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Abstract

Archived data from the US network of weather radars hold detailed information
about bird migration over the last 25 years, including very high-resolution partial
measurements of velocity. Historically, most of this spatial resolution is discarded
and velocities are summarized at a very small number of locations due to modeling
and algorithmic limitations. This paper presents a Gaussian process (GP) model
to reconstruct high-resolution full velocity fields across the entire US. The GP
faithfully models all aspects of the problem in a single joint framework, includ-
ing spatially random velocities, partial velocity measurements, station-specific
geometries, measurement noise, and an ambiguity known as aliasing. We develop
fast inference algorithms based on the FFT; to do so, we employ a creative use
of Laplace’s method to sidestep the fact that the kernel of the joint process is
non-stationary.

1 Introduction

Archived data from the US network of weather radars hold valuable information about atmospheric
phenomona across the US for over 25 years [1]. Although these radars were designed to monitor
weather, they also detect flying animals such as birds, bats, and insects [2]. The information
contained in the archive is critical to understanding phenomena ranging from extreme weather to bird
migration [3–5].

This paper is concerned with using radar to measure velocity, with the primary goal of gathering
detailed information about bird migration. Radar is the most comprehensive source of information
about this difficult-to-study phenomenon [5–8], but, historically, most information has gone largely
unused due to the sheer size of the data and the difficulty of interpreting it automatically. Recently,
analytical advances including machine learning [9, 10] are enabling scientists to begin to conduct
larger scale studies [5, 7, 11]. Radar measurements of bird migration density, direction, and speed
are important for understanding the biology of bird migration and to guide conservation [11–15].
Machine learning methods to automate the detailed interpretation of radar data will allow scientists to
answer questions at the scale of the entire continent and over more than two decades.

Doppler radars measure the rate at which objects approach or depart the radar, which gives partial
information about their velocity. By making certain smoothness assumptions, it is possible to
reconstruct full velocity vectors [9, 16]. However, current methods are limited by rigid smoothness
assumptions and summarize all velocity information down to 143 points across the US (the locations
of the radar stations) even though the original data has on the order of half a billion measurements for
one nationwide snapshot.

The goal of this paper is to develop a comprehensive, principled, probabilistic model, together with
fast algorithms, to reconstruct spatially detailed velocity fields across the US. There are three critical
challenges. First, radars only measure radial velocity, the component of velocity in the direction of
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the radar beam, so the full velocity is underdetermined. Second, the measured radial velocity may be
aliased, which means it is only known up to an additive constant. Third, measurements are tied to
station-specific geometry, so it is not clear how to combine data from many stations, for example
to fill in gaps in coverage between stations (e.g., see Figure 1(d)). Prior research has primarily
addressed these challenges separately, and has been unable to combine information from many radars
to reconstruct detailed velocity fields.

Our first contribution is a joint Gaussian process (GP) to simultaneously model the radial velocity
measurements from all radar stations. While it is natural to model the velocity field itself as a GP,
it is not obvious how to model the collection of all station-specific measurements as a GP. We start
by positing a GP on latent velocity vectors, and then derive a GP on the measurements such that the
station-specific geometry is encoded in the kernel function.

Our second contribution is a suite of fast algorithms for inference in this GP, which allows it to
scale to very large data sets. We leverage fast FFT-based algorithms for GP kernel operations for
points on a regular grid [17–19]. However, these require a stationary kernel, which due to the
station-specific geometry, ours is not. We show how to achieve the same speed benefits by using
Laplace’s method (for exact inference) so that fast kernel operations can be performed in the space
of latent velocities, where the kernel is stationary. Finally, we show how to model aliasing directly
within the GP framework by employing a wrapped normal likelihood [9, 20]; this fits seamlessly into
our fast approach using Laplace’s method.

The result is a first-of-its-kind probabilistic model that jointly models all aspects of the data generation
and measurement process; it accepts as input the raw radial velocity measurements, and outputs
smooth reconstructed velocity fields.

