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Weather surveillance radars are increasingly used for monitoring the movements 
and abundances of animals in the airspace. However, analysis of weather radar data 
remains a specialised task that can be technically challenging. Major hurdles are 
the difficulty of accessing and visualising radar data on a software platform familiar 
to ecologists and biologists, processing the low-level data into products that are 
biologically meaningful, and summarizing these results in standardized measures. To 
overcome these hurdles, we developed the open source R package bioRad, which 
provides a toolbox for accessing, visualizing and analyzing weather radar data for 
biological studies. It provides functionality to access low-level radar data, process 
these data into meaningful biological information on animal speeds and directions 
at different altitudes in the atmosphere, visualize these biological extractions, and 
calculate further summary statistics. The package aims to standardize methods for 
extracting and reporting biological signals from weather radars. Here we describe 
a roadmap for analyzing weather radar data using bioRad. We also define weather 
radar equivalents for familiar measures used in the field of migration ecology, such 
as migration traffic rates, and recommend several good practices for reporting these 
measures. The bioRad package integrates with low-level data from both the European 
radar network (OPERA) and the radar network of the United States (NEXRAD). 
bioRad aims to make weather radar studies in ecology easier and more reproducible, 
allowing for better inter-comparability of studies.
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Introduction

Weather surveillance radars continuously survey the airspace 
of many countries around the globe to detect precipitation 
and severe weather. This meteorological infrastructure also 
has a great and still underappreciated potential for quanti-
fying biological phenomena in the airspace (Chilson  et  al. 
2012a, Shamoun-Baranes  et  al. 2014, Bauer  et  al. 2017). 
Weather radar can measure aerial movements of various 
biological taxa, including birds (Gauthreaux Jr and Belser 
1998), bats (Stepanian and Wainwright 2018) and insects 
(Rennie 2014). Because of their year-round operation and 
organization in networks with continental-scale coverage, 
radar networks can provide standardized monitoring data at 
unprecedented temporal and spatial scales.

Following a proliferation of advances in information tech-
nologies, data infrastructure, and open data policies, access 
to low-level weather radar data has greatly improved over 
the last decade (Huuskonen et al. 2014, Ansari et al. 2018). 
These low-level data consist of scans (sweeps) in polar coordi-
nates of each of the observed quantities by the radar, collected 
at multiple beam elevations (in the European OPERA net-
work called single-site polar volumes, in the US NEXRAD 
network called level II data). Large advances have also been 
made in the development of methods to extract biologically 
relevant information from low-level radar data (Dokter et al. 
2011, Stepanian and Horton 2015). This technological and 
methodological push, combined with an increasing need to 
understand and predict how animals are using the airspace, 
have led to a steep increase in the use of weather radar in ecol-
ogy over the last decade.

Analysis of weather radar data for biological purposes 
has remained challenging nonetheless, requiring a variety of 
computer and programming skills as well as a basic under-
standing of how radars sample the atmosphere. Here we aim 
to improve the accessibility to tools and methods for biologi-
cal analysis of weather radar data through the bioRad package 
for R (R Core Team), arguably the most widely used high-
level open source software language in biology and ecology. 
This paper describes a roadmap for analyzing weather radar 
data using bioRad. It also provides an overview of the vari-
ous measures found in the literature for quantifying animal 
movement using weather radar and gives some good practices 
for reporting these measures.

