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To better understand the ecological implications of global climate change for species 
that display geographically and seasonally dynamic life-history strategies, we need to 
determine where and when novel climates are projected to first emerge. Here, we use 
a multivariate approach to estimate time of emergence (ToE) of novel climates based 
on three climate variables (precipitation, minimum and maximum temperature) at 
a weekly temporal resolution within the Western Hemisphere over a 280-yr period 
(2021–2300) under a high emissions scenario (RCP8.5). We intersect ToE estimates 
with weekly estimates of relative abundance for 77 passerine bird species that migrate 
between temperate breeding grounds in North America and southern tropical and 
subtropical wintering grounds using observations from the eBird citizen-science data-
base. During the non-breeding season, migrants that winter within the tropics are 
projected to encounter novel climates during the second half of this century. Migrants 
that winter in the subtropics are projected to encounter novel climates during the first 
half of the next century. During the beginning of the breeding season, migrants on 
their temperate breeding grounds are projected to encounter novel climates during 
the first half of the next century. During the end of the breeding season, migrants are 
projected to encounter novel climates during the second half of this century. Thus, 
novel climates will first emerge ca 40–50 yr earlier during the second half of the 
breeding season. These results emphasize the large seasonal and spatial variation in 
the formation of novel climates, and the pronounced challenges migratory birds are 
likely to encounter during this century, especially on their tropical wintering grounds 
and during the transition from breeding to migration. When assessing the ecological 
implications of climate change, our findings emphasize the value of applying a full 
annual cycle perspective using standardized metrics that promote comparisons across 
space and time.
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Introduction

The ecological implications of global climate change (IPCC 
2013) have been documented from a variety of different 
biological perspectives (Scheffers et al. 2016, Pacifici et al. 
2017). When individual species are examined, climate 
change has been shown to affect species’ distributions, phe-
nology, reproductive success and survival (Chen et al. 2011, 
Johnston et al. 2013, Selwood et al. 2014, Stephens et al. 
2016). When estimating the projected implications of cli-
mate change for individual species, a common approach to 
is to determine how climate change projections are defined 
within species’ geographic distributions. This approach 
typically interprets the absolute magnitude of projected 
changes in climate, typically temperature, as a measure of 
ecological significance. One limitation of this approach is 
that magnitude alone does not provide a consistent measure 
of ecological significance; i.e. similar magnitudes may gen-
erate very different ecological outcomes across regions and 
seasons. To promote more realistic assessments, it would be 
valuable to standardize climate change projections under a 
common baseline that supports comparisons across space 
and time. One method to accomplish this is to standard-
ize climate change projections by historical year-to-year 
climatic variation (Williams et al. 2007). The expectation 
under this approach is that the stronger the deviation from 
historical variation, the more novel the projected changes 
in climate and the more significant any resulting ecological 
disruptions (Williams and Jackson 2007, Fitzpatrick et al. 
2018). These disruptions may generate ‘ecological sur-
prises’ or new ecological domains that lack current analogs 
(Williams and Jackson 2007, Morse  et  al. 2014), a pro-
cess that may be compounded by the influence of other 
global change drivers (Paine  et  al. 1998). The associated 
changes in ecosystem structure and function will have 
broad ramifications for natural communities that could 
affect processes such as colonization, extirpation, adapta-
tion and speciation (Bull and Maron 2016, Hulme 2016, 
Meester et al. 2017).

A common method to summarize standardized climate 
change projections is to estimate the year when the projection 
first exceeds some measure of climatic variability, an approach 
often referred to as time of emergence (ToE) (Hawkins and 
Sutton 2012). By estimating when climate change is pro-
jected to pass a certain threshold of natural variability, ToE 
simplifies the interpretation of standardized climate change 
projections by converting probabilities of novel climates to a 
single estimate of time. ToE therefore identifies a future time 
period after which natural systems will occur in climates that 
have no historical analogs at those locations (Williams et al. 
2007). How natural systems will be affected by these new 
associations cannot be readily predicted based on historical 
associations without applying questionable extrapolations 
(Fitzpatrick et al. 2018, Qiao et al. 2018). Thus, ToE defines 
a point in the future where uncertainty crosses a statistical 
threshold and climate change is likely to generating ecological 

disruptions whose outcome cannot be accurately predicted 
(Williams and Jackson 2007).