2 Background and Problem Definition

Radar Basics. The US network of weather radars, known as “NEXRAD” radars, consists of 143
radars in the continental US. Each conducts a volume scan or scan every 6 to 10 minutes, during
which is rotates its antenna 360 degrees around a fixed vertical axis (one “sweep”) at increasing
elevation angles. The result of one scan is a set of raster data products in three-dimensional polar
coordinates corresponding to this scanning strategy. One measurement corresponds to a particular
antenna position (azimuth and elevation angle) and range; the corresponding volume of atmosphere
at this position in the polar grid is called a sample volume.

NEXRAD radars collect up to six different data products. For our purposes the most important
are reflectivity and radial velocity. Reflectivity measures the density of objects, specifically, the
total cross-sectional area of objects in a sample volume that reflect radio waves back to the radar.
Radial velocity is the rate at which objects in a sample volume approach or depart the radar, which is
measured by analyzing the frequency shift of reflected radio waves (the “Doppler effect”). Radial
velocity is illustrated in Figure 1(a). For any given sample volume, radial velocity gives only partial
velocity information: the projection of the actual velocity onto a unit vector in the direction of the
radar beam. However, if the actual velocity field is smooth, we can often make good inferences
about the full velocity. Figure 1(b) shows example radial velocity information measured from the
KBGM radar in Binghamton, NY on the night of September 11, 2010, during which there was heavy
bird migration. Objects approaching the radar have negative radial velocities (green), and objects
departing the radar have positive radial velocities (red). We can infer from the overall pattern that
objects (in this case, migrating birds) are moving relatively uniformly from northeast to southwest.

Velocity Model. To make inferences of the type in Figure 1(b) we need to simultaneously rea-
son about spatial properties of the velocity field and the measurement geometry. To set up this
type of analysis, for the ith sample volume within the domain of one radar station, let ai be
the unit vector in the direction from the radar station to the sample volume. This is given by
ai = (cosφi cos ρi, sinφi cos ρi, sin ρi) where φi and ρi are the azimuth and elevation angles, re-
spectively. Let zi = (ui, vi, wi) be the actual, unobserved, velocity vector. Then the radial velocity
is aTi zi, and the measured radial velocity is yi = aTi zi + εi. Here, εi ∼ N (0, σ2) is zero-mean
Gaussian noise that plays the dual role of modeling measurement error and deviations from whatever
prior model is chosen for the set of all zi. For example, in the uniform velocity model [16], velocities
are assumed to be constant-valued within fixed height bins above ground level within the domain of
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Figure 1: Illustration of key concepts: (a) schematic of radial velocity measurement, (b) radial
velocity in the vicinity of Binghmaton, NY radar station during bird migration event on Sep 11,
2010, (c) aliased radial velocity, (d) a nationwide mosiac of raw radial velocity data is not easily
interpretable, but we can extract a velocity field from this inforation (arrows). See text for explanation.

one radar station, which is a very rigid uniformity assumption. Reported values for the noise standard
deviation are σ ∈ [2, 6] ms−1 for birds, and σ < 2 ms−1 for precipitation [7].

Aliasing. Aliasing complicates the interpretation of radial velocity data. Due to the sampling
frequency of the radars, radial velocities can only be resolved up to the Nyquist velocity Vmax, which
depends on the operating mode of the radar. If the magnitude of the true radial velocity ri = aTi zi
exceeds Vmax, then the measurement will be aliased. The aliasing operation is mathematically
equivalent to the modulus operation: for any real number r, define the aliased measurement of r
to be r̄ := r mod 2Vmax, with the convention that r̄ lies in the interval [−Vmax, Vmax] instead of
[0, 2Vmax]. The values r̄ + 2kVmax, k ∈ N will all result in the same aliased measurement, and
are called aliases. Effectively, this means that radial velocities will “wrap around” at ±Vmax. For
example, Figure 1(c) shows the same data as Figure 1(b), but before aliasing errors have been
corrected. In this example Vmax = 11ms−1. We see that that fastest approaching birds in the
northeast quadrant appear to be departing (red), instead of approaching (dark green).

Multiple Radar Stations. The interpretation of radial velocity is station-specific. Figure 1(d) shows
a nationwide mosaic of radial velocity from individual stations, overlaid by a velocity field. The
mosaic is very difficult to interpret, due to abrupt changes at the boundaries between station coverage
areas. Thus, although we are very accustomed to seeing nationwide composites of radar reflectivity,
radial velocity data is not presented or analyzed in this way. This is the main problem we seek to
remedy in this work, by reconstructing velocity fields of the type overlaid on Figure 1(d).