Basic weather radar measures of animal movement

The movements and amount of animals in the airspace are 
often summarized in terms of vertical profiles. Vertical pro-
files can be generated by bioRad from low-level radar data 
and provide for each altitude above mean sea level (ASL) 
quantities like ground speed (ff), ground speed direction 
(dd), reflectivity (η), and animal density (dens). These pro-
file quantities can be combined into multiple measures sum-
marizing the number and passage of animals aloft. In the 
literature a large variety of measures can be found to report 
the amount of biological targets detected in the airspace 

by radar, like reflectivity factor z (Buler and Diehl 2009), 
reflectivity η (Dokter  et  al. 2011, Chilson  et  al. 2012b), 
vertically integrated reflectivity VIR (Gasteren et al. 2008, 
Shamoun-Baranes  et  al. 2011, McLaren  et  al. 2018), ver-
tically integrated density VID (Buler and Diehl 2009, 
Dokter et al. 2011, Horton et al. 2014), migration traffic 
rate MTR (Nilsson  et  al. 2019), or migration traffic MT 
(Dokter et al. 2018). This section and Fig. 1 give an over-
view of these measures and their interrelation. Throughout 
this paper we provide recommendations for when to use 
which measure, and how to report them in a standardized 
way using bioRad.

While in radar meteorology reflectivity factors z (or Z in 
dBZ) are the conventional unit (for its useful property of 
being independent of radar wavelength in the case of small 
scatterers like precipitation, Doviak and Zrnić 1993), for 
larger animals like birds a more useful unit is reflectivity η 
(Dokter  et  al. 2011, Chilson  et  al. 2012b), which is more 
directly proportional to aerial animal density (see caption 
Fig. 1 for conversions).

A first choice is whether to use measures that are closely 
related to the reflectivity measurements of the radar (Fig. 1, 
left box), or measurements that are explicit in the numbers 
of individuals aloft (Fig. 1, right box). The advantage of 
reflectivity-explicit measures (Fig. 1, left box) is that they 
do not rely on assumptions of how to convert reflectivity to 
aerial animal densities, which may be information that is not 
available or has high uncertainty. The disadvantage is that 
these measures are less readily interpretable from a biologi-
cal point of view. Individual-explicit measures (Fig. 1, right 
box) require knowledge of or explicit assumptions about 
the typical radar cross section (RCS) of individuals aloft 
(Vaughn 1985, Dokter  et  al. 2011, Mirkovic  et  al. 2016, 
Drake et  al. 2017). The RCS of an object is the apparent 
area from which the object back-scatters radar waves emit-
ted by the radar. It depends on the object’s refractive index, 
shape and radar wavelength (Vaughn 1985). RCS also var-
ies with aspect angle (body orientation relative to the radar 
beam), but since profile data is usually averaged over all azi-
muths, we can suffice with a single average RCS value for 
a given animal or animal type. When reporting numbers 
of individuals, it is important to always report accompa-
nying RCS values. For C-band radars in western Europe a 
seasonal average RCS of 11 cm2 has been determined in a 
calibration experiment (Dokter et al. 2011), which we rec-
ommend as a good starting point for nocturnal migration 
of passerines. This value may be refined using more detailed 
knowledge about which species are migrating, e.g. from 
information on phenology or other independent measure-
ments (Horton et al. 2018).

A second choice is the level of data aggregation, with stud-
ies often presenting multiple levels of data aggregation. The 
most basic profile data is specific for a certain altitude and 
time (Fig. 1, top row). Data can be summarized further firstly 
by accumulating over (a range of ) altitudes (Fig. 1, middle 
row), and secondly by accumulating data in time (Fig. 1, 
bottom row).
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A third choice is whether to use measures that are depen-
dent on the ground speed of the animals (Fig. 1, right col-
umn within boxes) or measures that are speed independent 
(Fig. 1, left column within boxes). Especially in the context 
of animal migration, the number of animals passing through 
an area depend both on the density of animals aloft and their 
speed. All else being equal, higher speeds represent higher 
migration intensity since more animals fly through a given 
area per unit of time. Intensity measures that are products of 
ground speed and density are therefore common in the litera-
ture, most notably the migration traffic rate (MTR) (Lowery 
1951, Bruderer 1971, Schmaljohann et al. 2008), for which 
we introduce here a reflectivity-based equivalent for weather 
radar (RTR, reflectivity traffic rate) (Fig. 1). Traffic rate mea-
sures have the important additional advantage of suppress-
ing stationary (non-migratory) signal components in weather 
radar data: reflectivity signal components with zero velocity 
will bias velocity estimates down by the same amount as their 
contribution to the total reflectivity, hence, measures that are 
based on the product of speed and reflectivity, like MTR and 
RTR, are effectively insensitive to these zero-velocity signal 
components (Dokter et al. 2018).

