 902 milling costs of sweet sorghum as a feedstock for centralized 903 bioethanol production in the upper Midwest. *Bioresour. Technol.* 904 **2009**, 100 (4), 1595–1607.
- 905 (27) Das, L.; Liu, E.; Saeed, A.; Williams, D. W.; Hu, H.; Li, C.; Ray, 906 A. E.; Shi, J. Industrial hemp as a potential bioenergy crop in 907 comparison with kenaf, switchgrass and biomass sorghum. *Bioresour*. 908 *Technol.* **2017**, 244, 641–649.
- 909 (28) Hatfield, R. D.; Rancour, D. M.; Marita, J. M. Grass cell walls: a 910 story of cross-linking. *Front. Plant Sci.* **2017**, *7*, 2056.
- 911 (29) Luo, H.; Klein, I. M.; Jiang, Y.; Zhu, H.; Liu, B.; Kenttämaa, H. 912 I.; Abu-Omar, M. M. Total utilization of Miscanthus biomass, lignin 913 and carbohydrates, using earth abundant nickel catalyst. ACS 914 Sustainable Chem. Eng. 2016, 4 (4), 2316–2322.
- 915 (30) Samuel, R.; Pu, Y.; Jiang, N.; Fu, C.; Wang, Z.-Y.; Ragauskas, A. 916 Structural characterization of lignin in wild-type versus COMT down-917 regulated switchgrass. *Front. Energy Res.* **2014**, *1*, 1–9.
- 918 (31) Yoo, C. G.; Pu, Y.; Li, M.; Ragauskas, A. J. Elucidating 919 Structural Characteristics of Biomass using Solution-State 2 D NMR 920 with a Mixture of Deuterated Dimethylsulfoxide and Hexamethyl-921 phosphoramide. *ChemSusChem* **2016**, *9* (10), 1090–1095.
- 922 (32) Hu, Z.; Yeh, T.-F.; Chang, H.-m.; Matsumoto, Y.; Kadla, J. F. 923 Elucidation of the structure of cellulolytic enzyme lignin. *Holzfor*-924 schung **2006**, 60 (4), 389–397.
- 925 (33) Sun, S.-L.; Wen, J.-L.; Ma, M.-G.; Sun, R.-C. Structural 926 elucidation of sorghum lignins from an integrated biorefinery process 927 based on hydrothermal and alkaline treatments. *J. Agric. Food Chem.* 928 **2014**, 62 (32), 8120–8128.
- 929 (34) Li, M.; Pu, Y.; Tschaplinski, T. J.; Ragauskas, A. J. 31P NMR 930 Characterization of Tricin and Its Structurally Similar Flavonoids. 931 *ChemistrySelect* **2017**, 2 (12), 3557–3561.
- 932 (35) Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; 933 Templeton, D.; Crocker, D. *Determination of structural carbohydrates* 934 *and lignin in biomass*; Laboratory analytical procedure; National 935 Renewable Energy Laboratory: Golden, CO, 2008.
- 936 (36) Barta, K.; Warner, G. R.; Beach, E. S.; Anastas, P. T. 937 Depolymerization of organosolv lignin to aromatic compounds over 938 Cu-doped porous metal oxides. *Green Chem.* **2014**, *16* (1), 191–196. 939 (37) Wu, A.; Patrick, B. O.; Chung, E.; James, B. R. Hydrogenolysis
- 940 of β -O-4 lignin model dimers by a ruthenium-xantphos catalyst. 941 *Dalton Trans.* **2012**, 41 (36), 11093–11106.
- 942 (38) Sergeev, A. G.; Hartwig, J. F. Selective, nickel-catalyzed 943 hydrogenolysis of aryl ethers. *Science* **2011**, 332 (6028), 439–443.
- 944 (39) Rensel, D. J.; Rouvimov, S.; Gin, M. E.; Hicks, J. C. Highly 945 selective bimetallic FeMoP catalyst for C–O bond cleavage of aryl 946 ethers. *J. Catal.* **2013**, 305, 256–263.
- 947 (40) He, J.; Zhao, C.; Lercher, J. A. Ni-catalyzed cleavage of aryl 948 ethers in the aqueous phase. *J. Am. Chem. Soc.* **2012**, *134* (51), 949 20768–20775.