Related Work. The uniform velocity model [16], described above, makes a strong spatial unformity
assumption to reconstruct velocities at different heights in the immediate vicinity of one radar station.
Variants of this method are known as velocity volume profiling (VVP) or velocity-azimuthal display
(VAD). The uniformity assumptions prevent these algorithms from reconstructing spatially varying
velocity fields or combining information from multiple radars. Multi-Doppler methods combine
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measurements from two or more radars to reconstruct full velocity vectors at points within the overlap
of their domains [16, 21, 22]. No spatial smoothness assumptions are made. Full velocity fields can
be reconstructed, but only within the overlap of radar domains. Dealiasing is the process of correcting
aliasing errors to guess the true radial velocity, usually by making smoothness assumptions or using
some external information [23]. Almost all previous work treats the different analytical challenges
(reconstruction from spatial cues, multiple stations, dealiasing) separately; a few methods combine
dealiasing with VVP or multi-Doppler methods [9, 24, 25]. Our method extends all of these methods
into a single, elegant, joint probabilistic model.

3 Modeling Latent Velocities

In this section, we present our joint probabilistic model for radial velocity measurements and latent
velocities. We begin by considering the problem in the absence of aliasing, and come back to it in
Section 4.

Likelihood in the absence of aliasing. Let Oi be the set of stations that measure radial velocities
at location xi. The likelihood of a single radial velocity measurement yij , in the absence of aliasing,
given the latent velocity zi and the radial axis aij , is Gaussian around the perfect radial velocity
measurement of the ground-truth latent velocity

p(yij |zi;xi) = N (yij ;a
T
ijzi, σ

2). (1)

The observed radial velocity measurements are conditionally independent given the latent velocities,
so the joint likelihood factorizes completely

p(y|z;x) =
∏
i

∏
j∈Oi

p(yij |zi;xi) =
∏
i

∏
j∈Oi

N (yij ;a
T
ijzi, σ

2). (2)

GP prior. We model the latent velocity field as a vector-valued GP. The GP prior has a zero-valued
mean function and a modified squared exponential kernel. Since the GP is vector-valued, the output
of the kernel function is a 3× 3 matrix of the following form.

κθ(xi,xj) = diag

(
exp

(
−dα(xi,xj)

2βu

)
, exp

(
−dα(xi,xj)

2βv

)
, exp

(
−dα(xi,xj)

2βw

))
(3)

dα(xi,xj) = α1(xi,1 − xj,1)2 + α2(xi,2 − xj,2)2 + α3(xi,3 − xj,3)2 (4)

The hyperparameters θ = [α, β] are the length scales which control the uniformity of the latent
velocity field.

Covariance between measurements. Our approach to inferring the latent velocities relies on
the ability to jointly model the radial velocity measurements with the latent velocities. In order
to accomplish this, we need to have a covariance function relating radial velocity measurements.
Intuitively this seems problematic, since the radial velocity measurements not only depend on the
location of the measurement, but also the location of the station making the measurement. As it turns
out, applying definitions and the process by which radial velocity measurements are made gives the
following elegant covariance function.

Cov(yij , yi′j′) = E[yijyi′j′ ] = aTijE[ziz
T
i′ ]ai′j′ = aTijκθ(xi,xi′)ai′j′

Observe that this covariance function is not stationary, since it relies on the locations of the stations
from which the measurements were made.