The migration traffic rate (MTR) for an altitude band is 
effectively the number of individuals crossing a transect per 
unit of transect length (usually 1 km) and per unit of time 

(usually 1 h). In most studies the transect is taken perpen-
dicular to the ground speed direction of movement. Defined 
as such, MTR is always a positive quantity, defined as:

MTR( , , ) dens fft h h t h t h dh
h

h

1 2

1

2

= ( ) ( )∫ , , 	 (1)

with t time, h1 the lower altitude and h2 the upper altitude 
of interest, and dens(t,h) and ff(t,h) the animal density and 
speed at altitude h and time t, respectively. Because the tran-
sect is perpendicular to the direction of movement, it rotates 
along with shifting ground speed directions of the animals. 
The transect direction can also be fixed to a single angle, in 
which case

MTR ( , , ) dens ff dda a at h h t h t h t h dh
h

h
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with dd(t,h) the ground speed direction and α the transect 
direction (Supplementary material Appendix 1 Fig. A1). The 
angle α starts at 0 for a west-to-east transect (which has a 
northward perpendicular direction) and are defined clock-
wise from north. Note that this equation evaluates to the 
previous equation when α = dd, as required. In this defini-
tion, MTRα is a classical flow rate, giving the numbers of 
individuals moving into a direction of interest per unit time 

speed-
dependent

speed-
independent

speed-
dependent

VIR VID MTRRTR

˜ † × ff˜ † dens × ffdens

MTRT

[km-2] [km-1 h-1][cm2 km-2] [cm2 km-1 h-1]

[km-1][cm2 km-1]

[km-3] [km-2 h-1][cm2 km-3] [cm2 km-2 h-1]

Integrate over time

Integrate over height

Integrate over time

altitude-range
time-specific

altitude-specificc
time-specific

altitude-range
time-range

× RCS

÷ RCS

symbol

[unit]

symbol

[unit]

speed-
independent

individual-explicitreflectivity-explicit

Integrate over height

Figure 1. Measures expressing the intensity of animal movement and their interrelation. For each measure, bioRad’s symbol or acronym is 
given in bold, the full terminology in italic, and the preferred unit (for bird studies) in brackets. Measures can be categorized according to 
(1) dependence on RCS (left vs right box), dependence on speed (left vs right column within boxes), and level of data aggregation (horizon-
tal rows). RCS equals the radar cross section of an individual. Reflectivity-explicit measures are transformed into individual-explicit mea-
sures by division by RCS. Note that notations in SI units can be shorter, e.g. the SI unit of RTR is [m s–1] and VIR is dimensionless. 
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of the animal (Doviak and Zrnić 1993) ( K m
2 =0.93 for water at C- and S-band). Z (note capital notation) expresses z on a dB scale  

(unit dBZ), which are related as z =10 10Z/ .



4

and per unit transect length. Individuals moving into the 
direction α contribute positively to MTRα, while targets mov-
ing in the opposite direction contribute negatively. MTRα 
can thus be positive or negative, depending on the direction 
of movement (cf. Fig. 2J and 2K). For a transect α = 0 in the 
northern hemisphere, spring migration is typically positive 
and autumn migration negative.

By integrating the migration traffic rates over a time 
period (from time t1 to t2), we obtain the migration traffic: 
the number of individuals that passed the one km transect 
during the time period:

MT ( , , ) MTR ( , , )a aa at t h h t h h dt
t

t

1 2 1 2 1 2

1

2

, , ,= ∫ 	 (3)

The definitions of RTR and RT are identical to those of MTR 
and MT above, except density (dens) should be replaced by 
reflectivity (η). Instead of the numbers of individuals, these 
measures give the cumulative cross-sectional area crossing the 
transect per unit time (RTR), or in a period of time (RT).