- (41) Kim, M.; Ha, J.-M.; Lee, K.-Y.; Jae, J. Catalytic transfer 950 hydrogenation/hydrogenolysis of guaiacol to cyclohexane over 951 bimetallic RuRe/C catalysts. *Catal. Commun.* **2016**, *86*, 113–118. 952
- (42) Panagiotopoulou, P.; Vlachos, D. G. Liquid phase catalytic 953 transfer hydrogenation of furfural over a Ru/C catalyst. *Appl. Catal., A* 954 **2014**, 480, 17–24.
- (43) Gosselink, R. J.; Teunissen, W.; Van Dam, J. E.; De Jong, E.; 956 Gellerstedt, G.; Scott, E. L.; Sanders, J. P. Lignin depolymerisation in 957 supercritical carbon dioxide/acetone/water fluid for the production of 958 aromatic chemicals. *Bioresour. Technol.* **2012**, *106*, 173–177.
- (44) Long, J.; Zhang, Q.; Wang, T.; Zhang, X.; Xu, Y.; Ma, L. An 960 efficient and economical process for lignin depolymerization in 961 biomass-derived solvent tetrahydrofuran. *Bioresour. Technol.* **2014**, 962 154, 10–17.
- (45) Kristianto, I.; Limarta, S. O.; Lee, H.; Ha, J.-M.; Suh, D. J.; Jae, 964 J. Effective depolymerization of concentrated acid hydrolysis lignin 965 using a carbon-supported ruthenium catalyst in ethanol/formic acid 966 media. *Bioresour. Technol.* **2017**, 234, 424.
- (46) Johnstone, R. A.; Wilby, A. H.; Entwistle, I. D. Heterogeneous 968 catalytic transfer hydrogenation and its relation to other methods for 969 reduction of organic compounds. *Chem. Rev.* **1985**, 85 (2), 129–170. 970 (47) Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Catalytic 971 transformation of lignin for the production of chemicals and fuels. 972 *Chem. Rev.* **2015**, 115 (21), 11559–11624.
- (48) Fang, Z.; Sato, T.; Smith, R. L.; Inomata, H.; Arai, K.; Kozinski, 974 J. A. Reaction chemistry and phase behavior of lignin in high- 975 temperature and supercritical water. *Bioresour. Technol.* **2008**, 99 (9), 976 3424–3430.
- (49) Wang, L.; Yang, R. T. Hydrogen storage properties of carbons 978 doped with ruthenium, platinum, and nickel nanoparticles. *J. Phys.* 979 *Chem. C* **2008**, *112* (32), 12486–12494.
- (50) Li, H.; Yuan, X.; Zeng, G.; Tong, J.; Yan, Y.; Cao, H.; Wang, L.; 981 Cheng, M.; Zhang, J.; Yang, D. Liquefaction of rice straw in sub-and 982 supercritical 1, 4-dioxane—water mixture. Fuel Process. Technol. 2009, 983 90 (5), 657–663.
- (51) Mubarak, M.; Shaija, A.; Suchithra, T. V. A review on the 985 extraction of lipid from microalgae for biodiesel production. *Algal Res.* 986 **2015**, 7, 117–123.
- (52) Kim, K. H.; Brown, R. C.; Kieffer, M.; Bai, X. Hydrogen-donor-988 assisted solvent liquefaction of lignin to short-chain alkylphenols using 989 a micro reactor/gas chromatography system. *Energy Fuels* **2014**, 28 990 (10), 6429–6437.
- (53) Kloekhorst, A.; Shen, Y.; Yie, Y.; Fang, M.; Heeres, H. J. 992 Catalytic hydrodeoxygenation and hydrocracking of Alcell® lignin in 993 alcohol/formic acid mixtures using a Ru/C catalyst. *Biomass Bioenergy* 994 **2015**, 80, 147–161.
- (54) Huang, S.; Mahmood, N.; Tymchyshyn, M.; Yuan, Z.; Xu, C. 996 C. Reductive de-polymerization of kraft lignin for chemicals and fuels 997 using formic acid as an in-situ hydrogen source. *Bioresour. Technol.* 998 **2014**, *171*, 95–102.
- (55) Saisu, M.; Sato, T.; Watanabe, M.; Adschiri, T.; Arai, K. 1000 Conversion of lignin with supercritical water— phenol mixtures. 1001 Energy Fuels 2003, 17 (4), 922–928.
- (56) Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, 1003 T.; Gates, B. C.; Rahimpour, M. R. Upgrading of lignin-derived bio- 1004 oils by catalytic hydrodeoxygenation. *Energy Environ. Sci.* **2014**, 7 (1), 1005 103–129.