Joint modeling measurements and latent velocities. The joint probability distribution between
the radial velocity measurements and the latent velocities is

p(y, z;x) = p(y|z;x)p(z;x). (5)

Since both the likelihood and prior are Gaussian, the joint is also Gaussian. All we need to do to
fully specify the joint distribution is to solve for the first two moments of the joint. The joint mean is
clearly zero. Let qT = [zT yT ], let A = diag

({
aTij | ∀i, j ∈ Oi

})
∈ R3n×n be the matrix defined
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Algorithm 1 Efficient Inference using Laplace’s Method

1: procedure INFERLATENTVELOCITIES
2: Initialize ν(0) randomly . ν(0) = K−1z(0)

3: Initialize ∆ν =∞
4: while |∆ν| > τ do . τ is some user-defined threshold
5: Compute b = Wzk +∇l(zk)
6: Compute γ = (W−1 +K)−1Kb using the conjugate gradient method
7: Let ∆ν = b− γ − ν(k)
8: Set ν(k+1) = ν(k) + η∆ν . Use Brent’s method to do a line search for η
9: return z∗ = Kν∗

so that y ∼ N (Az, σ2I), and let K be the prior covariance matrix. The covariance of the joint is as
follows

E[qqT ] =

[[
z
y

] [
zT yT

]]
=

[
K KAT

AKT AKAT + σ2I

]
(6)

Hence, the joint distribution is

p(y, z;x) = N

([
z
y

]
; 0,

[
K KAT

AKT AKAT + σ2I

])
. (7)

Naive Exact Inference. Given this joint distribution, we can perform exact inference via Gaussian
conditioning. The posterior mean is

E[z|y;x] = KAT (AKAT + σ2I)−1y. (8)

We can also predict directly at locations z̃ other than those where measurements were made using the
cross-covariance matrix K̃ between the locations where measurements were made and prediction
locations:

E[z̃|y;x] = K̃AT (AKAT + σ2I)−1y. (9)

This method of inference is not scalable since it has cubic time complexity and quadratic space
complexity in the number of measurements.

4 Efficient Inference

In this section, we discuss how we can perform efficient exact inference despite the lack of a stationary
kernel.

4.1 Laplace’s Method for Exact Inference

In order to make inference tractable, we would like to use fast FFT-based methods such as SKI
and KISS-GP [18], but unfortunately these methods require the kernel to be stationary. To over-
come having a non-stationary kernel, we apply Laplace’s method [26]. This is conventionally for
approximate inference when the likelihood is not Gaussian, but we use it to be able to utilize fast
kernel operations for the latent GP, which is stationary, and the method will still be exact. Laplace’s
method replaces one-shot matrix inversion based inference with an iterative algorithm where the most
complicated operation is kernel-vector multiplication. If we pick locations to observe radial velocity
measurements on a grid Ω, we can perform the matrix-vector multiplication Ks, for an arbitrary
vector s, in O(n log n) time, where n = |Ω|.
The exact inference procedure we employ is presented in Algorithm 1. Laplace’s method iteratively
optimizes log p(z|y;x) by optimizing the second-order Taylor expansion around the current iterate
of z via an auxiliary variable ν = K−1z. Let l(z) = log p(z|y;x) be the log likelihood function,
∇l(z) be the gradient of the log likelihood, and W = −∇2l(z) be the negative Hessian. The most
challenging operation to make efficient is Line 6 of Algorithm 1. We use the conjugate gradient
method to iteratively compute γ. The upshot is that we only need to be able to efficiently compute
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W−1, multiply W−1 times arbitrary vectors, and multiply K times arbitrary vectors. W is block
diagonal with 3× 3 blocks, which makes for linear time matrix-vector multiplication and inversion.
The only other bottleneck for both speed and storage is the kernel matrix.

4.2 Using Grid Structure for Fast Matrix-Vector Multiplication

In this section, we detail how we can perform efficient kernel-vector multiplication by exploiting the
special structure of the kernel matrix following techniques presented by Wilson [27]. To accomplish
this we need to choose the measurements to use as observations from an evenly spaced grid. In most
cases, we will not have measurements for all grid points, so we use pseudo-observations to enable the
use of grid-based methods.