We recommend using the traffic measures dependent on 
transect angle α when estimating the actual passage across a 
geographic transect line of interest. Examples are the estima-
tion of influx or efflux from a geographic region (Dokter et al. 
2018a), or when comparing weather radar data to other sen-
sors surveying along a stationary geographic line or plane, 
like a fixed vertically rotating ship radar (Fijn  et  al. 2015). 
The measures independent of transect angle are most appro-
priate when quantifying traffic irrespective of the direction 
of movement, e.g. when comparing the amount of migra-
tion across large areas over which the general direction of 
movement varies (Nilsson et al. 2019).

General package structure and functionality

The functionality of bioRad is summarized in Fig. 2. 
Essentially, the package allows users to:

1) Load, inspect and visualize low-level radar data (polar 
volume data, also called level-II data in the US) of C-band 
or S-band weather radars, formatted in either the European 
OPERA (ODIM hdf5) or US NEXRAD data standard.

2) Extract biological information (speed, direction and 
density) at different altitudes.

3) Visualize, aggregate, and summarize this biological 
information over specific altitudes and time periods.

In bioRad, class objects are used for storing low-level data 
and data products, shown as blue/green boxes in Fig. 2. R has 
multiple class object systems, and bioRad uses the S3 object 
system (Chambers 2016). Most of these class objects have 
an associated plot method for making quick visualizations. 
The right-hand side of Fig. 2 shows examples of the output 
of these plot methods, for two migration events of similar 
intensity, one in Europe and one in the US. bioRad is able 
to extract vertical profiles of speed, direction, and density 
at different flight altitudes from low-level radar data, while 
offering standardized tools for post-processing and further 
analysis. Spatial variation in the horizontal plane is averaged 

out in profiles, and data is usually processed up to 25–35 km 
from the radar. Vertical profiles are generated in bioRad with 
the vol2bird algorithm (available at < https://github.com/
adokter/vol2bird >), originally developed for single and dual-
polarization C-band radars (Dokter et al. 2011).

For this publication the underlying C-code for the algo-
rithm has been refactored for compatibility with European 
and US radar formats, and for improved structure and read-
ability of the code base. Additional support has been added 
for dual-polarization S-band radars, like the US WSR-88D/
NEXRAD radars, as well for dealiasing radial velocities. The 
package does not yet support automated removal of precipi-
tation signals for single-polarization S-band radar. For these 
radars the generated profiles should be manually screened for 
precipitation contamination (cf. step 4 analysis workflow).

Analysis workflow

Step 1: loading and visualizing radar scans
The low-level radar data with which bioRad interacts 
are so-called polar volume data. A polar volume is a col-
lection of full-circle azimuthal scans (also referred to as 
sweeps) at various elevations of the radar antenna, which 
together provide a sampling of the atmosphere at all alti-
tudes of interest. bioRad reads polar volumes with the 
read_pvolfil function, which returns the polar vol-
ume as an object of class pvol. bioRad currently supports 
HDF5 files (Michelson 2014) that are compliant with 
the European OPERA Data Information Model (ODIM) 
(OPERA: Operational Program for Exchange of Weather 
Radar Information; see Huuskonen  et  al. 2014), and 
level-2 data generated by the US Next Generation Weather 
Radar (NEXRAD) network.

A polar volume (class pvol) contains a list of scans (class 
scan), each of which consists of a list of scan parameters 
(class param), cf. Fig. 1. A scan parameter is one of the 
radar’s basic observed quantities, such as reflectivity factor 
and radial velocity, and for dual-polarization radars addi-
tional quantities such as correlation coefficient, differential 
phase, and differential reflectivity.