The most common application of ToE is to examine 
projected changes in temperature under climate change 
(Diffenbaugh and Scherer 2011, Mahlstein  et  al. 2011, 
2012a, Hawkins and Sutton 2012, Mora et al. 2013). There 
are additional examples that consider other climate change 
factors such as projected changes in precipitation (Giorgi and 
Bi 2009, Mahlstein  et  al. 2012b, Douglas 2013, Sui  et  al. 
2014, Nguyen  et  al. 2018), projected changes in the fre-
quency and intensity of climate extremes (King et al. 2015, 
Bador et al. 2016, Lee et al. 2016, Tan et al. 2018), projected 
changes in sea level (Lyu et al. 2014), and projected changes 
in width of the earth’s tropical belt (Quan  et  al. 2018). A 
common method for estimating ToE is to identify the year 
in which the ratio between climate change and historical 
climatic variability (signal-to-noise ratio) first crosses a pre-
defined threshold, such as one or two (Hawkins and Sutton 
2012). A variant of this approach is to identify the year when 
the signal-to-noise ratio exceeds a predefined threshold across 
multiple consecutive years (Mora  et  al. 2013). A common 
feature of current ToE studies is that ToE is estimated using 
an annual measure of climate based on one climate variable. 
Thus, how ToE varies seasonally has not been explored in 
detail, and how ToE is defined based on a combination of 
climate variables has not been considered. In addition, ToE 
has rarely been explored within an ecological context.

The application of a full annual cycle perspective is 
considered essential in ecological climate change research, 
especially when examining species that display geographically 
and seasonally dynamic life-history strategies (Ådahl  et  al. 
2006, Small-Lorenz et al. 2013, Zeigler 2013). A key example 
and a model research system are migratory birds (Parmesan 
2006). These species conduct regular and often broad-scale 
seasonal movements in response to seasonal variation in 
resource availability. For bird species that breed in North 
America and migrate within the Western Hemisphere, a full 
annual cycle perspective has been used to explore how migra-
tory bird populations are associated with projected changes 
in temperature and precipitation based on the projected mag-
nitude of change (La Sorte et  al. 2017a) and the projected 
novelty of those changes (La Sorte et al. 2018). Our objec-
tive in this study is to advance upon this previous work by 
translating probabilities of novel climates to estimates of ToE.

Here, we intersect weekly estimates of relative abundance 
for 77 migratory bird species that breed in North America 
and migrate within the Western Hemisphere (Supplementary 
material Appendix 1 Table A1) with weekly estimates of ToE 
(Fig. 1). We estimate relative abundance for each species 
using 13 yr of bird observations (2004–2016) from the eBird 
citizen-science database (Sullivan  et  al. 2014). We gener-
ate weekly estimates of ToE using a multivariate approach 
(Mahony et  al. 2017) based on 60 yr of historical climatic 
observations (1957–2016) and projected changes in three 
climate variables (precipitation rate, minimum and maximum 
temperature) over a 280-yr period (2021–2300). We estimate 
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the probability of novel climates emerging for each week of 
the 280-yr period. We then use this information to estimate 
ToE for each week based on the first year a predefined 
threshold is crossed using the probabilities modeled over the 
280-yr period.

Within the Western Hemisphere, climate change 
projections and year-to-year variation in climate display a 
variety of spatial and seasonal patterns (La Sorte et al. 2018) 
that largely determine how ToE estimates will likely be 
defined for these species. Year-to-year climatic variation is 
greatest within temperate latitudes, where it displays greater 
seasonality, and lowest within tropical latitudes, where it 
displays limited seasonality. Within tropical latitudes where 
climate change projections are weak (IPCC 2013), the 
probability of novel climates emerging by the end of this 
century is projected to be high across all seasons of the year 
(La Sorte  et  al. 2018). Within temperate latitudes where 
climate change projections are stronger (IPCC 2013), the 
probability of novel climates emerging by the end of this 
century is projected to be highest during the late summer 
and early autumn when warming projections are strong 
and year-to-year variation is at its lowest (La Sorte  et  al. 
2018). Therefore, we expect the 77 migratory bird species 
considered in this study to display three associations with 

ToE: 1) earlier ToE during the non-breeding season for spe-
cies that winter further south within the tropics; 2) later ToE 
during the breeding season when species are on their tem-
perate breeding grounds; and 3) limited variation in ToE 
when species occur on their tropical non-breeding grounds, 
and more substantial variation in ToE when species occur 
on their temperate breeding grounds. By testing these pre-
dictions, our goal is to advance our understanding on how 
the ecological implications of climate change are likely to 
develop across space and time for migratory bird species 
based on their current distributions. Our broader aim is 
to provide a more robust ecological context for identifying 
when and where novel climates are likely to significantly 
affect natural systems.

Material and methods

We located our study area within terrestrial regions of 
the Western Hemisphere (longitude 30–170°W, latitude 
60–84°N; Fig. 2). From a total of 234 bird species available for 
analysis (Supplementary material Appendix 1 Table A1), we 
selected migratory passerine species for analysis that migrate 
between temperate breeding grounds in North America and 

Modeled relative abundance for 77 
migratory bird species using 13 years of 
bird observations (2004-2016)  from 
the eBird citizen-science database

Biological data Historical climate data
60 years (1957-2016)

Three climate variables
(Minimum and maximum temperature, precipitation rate)

Climate projections (4 GCMs)
Reference period: 2006-2020
Projection period: 2021-2300 