4.2.1 Missing Observations

Given Ω to be the set of grid locations where we would like to have radial velocity measurements, let
Ω̂ and Ω̃ be the locations where we have and do not have radial velocity measurements, respectively.
For all grid locations xi ∈ Ω̃, we sample a pseudo radial velocity measurement yi ∼ N (0, ε−1), for
some small ε. This implies the following joint log likelihood:

l(z) =
∑
i

1[xi ∈ Ω̃] logN (yi; 0, ε−1) + 1[xi ∈ Ω̂]

∑
j∈Oi

logN (yij ;a
T
ijzi, σ

2)

 . (10)

4.2.2 Kronecker-Toeplitz Structure

The latent GP can be decomposed into three independent GP’s – namely, over the u, v, and w
components of the latent velocities, respectively. Let Ku, Kv, and Kw be kernel matrices for each
of these GP’s, respectively, and all have shape n× n. When performing the multiplication Ks, we
decompose s into it’s u, v, and w component sub-vectors denoted su, sv , and sw, respectively. Then,
we perform each of the multiplications Kusu, Kvsv, and Kwsw, and recombine the results to get
Ks. All of these three multiplications are similar since Ku, Kv , and Kw all have the same structure.

We use Ku as an example and follow the method proposed by Wilson [27]. Kv and Kw follow the
same form. Ku decomposes into the Kronecker product Ku,1 ⊗Ku,2 ⊗Ku,3, where Ku,1, Ku,2,
and Ku,3 are all Toeplitz, since Ku is stationary. Ku,1 has shape n1 × n1, Ku,2 has shape n2 × n2,
and Ku,3 has shape n3 × n3 where n1, n2, and n3 are the dimensions of the grid, respectively.
Hence, n = n1n2n3. Let Su be the n1 × n2 × n3 tensor formed by reshaping su to match the grid
dimensions. Then

Kusu =

(
3⊗
i=1

Ku,i

)
su = vec

(
Su ×1 Ku,1 ×2 Ku,2 ×3 Ku,3

)
.

Here, the operation T×iMi denotes the i-mode product of the tensor T ∈ Rn1×n2×n3 and matrix
Mi ∈ Rni×ni . The result is another tensor T′ with the same dimensions. It is computed by first
reshaping T into a matrix T(i) of size ni ×

∏
j 6=i nj , then computing the matrix product MiT(i),

and finally reshaping the result back into an n1 × n2 × n3 tensor — see [28] for details. In our case,
since each matrix multiplication is between a Toeplitz matrix Ku,i and a matrix T(i) with n entries,
it can be done in O(n log n) time using the FFT [29]. Therefore, the overall running time is also
O(n log n).

4.3 Handling Aliased Data

In this section, we extend our model to handle aliased radial velocity measurements. Recall that
aliasing means that radial velocities are only known up to an additive multiple of twice the Nyquist
velocity Vmax, which varies by operating mode of the radar. Conditions favorable for bird migration
often correspond to low values of Vmax and exacerbate aliasing problems.

To accommodate aliasing, we change the likelihood to model the aliasing process using a wrapped
normal likelihood [20]:

p(yij |zi;xi) = Nw(yij |aTijzi, σ2) =

∞∑
k=−∞

N (yij + 2kVmax,j ;a
T
ijzi, σ

2) (11)
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This is simply the marginal density of all aliases of yij . The infinite sum cannot be computed
analytically, so we approximate it with a finite number of aliases, ` , which is known to perform
well [9, 30, 31].

p(yij |zi;xi) ≈ N `
w(yij |aTijzi, σ2) =

∑̀
k=−`

N (yij − aTijzi + 2kVmax,j ; 0, σ2) (12)

Recall that r̄ aliases r to the interval [−Vmax, Vmax], so the sum on the right-hand side is over the
2`+ 1 aliases of yij that are closest to the predicted value aTijzi. Since our efficient inference method
only relies on the likelihood only through its gradient and Hessian, we can simply plug these new
functions into the algorithm presented in Algorithm 1. Observe that this likelihood is no longer
Gaussian, and thus we are no longer performing exact inference using Laplace’s method.

5 Experiments

In this section, we present the results from experiments to evaluate the effectiveness of the method we
presented in the previous section. The first two experiments analyze data scans from 13 radar stations
from the northeast US on the night of September 11, 2010. In all experiments, hyperparameters are
fixed at values chosen through preliminary experiments to match the expected smoothness of the
data, so that the RMSE between inferred radial velocities and raw measurements match values from
velocity models used in prior research [7, 9].