Scan parameters can be projected on a georeferenced 
Cartesian grid in the form of a plan position indicator (PPI) 
objects (class ppi) using the function project_as_ppi. 
These can either be plotted directly using the function plot 
(Fig. 2B, C) or overlayed on a customizable basemap using 
the function map (Fig. 2D, 1E), which makes use of the 
ggplot2 (Wickham 2016) and ggmap (Kahle and Wickham 
2013) R libraries.

Step 2: processing volumes into vertical profiles
Volumes can be processed into vertical profiles using the 
calculate_vp function, which is a release of the algo-
rithm vol2bird (Dokter et al. 2011), available independently 
on Github (< https://github.com/adokter/vol2bird >). The 
function takes in a polar volume file and outputs a vertical 
profile file and/or a vertical profile (vp) class object. The 
function has an argument autoconf, which when set to 
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Figure 2. The structure and interrelation of bioRad’s main class objects, functions, and plotting methods. (A) objects (rounded box), func-
tions (fixed width font) and their relation (arrows). (B–K) output of the default plot methods for a European radar (left row, 
Offenthal radar, Germany, 2016-10-04 15:15 UTC–2016-10-05 08:45 UTC) and US radar (right row, KBRO radar, Texas, 2017-05-14 
00:09 UTC–2017-05-14 13:25 UTC). The dotted line in (H) and (K) indicates the time slice of (B), (D), (F) and (C), (E), (J) respectively. 
Figures (B) and (C) show radial velocity (VRADH) in m s–1 for the 1.5° elevation scans. Figures (D) and (E) show reflectivity factor 
(DBZH) in dBZ for the same scans. Figure (F) and (G) shows animal density (dens) versus altitude (RCS = 11 cm2) for a single vertical 
profile. Figure (H) and (I) show animal density (dens) and speed and direction (dd and ff) for a time series of vertical profiles. In figure 
(J) and (K), black line shows MTR (migration traffic rate across a transect perpendicular to ground speed direction), blue line MTR0 
(migration traffic rate across a fixed east-to-west transect) and red line MTR90 (migration traffic rate across a fixed north-to-south transect). 
Grey shading indicates night time (time on the x-axis is in UTC). Altitudes are relative to mean sea level.
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TRUE will select default settings automatically (depending 
on radar wavelength and availability of polarimetric data).

We describe the most important algorithm parameters 
and their preferred settings:
1) range_min, range_max: sets the minimum and 

maximum range (distance from the radar) of data to include. 
We recommend a minimum range of 5 km, to exclude the 
closest ranges that typically contain a lot of ground clut-
ter. We recommend a maximum range of 35 km, which 
for most radars allows coverage up to 3 to 4  km a.s.l., 
which is the altitude band in which most migration occurs 
(Bruderer et al. 2018). At longer ranges, the radar beam gets 
very wide, hampering the radar’s ability to resolve altitudinal  
distributions.
2) layers, layer_height: sets the number of 

altitude layers and their thickness, respectively. Altitudes are 
defined relative to mean sea level, taking into account the 
antenna height as stored in the original polar volume file. We 
recommend a thickness of 200 m. Profiles with narrower alti-
tude bin spacings can be extracted (Buler and Diehl 2009), 
but the finite size of the radar beam precludes resolving altitu-
dinal features smaller than approximately 100–200 m. Profile 
quantities are estimated based on resolution samples centered 
within the altitudinal spacing of each layer (Supplementary 
material Appendix 1).
3) dual_pol, rho_hv: the logical dual_pol 

enables polarimetric filtering of precipitation, which discards 
contiguous areas with correlation coefficient (rHV) above a 
threshold rho_hv. We recommend rho_hv = 0.95, since 
precipitation typically has higher correlation coefficient 
values (Stepanian et al. 2016) (but note that lower ρHV is pos-
sible in mixed precipitation, like a combination of snow and 
rain, cf. Ryzhkov and Zrnic 1998). Single polarization mode 
is currently only available for C-band radars.
4) dealias, nyquist_min: the logical dealias 