Time of emergence (ToE) of novel climates during the 
280 year projection period (2021 to 2300) estimated at 
three probability thresholds: 0.85, 0.90, and 0.95 (Fig. 3)
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Figure 1. Methodological flow chart illustrating the steps in the time of emergence (ToE) analysis. The analysis was implemented within 
the Western Hemisphere at a weekly temporal resolution within equal-area hexagon cells (spatial resolution = 49 811 km2) using four 
atmosphere-ocean general circulation models (Supplementary material Appendix 3 Table A2) (see Material and methods for additional 
details).
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tropical and subtropical wintering grounds using the proce-
dure described in La Sorte et al. (2018). Specifically, we used 
range map based estimates of geographic centers of occur-
rence (described below) to identify species whose breeding 
ranges were centered north of 24°N latitude, whose non-
breeding ranges were centered south of 24°N latitude and 
whose non-breeding maximum latitude occurred south of 
34°N latitude. We selected 24°N latitude because it roughly 
delineates the northern boundary of the tropics, and we 
selected 34°N latitude because it roughly delineates the 
northern boundary of the subtropics. This procedure resulted 
in a total of 92 species for analysis (Supplementary material 
Appendix 1 Table A1). From these, we removed 15 species 
whose weekly estimates of relative abundance (described 
below) did not encompass all 52 weeks of the annual cycle, 
resulting in 77 species for analysis (Supplementary material 
Appendix 1 Table A1). We classified the 77 species into three 
categories based on the latitude of the geographic center of 
their non-breeding distributions (range = 23.1°S to 23.3°N 
latitude). Specifically, we divided the 77 species into three 
groups of roughly equal size based on the 0.33 and 0.67 
quantiles of the distribution of the non-breeding season 
latitudes (14.3°N and 18.9°N latitude, respectively). We 
chose this approach because, unlike the breeding distribu-
tions which were all situated within temperate latitudes, the 
non-breeding distributions occurred across a broader range of 
tropical and sub-tropical latitudes.

We identified geographic centers of occurrence for each 
species’ breeding and non-breeding distribution using range 
maps from NatureServe (Ridgely  et  al. 2007). The static 
representation of extent of occurrence provided by the range 
maps addressed the requirements for our species selection 
process and non-breeding season classification. We first con-
verted range map polygons to equal-area hexagons having a 
cell size of 49 811 km2 and radius of roughly 126 km, gener-
ated using a icosahedral discrete global grid system based on 
a Fuller icosahedral projection using an aperture 4 hexagon 
partition method (Sahr et al. 2003, Sahr 2011). We selected 
equal-area hexagon cells for our analysis because they mini-
mize edge effects, the size and shape of the cells are consistent 
across space, including latitude, and the spatial resolution 
encompasses the fine and much of the coarse spatial data 
used in our analysis (details provided below). We calculated 
geographic centroids by averaging the geographic locations of 
the hexagon cell-centers occurring within each species’ non-
breeding and breeding distributions. We only considered 
hexagon cells that contained greater than 10% terrestrial 
(non-marine) surface area in these calculations.

Species abundance data preparation and analysis

We estimated species’ relative abundance at a weekly tem-
poral resolution and 8.4 × 8.4 km spatial resolution for each 
of the 77 species within the Western Hemisphere using 
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Figure 2. Species richness summarized across the annual cycle for 77 
North American migratory bird species (Supplementary material 
Appendix 1 Table A1) organized into three categories based on the 
latitude of the center of species’ non-breeding distributions: (a) 
−23.1 to 14.3°, (b) 14.3–18.9° and (c) 18.9–23.3°. Species richness 
was summarized within equal-area hexagon cells (spatial resolu-
tion = 49 811 km2) of an icosahedral discrete global grid system (see 
Material and methods for details).
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spatiotemporal exploratory models (STEM) (Fink  et  al. 
2010, 2013, Johnston  et  al. 2015) and bird observations 
from the eBird citizen-science database (Sullivan et al. 2014) 
acquired from the 2016 eBird Reference Dataset. Relative 
abundance is defined as a relative measure that is only valid 
for a given species and season, and is not an absolute mea-
sure that can be compared across species or seasons. The 
eBird data included species counts from complete checklists 
that contained effort information and were collected under 
the ‘traveling count’ and ‘stationary count’ protocols from 1 
January 2004 to 31 December 2016. This procedure resulted 
in a dataset consisting of over 14 million checklists col-
lected at over 1.7 million unique locations (Supplementary 
material Appendix 2 for additional details). To support our 
analysis, we aggregated weekly estimates of relative abun-
dance spatially for each of the 77 species by averaging rela-
tive abundance values within the equal-area hexagon cells 
described above.

To support our seasonal interpretation of ToE for each 
species, we used the average relative abundance estimates 
within the hexagon cells to generate estimates of migration 
speed. First, we estimated weekly geographic centers of abun-
dance for each species by calculating the weighted centroid of 
the hexagon cell centers using species’ relative abundance as a 
weighting factor. We then calculated migration speed for each 
species using the great-circle (orthodromic) distance between 
sequentially paired weekly centroids. This approach, which 
documents the movement of the center of a species’ entire 
population and not the movement of individual migratory 
birds, provides an objective context to assess when species’ 
populations are stationary, on their breeding or non-breeding 
grounds, or when populations are in migration in the spring 
and autumn.