Comparison of inference methods. First, we compare our fast inference method against the naive
inference method. In our experiments we first resample data from all radar stations onto a fixed
resolution grid. Each grid point has zero or more observations from different radar stations. The naive
method operates only on the actual observations m, and its running time is O(m3). Our grid-based
method operates on all n grid points, and its per-iteration running time is O(n log n). To tractably
perform naive inference we must subsample the m observations even further. We consider a range of
different sizes both for the base grid and the subsampled data set for the naive method.

Figure 2 shows the time vs. error for six different methods. The data set consists of radar scans
from 13 radar stations from the northeast US on the night of September 11, 2010, and, for this
test, is preprocessed to eliminate aliasing errors [9]. Error is measured by first inferring the full
velocity vector for each observation and then projecting it using the station-specific geometry to
compute the RMSE between the predicted and observed radial velocities. To fairly compare RMSE
values across the six methods, the naive method must predict values for all observations, not just its
subsample. To do this, we use the method presented in Equation 9. Each method was run on six
different three-dimensional grids with total sizes ranging from 51,200 to 219,700 grid points. We
compare our fast inference method against five different subsample sizes for the naive method. Every
experiment was run 10 times and the average time and RMSE is reported in Figure 2.

The grid-based Laplace’s method vastly outperforms the naive method. Not only does the naive
method get slower with an increase in grid size, but it also starts to perform worse, since it has to
make predictions at a finer resolution from the same number of subsampled observations. Note that
the naive method is also making predictions at roughly an order of magnitude fewer locations than
the fast method because there are many grid points with zero observations.

Comparison of likelihood functions. Next, we show in Figure 4 the importance of the wrapped
normal likelihood when dealing with aliased data. We use the raw radial velocity data from 13 radar
stations in the northeast US from the night of September 11, 2010. Figure 4(a) shows the inferred
velocity field using our method with the Gaussian likelihood and Figure 4(b) shows the inferred
velocity field using our method with the wrapped normal likelihood. Observe the region of the
velocity field highlighted by the rectangle. The inference method with Gaussian likelihood fails to
infer a reasonable velocity field in the presence of heavily aliased radial velocity measurements and
has a substantially higher RMSE1 than the method with the wrapped normal likelihood. The latter
model correctly infers from raw aliased radial velocities that the birds over those stations are flying in
the same general direction as birds over nearby stations.

1For aliased data, RMSE is measured between the observed value and the closest alias of the predicted value.
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Figure 2: Time vs. RMSE of radial
velocity measurements using six dif-
ferent methods for latent velocity in-
ference.

Figure 3: Density and velocity of bird migration on night of
May 2, 2015. Northward migration occurs across the US,
and is intense in the central US.

(a) Gaussian Likelihood, RMSE=6.21 (b) Wrapped Normal Likelihood, RMSE=4.61

Figure 4: Inference method performance using two likelihood functions on aliased data. Grid size is
100× 100× 9; only the lowest elevation (500m above ground level) is displayed.

Scaling to the continental US. A unique aspect of our method is that it can, for the first time,
assimilate data from all radar stations to reconstruct spatially detailed velocity fields across the whole
US. An example is shown in Figure 1(d), which depicts northward bird migration on the night of
May 2, 2015. The grid size is 240 × 120 × 10; only the lowest elevation and every 5th velocity
measurement is plotted. The reconstructed velocities can be combined with reflectivity data as
shown in Figure 3 to observe both the density and velocity of migration. Future work can conduct
quantitative analyses of migration biology using these measurements.

6 Conclusion and Future Work

We presented the first comprehensive solution to the problem of inferring latent velocities from
radial velocity measurements from weather radar stations across the US. Our end-to-end method
probabilistic model begins with raw radial velocity from many radar stations, and outputs valuable
information about migration patterns of birds at scale. We presented a novel method to perform fast
grid-based posterior inference even though our GP does not have a stationary kernel. The results
of our methods can be used by ecologists to expand human knowledge about bird movements to
advance conservation efforts and science.

Our current method is most suited to smooth velocity fields, such as those that occur during bird
migration. A promising line of future work is to extend our techniques to infer wind velocity fields by
measuring velocity of precipitation and wind-borne particles. We anticipate that our GP methodology
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can also apply to this domain, but we will need to experiment with different kernels better suited to
these velocity fields, which can be much more complex.
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