- (57) Kim, J.-Y.; Oh, S.; Hwang, H.; Cho, T.-s.; Choi, I.-G.; Choi, J. 1007 W. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol. *Chemosphere* **2013**, 1009 93 (9), 1755–1764.
- (58) Tejado, A.; Pena, C.; Labidi, J.; Echeverria, J.; Mondragon, I. 1011 Physico-chemical characterization of lignins from different sources for 1012 use in phenol—formaldehyde resin synthesis. *Bioresour. Technol.* **2007**, 1013 98 (8), 1655–1663.
- (59) Cachet, N.; Camy, S.; Benjelloun-Mlayah, B.; Condoret, J.-S.; 1015 Delmas, M. Esterification of organosolv lignin under supercritical 1016 conditions. *Ind. Crops Prod.* **2014**, 58, 287–297.

- 1018 (60) Prado, R.; Brandt, A.; Erdocia, X.; Hallet, J.; Welton, T.; Labidi, 1019 J. Lignin oxidation and depolymerisation in ionic liquids. *Green Chem.* 1020 **2016**. *18* (3), 834–841.
- 1021 (61) El Hage, R.; Brosse, N.; Chrusciel, L.; Sanchez, C.; Sannigrahi, 1022 P.; Ragauskas, A. Characterization of milled wood lignin and ethanol 1023 organosolv lignin from miscanthus. *Polym. Degrad. Stab.* **2009**, *94* 1024 (10), 1632–1638.
- 1025 (62) Gordobil, O.; Moriana, R.; Zhang, L.; Labidi, J.; Sevastyanova, 1026 O. Assesment of technical lignins for uses in biofuels and biomaterials: 1027 Structure-related properties, proximate analysis and chemical 1028 modification. *Ind. Crops Prod.* **2016**, *83*, 155–165.
- 1029 (63) Li, M.; Pu, Y.; Yoo, C. G.; Ragauskas, A. J. The occurrence of 1030 tricin and its derivatives in plants. *Green Chem.* **2016**, *18* (6), 1439–1031 1454.
- 1032 (64) Eudes, A.; Dutta, T.; Deng, K.; Jacquet, N.; Sinha, A.; Benites, 1033 V. T.; Baidoo, E. E.; Richel, A.; Sattler, S. E.; Northen, T. R.et al. 1034 SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in 1035 sorghum. *PLoS One* **2017**, *12* (6), e0178160.
- 1036 (65) del Río, J. C.; Lino, A. G.; Colodette, J. L.; Lima, C. F.; 1037 Gutiérrez, A.; Martínez, Á. T.; Lu, F.; Ralph, J.; Rencoret, J. 1038 Differences in the chemical structure of the lignins from sugarcane 1039 bagasse and straw. *Biomass Bioenergy* **2015**, *81*, 322–338.
- 1040 (66) Wen, J.-L.; Sun, S.-L.; Xue, B.-L.; Sun, R.-C. Quantitative 1041 structures and thermal properties of birch lignins after ionic liquid 1042 pretreatment. *J. Agric. Food Chem.* **2013**, 61 (3), 635–645.
- 1043 (67) Chen, W.; McClelland, D. J.; Azarpira, A.; Ralph, J.; Luo, Z.; 1044 Huber, G. W. Low temperature hydrogenation of pyrolytic lignin over 1045 Ru/TiO 2:2D HSQC and 13 C NMR study of reactants and 1046 products. *Green Chem.* **2016**, *18* (1), 271–281.
- 1047 (68) Sun, S.-L.; Wen, J.-L.; Ma, M.-G.; Li, M.-F.; Sun, R.-C. 1048 Revealing the structural inhomogeneity of lignins from sweet sorghum 1049 stem by successive alkali extractions. *J. Agric. Food Chem.* **2013**, *61* 1050 (18), 4226–4235.
- 1051 (69) Lee, J.; Xu, Y.; Huber, G. W. High-throughput screening of 1052 monometallic catalysts for aqueous-phase hydrogenation of biomass-1053 derived oxygenates. *Appl. Catal., B* **2013**, *140*, 98–107.
- 1054 (70) Olcay, H.; Xu, Y.; Huber, G. W. Effects of hydrogen and water 1055 on the activity and selectivity of acetic acid hydrogenation on 1056 ruthenium. *Green Chem.* **2014**, *16* (2), 911–924.