Climate data preparation and analysis

Our climate data consisted of three daily climate variables: 
average surface precipitation rate (kg m−2 s−1), minimum sur-
face temperature at 2 m and maximum surface temperature 
at 2 m. We selected these three variables because they pro-
vide a reliable summary of daily climatic conditions, and the 
three variables were measured in a consistent fashion across 
the databases used in this study. We estimated inter-annual 
variation in the three climate variables using historical cli-
mate data from the continuing NCEP/NCAR 40-yr reanaly-
sis project (Kalnay  et  al. 1996) provided by NOAA/OAR/
ESRL PSD (<www.esrl.noaa.gov/psd/>) at a spatial resolu-
tion of 2.5 × 2.5°. The three variables are identified in the 
NCEP/NCAR database as prate.sfc.gauss, tmax.2m.gauss 
and tmin.2m.gauss, respectively. We collected daily estimates 
for the three climate variables over a 60 yr period (1957–
2016; Supplementary material Appendix 4 Fig. A1). We first 
calculated average weekly values for each of the 60 yr. We 
then averaged these 52 sets of weekly values within the equal-
area hexagon cells for each of the 60 yr using the area of the 
NCEP/NCAR grid cell that overlapped the hexagon cell as a 
weighting factor.

We estimated future conditions for the three climate 
variables using four atmosphere-ocean general circula-
tion models (GCMs; Supplementary material Appendix 3 
Table A2) under the Representative Concentration Pathway 
(RCP) scenario 8.5 from the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) (IPCC 2013). We acquired data 
from the World Data Center for Climate (WDCC) during 
the period 2021–2300 using the Climate and Environmental 
Retrieval and Archive (CERA) data portal (<http://cera-
www.dkrz.de/>). The three climate variables were available 
at a daily temporal resolution at a variety of horizontal spatial 
resolutions (0.9–1.875°; Supplementary material Appendix 
3 Table A2).

The RCP8.5 scenario is the strongest greenhouse gas 
forcing scenario, characterized by greenhouse gas emis-
sions and concentrations that increase considerably over this 
century, leading to a radiative forcing of 8.5 W m–2 by 2100 
(Riahi  et  al. 2011). RCP8.5 does not include any mitiga-
tion targets. RCP8.5 represents the upper bound or worst 
case scenario where there is no mitigation and demographic, 
economic and technological drivers follow more extreme 
trajectories. A recent assessment suggest emissions are cur-
rently tracking just above the RCP8.5 scenario (Sanford et al. 
2014), and there is evidence that GCM projections under the 
RCP8.5 scenario have underestimated warming during this 
century by ca 15% (Brown and Caldeira 2017). Therefore, 
given current knowledge, we consider RCP8.5 to be a more 
relevant scenario. However, GCMs contain many sources of 
uncertainty that may act to enhance or reduce the quality 
of their projections. For example, there is evidence that the 
sensitivity of the climate to increasing greenhouse gas emis-
sions is lower than previously estimated (Cox  et  al. 2018). 
Conversely, there is evidence that natural feedback processes 
that are not included in current GCMs may act to enhance 
global warming (Comyn-Platt et al. 2018).

Our procedure to estimate projected changes in the three 
climate variables first involved extracting gridded values from 
each of the four GCMs by day for the years 2021–2300. We 
defined weekly reference conditions by averaging the three 
climate variables across days for each week of the year for 
the years 2006–2020 (15-yr period). We then averaged these 
weekly values across years to generate 52 weekly reference val-
ues for each variable and GCM. We calculated the projected 
conditions for the years 2021–2300 (280-yr period) by aver-
aging each of the three climate variables by week and year 
for each GCM. This procedure generated 280 weekly values 
for each climate variable and GCM. To place the reference 
and projected conditions within the same spatial configura-
tion for analysis, we averaged the weekly values for the three 
climate variables within the equal-area hexagon cells where 
a GCM grid cell was included if the cell center was located 
inside the hexagon cell.

Time of emergence of novel climates

We generated estimates of ToE using the following procedure 
(Fig. 1). We calculated the standardized multivariate distance 
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between the reference conditions (2006–2020) and the pro-
jected conditions for each hexagon cell, week, GCM and 
year (2021–2300) using Mahalanobis distance (Mahalanobis 
1936) and the covariance matrix of the 60 yr climatic time 
series (1957–2016). Mahalanobis distance provides a multi-
variate estimate of the projected departure of future climate 
conditions from historical inter-annual climate variability for 
all three climate variables in combination. We converted the 
squared Mahalanobis distance estimates to probabilities using 
the Chi-square distribution with three degrees of freedom 
(Mahony et al. 2017). This procedure resulted in estimates 
of the probability of novel climates developing within each 
hexagon cell by week for each GCM and year during the 
period 2021–2300.