enables radial velocity dealiasing following the method by 
Haase and Landelius (2004) when scans are present with a 
Nyquist velocity smaller than threshold nyquist_min 
(default 25 m s–1). The Nyquist velocity is stored in the 
attributes$how$NI slot of scan class objects. Some 
radars dealias velocities at acquisition time, e.g. using the 
dual-PRF technique (Holleman 2005). For such radars we 
recommend no dealiasing for scans on which this is applied. 
For data acquired with a single PRF we recommend dealias-
ing when the Nyquist velocity of a scan is below 25 m s–1, i.e. 
if there is a high probability that animal movements will be 
faster than the Nyquist velocity.
5) sd_vvp_threshold: animal speed and direction 

are estimated using the Volume Velocity Profiling (VVP) 
technique (Waldteufel and Corbin 1978, Holleman 2005). 
VVP also provides the standard deviation of the fit residuals 
(see Supplementary material Appendix 1, quantity sd_vvp 
in a profile). The sd_vvp_threshold parameter sets 
the threshold for discarding data based on this stan-
dard deviation measure. Animal density will be set to zero  
in altitude layers with a VVP standard deviation sd_vvp 

< sd_vvp_threshold. We recommend applying this 
thresholding as a way of removing residual rain contamina-
tions and insects in bird studies using C-band radars, where 
sd_vvp_threshold = 2 m s–1 was shown a suitable value 
(Dokter  et  al. 2011). We note that sd_vvp may become 
large in relatively rare cases where the velocity field is highly 
nonlinear (e.g. strong shear), causing this thresholding crite-
rion to break down. For S-band radars VVP standard devia-
tion thresholding has not been thoroughly evaluated, but 
radial velocity variability during bird migration may be lower 
than at C-band in certain cases. We currently recommend a 
conservative threshold of 1 m s–1 to retain more biological 
scatter.
6) rcs: value for the radar cross section (RCS) of an 

individual. We recommend 11 cm2 as a starting point, which 
was the seasonal average for C-band radars in western Europe 
during nocturnal passerine migration, according to a calibra-
tion experiment (Dokter et al. 2011). Note that radar cross 
sections depend on target size, body orientation, and radar 
wavelength (Vaughn 1985).

The sd_vvp_threshold and rcs parameters can 
be changed using the sd_vvp_threshold and rcs 
functions (in step 3 and up) without having to reprocess the 
vertical profile (step 2).

Step 3: visualizing and interpreting individual profiles
The various quantities in a vertical profile (e.g. dens: ani-
mal density, ff: ground speed, dd: ground speed direction, 
eta: reflectivity) can be visualized with plot, as shown in 
Fig. 2F and 2G for density. These profile plots and Fig. 2D, 
E are for the same moment in time. Note that both profiles 
show layering of birds: a density concentration at high alti-
tude (here at approx. 1.5 km) (cf. Dokter et al. 2013). These 
layers show up as concentric rings in Fig. 2D and 2E. These 
rings appear because at an increasing distance from the radar, 
measurements are made at higher altitudes, because of the 
positive beam elevation and the curvature of the earth.

Also note that the peak densities of the two cases are simi-
lar, on the order of 100 individuals km–3 (assuming RCS = 11 
cm2) (Fig. 2H, I). The reflectivity factors (in dBZ scale, 
not to be confused with reflectivity η (Dokter  et  al. 2011, 
Chilson et al. 2012b)) are however much higher for the US 
case than the European case. This is related to the difference 
in radar wavelength (Dokter  et  al. 2011), with NEXRAD 
radars in the US being S-band and European radars being 
mostly C-band.