We estimated ToE for each hexagon cell and week using 
the following procedure (Fig. 3). We applied generalized 
additive mixed models (GAMMs) (Wood 2017) to the prob-
abilities of novel climates across the 280 yr by hexagon cell 
and week with GCM included as a random effect. We then 
extracted the predicted probabilities and associated standard 
errors for each hexagon cell and week. We then identified the 

year when the probabilities first exceeded three probability 
thresholds: 0.85, 0.90 and 0.95 (Fig. 3). This method identi-
fied the year after which it is expected that on average the 
climate will exceed 85, 90 or 95% of the distribution of his-
torical climatic conditions. We considered three thresholds 
in this analysis to account for the situation where the prob-
abilities did not exceed the threshold during the 280-yr time 
period considered in the study, an outcome that is likely to 
be more common at higher probability thresholds (Fig. 3). 
We repeated this same procedure for the upper and lower 
95% confidence bands calculated for each GAMM (Fig. 3). 
This last step allowed us to estimate the uncertainty in the 
ToE estimates originating from the four GCMs for each 
probability threshold.

Time of emergence and migratory birds

We used the following procedure to summarize the weekly 
associations with ToE for the three probability thresh-
old levels for each of the 77 species of migratory birds 
(Fig. 1). First, we calculated the weighted average ToE for 

Figure 3. The procedure used to estimate time of emergence (ToE) of novel climates within (a) North America and (b) South America dur-
ing the week of 4 January (blue) and 5 July (red). The thin colored lines are the probability estimates from the four atmosphere-ocean 
general circulation models (GCMs; Supplementary material Appendix 3 Table A2). These are the probabilities that the climate will be novel 
in relation to historical climates during a given week and location. The black dotted lines are the three probability thresholds considered in 
the analysis. The fitted colored lines and 95% confidence bands are from generalize additive mixed models with GCM included as a random 
effect (see Material and methods for details). ToE is identified as the year that the fitted GAMM crosses each probability threshold.
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each species and week based on the hexagon cells where the 
species occurred using relative abundance as a weighting 
factor. This measure describes the average ToE expected to 
be encountered by a species’ entire population during each 
week. We also calculated the weighted average ToE from the 
upper and lower 95% confidence bands for each week. This 
measure described the earliest and latest ToE that a popula-
tion is expected to encounter during each week among the 
four GCMs.

We summarized the seasonal patterns in ToE across the 
year for each of the three groups of species using GAMM 
with species included as a random effect. The response 
variables were species’ weekly estimates of ToE (2021–2300) 
and the predictor variables were species as a random effect 
and week of the year as a smooth spline. We used a cyclic 
penalized cubic regression spline to smoothly join values 
estimated for the first week and last week of the year. The use 
of GAMM in our analysis was valuable because it generated 
concise graphics that summarized weekly associations with 
ToE across the year for multiple species simultaneously. We 
applied this same procedure to ToE based on the upper and 
lower 95% confidence bands, which we used to generate the 
confidence band for each species’ GAMM fits. These con-
fidence bands allowed us to assess how weekly associations 
with ToE differed among the three non-breeding season cat-
egories. We also summarized the proportion of hexagon cells 
for each species and week and probability threshold where 
ToE was estimated to occur after 2300. We summarized how 
the proportion of missing ToE estimates were defined across 
the annual cycle for the three non-breeding season catego-
ries using GAMM with species included as a random effect 
and a cyclic penalized cubic regression spline. All analysis was 
conducted in R, ver. 3.4.3 (R Development Core Team). We 
used the gamm4 library to implement GAMM (Wood and 
Scheipl 2017).

Data deposition

Data available from the Dryad Digital Repository: < https://
doi.org/10.5061/dryad.4h98fq7 > (La Sorte et al. 2019).

Results

Based on our three non-breeding season categories, species 
that wintered the furthest south occurred at tropical lati-
tudes during the non-breeding season and within temperate 
regions of eastern North America during the breeding season 
(Fig. 2a). Species that wintered further north occurred within 
tropical and subtropical latitudes during the non-breed-
ing season and within temperate regions of eastern North 
America during the breeding season (Fig. 2b). Species that 
wintered the furthest north occurred within tropical and sub-
tropical latitudes in western Mexico during the non-breed-
ing season and within temperate regions of western North 
America during the breeding season (Fig. 2c). The speed of 
movement of the center of species’ populations peaked at 

similar times during spring (ca 20 April) and autumn migra-
tion (ca 11 October) across the three non-breeding season 
categories, distinguishing periods when species’ populations 
were stationary and when species’ populations were in full 
migration (Fig. 4).

Our ToE projections displayed similar spatial patterns 
across seasons for the three probability thresholds (Fig. 5, 
Supplementary material Appendix 4 Fig. A2, A3), suggesting 
our ToE estimates are not sensitive to the choice of prob-
ability threshold. ToE projections were earlier and more 
consistent across seasons within tropical latitudes. ToE pro-
jections were later and more variable across seasons within 
temperate latitudes, with notably higher variation within 
the Northern Hemisphere where ToE was earlier during the 
boreal summer (June–September) and later during the boreal 
winter (October–May).

Based on the 0.85 probability threshold, almost the entire 
Western Hemisphere was projected to have novel climates 
during all seasons by the year 2300 (Fig. 5). The number of 
locations not projected to have novel climates by the year 
2300 increased slightly at the middle probability threshold 
(0.90), and these locations were concentrated within the 
mid-latitudes of the Northern Hemisphere during the period 
from January to February (Supplementary material Appendix 
4 Fig. A2). The number of locations not projected to have 
novel climates by the year 2300 increased dramatically at 
the highest probability threshold (0.95) and these locations 
were concentrated within the mid-latitudes of the Northern 
Hemisphere during the period from December to April 

Figure  4. Population-level migration speed summarized by week 
across the annual cycle for 77 migratory bird species (Supplementary 
material Appendix 1 Table A1) organized into three categories based 
on the latitude of the center of species’ non-breeding distributions 
(Fig. 2). The fitted lines and 95% confidence bands are generalize 
additive mixed models with species included as a random effect.
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(Supplementary material Appendix 4 Fig. A3). In total, loca-
tions with ToE projections after the year 2300 only occurred 
within temperate regions during the boreal winter, the time 
of year when migrants are further south on their non-breed-
ing grounds.

When we intersected the weekly estimates of relative 
abundance for the 77 migratory bird species with the weekly 
ToE projections, species’ seasonal associations with ToE 
were generally similar across the three probability thresholds 
(Fig. 6a, c, e). When examined across seasons (Fig. 4), species’ 
associations with ToE generally differed from one season to 
the next, and there were distinct differences in ToE among 
species in the three non-breeding season categories (Fig. 6a, 
c, e). During the non-breeding season, species that wintered 
further south (Fig. 2a) were associated with the earliest ToE 
projections on average (ca 2060–2080; Fig. 6a, c, e), and spe-
cies that wintered further north (Fig. 2c) were associated with 
the latest ToE projections on average (ca 2100–2120; Fig. 6a, 
c, e). Outside the non-breeding season (Fig. 4), similar asso-
ciations with ToE were documented for all species during 
spring and autumn migration and during the breeding season 

(Fig. 6a, c, e). As species moved north to similar latitudes in 
the spring, all species were associated with later ToE projec-
tions (ca 2100–2140), especially species that wintered further 
south (Fig. 6a, c, e). ToE associations then steadily declined 
to earlier ToE projections during the breeding season for all 
species (ca 2070–2090; Fig. 6a, c, e). ToE associations then 
rose slightly at the end of the breeding season and the begin-
ning of autumn migration before returning to the original 
non-breeding season levels (Fig. 6a, c, e). In sum, species that 
winter further south (Fig. 2a) are projected to first encoun-
ter novel climates during the non-breeding season (Fig. 4, 
6a, c, e), and species that winter further north (Fig. 2c) are 
projected to first encounter novel climates at the end of the 
breeding season and the beginning of autumn migration 
(Fig. 4, 6a, c, e).

The proportion of hexagon cells with missing ToE 
projections (> 2300) for species in the three non-breed-
ing season categories differed across the three probability 
thresholds (Fig. 6b, d, f ). Missing ToE projections were 
largely absent at the lowest probability threshold (0.85; 
Fig. 6b), increased slightly at the intermediate probability 

2300

January February March

April May June

July August September

October November December

2128
2100
2077
2050
2021

ToE (Year)

Figure 5. Time of emergence (ToE) summarized monthly at the 0.85 probability threshold level within equal-area hexagon cells (spatial 
resolution = 49 811 km2) of an icosahedral discrete global grid system (see Material and methods for details). ToE projections were made 
during the period from 2012 to 2300. Gray hexagon cells indicate missing ToE values (> 2300).
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threshold (0.90; Fig. 6d), and increased substantially at 
the highest probability threshold (0.95; Fig. 6f ). Missing 
ToE projections only occurred during the boreal winter, 
and the proportions were greatest for species that wintered 
further north (Fig. 2c). Thus, breeding season associa-
tions were not affected by missing ToE projections, non-
breeding season associations were affected at the highest  
probability threshold (Fig. 6e), and this was most pro-
nounced for species that breed in western North America 
(Fig. 2c).