Step 4: analyzing and visualizing vertical profiles as time 
series
After processing volume data into profiles, the profile data of 
consecutive volume scans of a radar can be organized into a 
time series of vertical profiles. The function bind_into_
vpts binds vertical profile objects (class vp) into time series 
object (class vpts), for which the default plot is shown in 
figure 2H and 2I. The dotted line indicates the time slice of 
Fig. 2B–G.



7

The plot method overlays one of the reflectivity-based 
quantities (e.g. dens, eta or dbz) with a barb indicating the 
animals ground speed and direction. This follows meteoro-
logical conventions for graphically displaying wind speed and 
direction (with north being up). The number of barb flags 
indicate the speed (ff) while its tip points into the direction 
where animals are moving (dd).

Another useful profile quantity to inspect as time series is 
DBZH. This is the reflectivity factor for all scatterers, includ-
ing meteorological targets like precipitation. Time periods 
with rain are often clearly visible as high DBZH values over 
the full altitude column. We recommend making plots of 
DBZH as a way of screening for precipitation contamina-
tions and quality control, which is often a useful way to 
check remarkable altitude patterns in the biological data (e.g. 
the layering of birds at 1.5 km can also be seen in Fig. 2I) 
or short spikes with high values that might be due to rain 
contamination.

bioRad provides multiple functions to further aggregate 
and summarize time series data. We can integrate over the 
altitude dimension using integrate_profil, which 
outputs a specially classed data.frame (class vpi) 
containing altitudinally integrated or averaged quantities 
(Fig. 1). Figure 2J and 2K show plots of migration traf-
fic rate, both MTR (variable transect angle, Eq. 1) and 
MTR0 and MTR90 (fixed transect angle, Eq. 2). We note as 
before that MTR is always positive, but MTRα definitions 
can become negative depending on the migratory direc-
tion in relation to α. For example, the northward spring 
migration (US case, Fig. 2K) result in a positive MTR0, 
while the southward autumn migration (European case, 
Fig. 2J) is negative. For the US case, migration is directed 
mostly northward, therefore MTR0 is much larger than 
MTR90, while in the European case, migration is mostly 
westward, therefore (in absolute value) MTR0 is smaller 
than MTR90.

Vertically-integrated time series can be further accu-
mulated in time into measures summarizing migra-
tion traffic having passed the radar station during a time 
period, like MT in Eq. 3 (cf. output columns mt and 
rt of integrate_profil). For example, for the 
European case we find MT = 55 × 103, MT0 = –28 × 103 
and MT90 = –45 × 103 for the time night-time period. 
This means that – assuming a radar cross section (RCS) 
per individual of 11 cm2 – 55 thousand birds per 1  km 
transect flew over the radar station in this night (irrespec-
tive of direction). Decomposing the migration traffic into 
two perpendicularly oriented components, we find a net 28 
thousand birds flew southward per km over a west-to-east 
transect (MT0), and a net 45 thousand birds per km flew 
westward per km over a north-to-south transect (MT90). 
For these specific definitions, MT ≤ √(MT0

2 + MT90
2), with 

the left- and right-hand side being equal when migration 
directions dd all point into a sector of at most 180 degrees 
wide, as is usually the case for periods confined to a single 
spring or fall.

Both the vp and vpts class objects can be exported to 
standard R data frames (using as.data.frame) for fur-
ther analysis outside of bioRad.

Conclusions, recommendations and outlook

bioRad provides a set of functions to extract biological infor-
mation from weather radar data, to present the information 
in graphical form, and to aggregate it in useful summary sta-
tistics. bioRad streamlines the reporting of analysis results 
according to existing conventions in the literature.

For larger-bodied animals like birds, we recommend the 
following measures when reporting data in aggregated form:

1) To quantify the instantaneous intensity of migration, 
or other large-scale directed movements for which a rate of 
passage is of interest: MTR (if RCS unknown: RTR).

2) To quantify the number of migrants passing in a certain 
time period: MT (if RCS unknown: RT).

3) To quantify the instantaneous number of animals aloft: 
VID (if RCS unknown: VIR). This measure is especially use-
ful for cases that lack a large-scale directed movement, for 
example at the moment of a synchronized exodus of flight 
(Shamoun-Baranes et al. 2011, Buler and Dawson 2014), or 
near a roost (Stepanian and Wainwright 2018).

Traffic measures (MTR, RTR, MT, RT) can be condi-
tional on the choice of a transect line across which animals 
are counted (angle α, cf. Eq. 2, 3). We therefore recommend 
reporting whether a fixed transect was used or not, and if 
so, its direction. These vertically-integrated quantities are also 
conditional on an altitude band, therefore it should be clear 
whether they refer to the full altitude column, or only part 
of it.

The bioRad R software package aims to facilitate radar aer-
oecology research and make weather radar a more accessible 
tool in biological research to a broad range of researchers. We 
encourage extending weather radar as a tool beyond its cur-
rent main application in quantifying songbird migration, e.g. 
towards larger flocking and soaring birds, bats and insects. 
Quantification of the movements of these species groups 
will require further calibration experiments (Dokter  et  al. 
2011, Nilsson et al. 2019) and theoretical simulation work 
(Mirkovic et al. 2016) to identify their radar signatures and 
validate quantifications, in which dual-polarization informa-
tion will likely be invaluable (Stepanian and Horton 2015, 
Stepanian  et  al. 2016). We also encourage the use of this 
package in biological radar studies in other countries with 
extensive weather radar networks, such as Australia, Canada, 
China, India, Japan and Russia, whose data might be read-
ily explored once converted to a standardized (OPERA or 
NEXRAD) format. Expanding the use of weather radar net-
works for biological studies around the world will require 
continuing improvements in access to data and standardiza-
tion of data formats, and in raising awareness of the value 
of collecting, distributing and archiving clear-air biologi-
cal data with radar operators. There is a broad potential for 
using weather data in fundamental ecological research, in 
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applications for mitigating wildlife-human conflicts, and 
in conservation (Bauer  et  al. 2017). We expect its use will 
therefore only increase in the near future, and we hope these 
software tools will facilitate the further adoption of weather 
radar in the toolkit of biologists, conservationists and policy 
makers alike.

Software availability

bioRad’s homepage <http://adokter.github.io/bioRad> pro-
vides links to R source code, install instructions, function 
documentation, vignettes and introductory exercises.

Software available on CRAN: <https://CRAN.R-project.
org/package=bioRad> and Github: <https://github.com/
adokter/bioRad>.

Install latest release in R as install.packages(“bioRad”), and 
latest development version as devtools::install_github(“adokter/
bioRad”). 

C source code (vol2bird profiling algorithm) available 
from: <https://github.com/adokter/vol2bird>. Running 
vol2bird in bioRad using calculate_vp() requires an instal-
lation of Docker (linux, mac) or Docker for Windows 
(windows).

License: MIT.
To cite bioRad or acknowledge its use, cite this Software 

note as follows, substituting the version of the application 
that you used for ‘version 0’:
Dokter, A. M., Desmet, P., Spaaks, J. H., van Hoey, S., Veen, L., 

Verlinden, L., Nilsson, C., Haase, G., Leijnse, H., Farnsworth, 
A., Bouten, W. and Shamoun-Baranes, J. 2019. bioRad: 
biological analysis and visualization of weather radar data.  
– Ecography 42: 000–000 (ver. 0).

Funding – Funding received from Amazon Web Services, 
AWS Cloud Credits for Research (to AMD); National Science 
Foundation, Directorate for Biological Sciences, Division of 
Biological Infrastructure, no. 1661259; European Cooperation 
in Science and Technology, ESSEM COST Action ES1305 and 
Netherlands Ministry of Defence, Bird Avoidance System (BAS).
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