Discussion

Our findings describe a timeline on how associations with 
novel climates under global climate change are likely to 
develop across the annual cycle for a collection of North 
American migratory bird species. For species that winter 
further south within the tropics, migrants are projected 
to encounter novel climates during the second half of this 
century. For species that winter further north within the 
subtropics, migrants are projected to encounter novel climates 

Figure 6. Left column: weekly associations with time of emergence (ToE) during the period from 2021 to 2300 for 77 North American 
migratory bird species organized into three categories based on the latitude of the center of species’ non-breeding distributions (Fig. 2, 
Supplementary material Appendix 1 Table A1). Right column: the proportion of species’ weekly distributions with missing ToE values 
(> 2300). ToE was estimated at three probability threshold levels: 0.85 (top row), 0.90 (middle row) and 0.95 (bottom row). ToE estimates 
were made across four atmosphere-ocean general circulation models (Supplementary material Appendix 3 Table A2). The fitted lines and 
95% confidence bands are generalized additive mixed models with species included as a random effect (see Material and methods for 
details).



10

during the first half of the next century. On their temperate 
breeding grounds in North America, projected associations 
with novel climates converge upon a similar timeline. During 
the beginning of the breeding season, migrants are projected 
to encounter novel climates during the first half of the next 
century. During the end of the breeding season, migrants are 
projected to encounter novel climates during the second half 
of this century. The difference in encounter times between 
the beginning and end of the breeding season represents a 
separation of roughly 40–50 yr. In total, our findings indi-
cate that species that winter within the tropics will encounter 
novel climates sooner and these associations will encompass 
the full length of the non-breeding season. Novel climates 
will develop sooner on the temperate breeding grounds for 
all species during a period at the end of the breeding sea-
son when species are transitioning from breeding to autumn 
migration.

These findings advance upon previous work (La Sorte et al. 
2018) by describing how ecological disruptions associated 
with the formation of novel climates (Williams and Jackson 
2007) are projected to unfold over the next 280 yr for this 
collection of migratory birds species. During this century, 
migratory birds that winter within the tropics are projected 
to experience ecological disruptions across the full length of 
their non-breeding season, encompassing the majority of their 
annual life cycle (La Sorte et al. 2017a). On their temperate 
breeding grounds in North America, migrants are projected 
to experience more limited ecological disruption during the 
transition from spring migration to breeding, and more pro-
nounced ecological disruptions at the end of the breeding 
season during the transition from breeding to autumn migra-
tion. Over the long term for these species, novel climates will 
become completely established across the full annual cycle by 
the middle of the next century.

The ToE estimates in this study indicate the phases of the 
annual cycle when climate change are most likely to result in 
ecological surprises, novel ecosystems and altered ecosystem 
structure and function. We do not provide a physiological 
connection between climate and birds, a relationship that has 
been explored within the context of climate change primar-
ily at a theoretical level; for example, in regard to the physi-
ological requirements of migration (Klaassen  et  al. 2012) 
or the physiological limitations of species’ distributions 
(Methorst et al. 2017). Rather, we identify when changes in 
climate are most likely to exceed a historically defined cli-
matic threshold, generating novel climates, ecological disrup-
tions and novel ecological domains. For migratory birds, this 
outcome may interfere with the ability of species to acquire 
the resources (food and habitat) necessary for survival and 
reproduction. Migratory birds are currently responding to 
climate change through geographic and phenological adjust-
ments (Shaw 2016, Usui et al. 2017, Howard et al. 2018), 
which could mitigate some of these consequences. How spe-
cies are currently responding to climate change, however, 
is highly variable and difficult to predict (Fei  et  al. 2017, 
MacLean and Beissinger 2017). A central factor determining 

a species’ ability to respond is evolutionary potential or phe-
notypic plasticity (Williams et al. 2008). If these factors are 
constrained, species may not respond effectively, especially if 
conditions change rapidly and phenotypic plasticity is lim-
ited (Charmantier  et  al. 2008, Charmantier and Gienapp 
2014). There is also the possibility responses are currently 
lagging behind climate change (La Sorte and Jetz 2012, 
Ash et al. 2016), generating the potential for species to incur 
a climatic debt (Devictor et al. 2012, Massimino et al. 2015). 
Within the context of our findings, determining how spe-
cies will respond to novel climates contains many uncertain-
ties, especially over the extended time periods considered in 
this study. This uncertainty is compounded by the effects of 
other global change processes that are known to affect migra-
tory bird populations; e.g. land-use change (La Sorte  et  al. 
2017a, Zurell et al. 2018) and nighttime light pollution (La 
Sorte et al. 2017b, Van Doren et al. 2017, Cabrera-Cruz et al. 
2018). Nevertheless, our findings do provide a basis to iden-
tify the geographic regions and seasons where novel climates 
will first emerge, and where the initial pressure to respond or 
adapt will be the most pronounced.

Our approach for estimating novelty involved the applica-
tion of a multivariate method designed to summarize mul-
tiple aspects of climate change in one metric (Mahony et al. 
2017). We used this approach to generate local estimates of 
ToE for each week of the year over a 280-yr period using 
generalized linear models applied to probabilities of novel 
climates. Unlike previous methods, our approach did not 
estimate ToE based on the first occurrence of one event or 
the first occurrence of a combination of events, but by the 
occurrence of one unique event detected over a 280-yr period 
using a modelled summary of central tendency (Fig. 3). Our 
approach avoids some of the inconsistencies and limitations 
associated with earlier methods, but it does contain several 
sources of uncertainty. One is related to the choice of climate 
variables, which may affect how ToE is defined. By consid-
ering multiple climate variables in combination, however, 
we provide a more comprehensive alternative to traditional 
approaches that examine individual climate variables in isola-
tion. To improve the quality of our findings, it would be valu-
able to develop methods that document how the individual 
components of the joint distribution of climate variables con-
tributes to novelty and ToE estimates.

A second issues is related to the presence of trends in the 
60 yr of historical temperature data used in this study to esti-
mate inter-annual climatic variation (Supplementary material 
Appendix 4 Fig. A1). Identifying and removing monotonic 
increases in temperature that have occurred in the past as a 
result of global warming is not a trivial task (Wu et al. 2007, 
Hawkins and Sutton 2012). Successfully identifying and 
removing these trends would likely reduce historical inter-
annual variation, which would increase novelty probabilities 
and shift our ToE estimates closer to the present. Our ToE 
estimates could therefore be more conservative in regions 
where warming under climate change has historically shown 
monotonically increasing patterns.
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A third source of uncertainty is related to how ToE esti-
mates occur over time relative to the end of the time period 
under consideration, in this case, the year 2300. The majority 
of our ToE estimates occurred well before 2300, and when 
ToE could not be estimated within this time period, these 
values were not included in our analysis. Our results show 
that ToE estimates that exceeded 2300 were limited to the 
northern latitudes, and only occurred during the boreal win-
ter when the species considered in this study were located 
on their southern non-breeding grounds. In addition, ToE 
values that exceeded 2300 were encountered primarily by 
species that wintered further north during the non-breeding 
season, and only at the highest probability threshold consid-
ered in this study. Thus, the quality of our ToE estimates were 
strongest outside of the non-breeding season for all three 
probability thresholds, and our ToE estimates were skewed 
to earlier years during the non-breeding season, but this was 
only evident at the highest probability threshold.

Another source of uncertainty in our ToE estimates is 
related to year-to-year variation in our estimates of the prob-
ability of novel climates. These probability estimates tended 
to approach one with declining variance over the 280-yr time 
period, and in many cases the probability estimates reached 
an asymptote well before 2300, especially within the tropics 
(Fig. 3). This behavior supports interpreting ToE estimates 
within the tropics as highly precise (Supplementary mate-
rial Appendix 4 Fig. A4). Within temperate regions in North 
America, our probability estimates tended to display higher 
variances with poorly defined asymptotes (Supplementary 
material Appendix 4 Fig. A4). ToE estimates originating from 
these temperate regions should therefore be interpreted as less 
precise.

Other sources of uncertainty in our ToE estimates 
originates from the GCMs. The GCMs used in our analysis 
tended to generate more variable ToE estimates within the 
temperate latitudes during the boreal winter (Fig. 3). This 
variability, however, would not affect our ToE estimates 
because the species considered in the study are located on 
their southern non-breeding grounds during this time. 
Another source of uncertainty originates from differences in 
projected inter-annual climatic variation among the GCMs 
(Kharin et al. 2013). Because we modeled central tendency 
to estimate ToE, differences in year-to-year variation among 
the GCM projections had little effect on our ToE estimates. 
Lastly, GCMs contain internal sources of uncertainty acquired 
during different stages of the modeling process (Knutti et al. 
2009). One approach to address this uncertainty is to sum-
marize GCM projections across an ensemble of models, as 
we did in this study. Considering multiple GCMs, however, 
creates additional challenges for analysis and interpretation 
(Knutti  et  al. 2009). For example, the quality of ensemble 
based estimates of ToE may not be as accurate as those 
originating from a single GCM (Hawkins et al. 2014).

In sum, our findings provide a timeline for assessing 
where and when climate change is likely to significantly 
affect migratory bird populations. Our results emphasize the 

large seasonal variation in the formation of novel climates 
across geographic regions, and the variable challenges migra-
tory birds are likely to encounter during different phases of 
their annual life cycles. In agreement with previous findings 
(La Sorte et al. 2018), our results identify the non-breeding 
grounds, especially those located within the tropics, as an 
important region for the near-term development of signifi-
cant ecological disruptions under climate change. Our find-
ings also highlight the pronounced near-term challenges that 
these species are likely to encounter when adults and juve-
niles are preparing to leave their temperate breeding grounds 
to embark on their autumn migration journey. Our findings 
emphasize the value of applying a full annual cycle perspec-
tive in ecological climate change research, and the value of 
applying a standardized climate change metric that promotes 
comparisons across space and time. This approach has par-
ticular relevance when assessing the ecological implications 
of climate change for species that display geographically and 
seasonally dynamic life-history strategies. To advance our 
understanding on how the ecological implications of novel 
climates are likely to develop over time, it would valuable to 
document how novel climates are forming across regions and 
seasons, and how species are reacting to these changes.
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