8022

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 12, DECEMBER 2018

Quantized Constant Envelope Precoding
With PSK and QAM Signaling

Hela Jedda™', Student Member, IEEE, Amine Mezghani, Member, IEEE, A. Lee Swindlehurst™, Fellow, IEEE,
and Josef A. Nossek*, Life Fellow, IEEE

Abstract—Coarsely  quantized massive  multiple-input
multiple-output (MIMO) systems are gaining more interest due
to their power efficiency. We present a new precoding technique
to mitigate the multi-user interference and the quantization
distortions in a downlink multi-user MIMO system with coarsely
quantized constant envelope (QCE) signals at the transmitter.
The transmit signal vector is optimized for every desired
received vector taking into account a relaxed version of the QCE
constraint. The optimization is based on maximizing the safety
margin to the decision thresholds of the receiver constellation
modulation. Due to the linear property of the objective function
and the constraints, the optimization problem is formulated as
a linear programming problem. The simulation results show a
significant gain in terms of the uncoded bit error rate compared
to the existing precoding techniques.

Index Terms— Constant envelope, coarse quantization, con-
structive interference, downlink massive multi-user MIMO,
precoding.

I. INTRODUCTION

HE next generation of mobile communication aims at
Tincreasing 1000-fold the network capacity, 10-100-fold
the number of connected devices and decreasing 5-fold the
latency time and the power consumption compared to 4G
networks [1]. To achieve these challenging requirements,
the following technologies are the subject of current research:
« massive Multiple-Input Multiple-Output (MIMO) sys-
tems, where the Base Stations (BSs) are equipped with
a very large number of antennas (100 or more) that can

simultaneously serve many users [2]-[6],
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« millimeter-Wave (mmW) communication, i.e. frequen-
cies ranging between 30 GHz and 300 GHz, where
the spectrum is less crowded and greater bandwidth is
available [7]-[9] and

« smaller cells with ranges on the order of 10-200 m, i.e.
pico- and femtocells.

First, massive MIMO systems lead to a drastic increase
in the number of Radio Frequency (RF) chains at the BS
and hence in the number of the wireless front-end hardware
components. Second, mmW communication implies that the
wireless front-end hardware components are operated at much
higher frequencies. Third, reducing the cell size means that the
number of cells per unit area is increased and thus results in
a much more dense wireless network. Combining the three
technologies means a dramatic increase in the number of
RF hardware elements operating at very high frequencies
per unit area. Hence, the RF power consumption per unit
area alarmingly increases. While the above technologies are
foreseen as key technologies for future communication sys-
tems, the increase in power consumption represents a crucial
concern.

The most critical front-end elements in terms of power
consumption, depending on whether the large number of
antennas is situated at the receiver or at the transmitter,
are the Analog-to-Digital Converters (ADCs) in the uplink
scenario, and mainly the Power Amplifiers (PAs) and sec-
ondarily the Digital-to-Analog Converters (DACs) in the
downlink scenario, which is the focus of this contribution.
According to [10] and [11], the PA is considered as the
most power hungry device at the transmitter side. When
the PA is run in the saturation region, ie. the highly
non-linear region, high power efficiency is achieved and
hence less power is consumed [12]. However, the satu-
ration region implies strong non-linear signal distortions.
To omit the signal distortions, while keeping the PA operate
in the saturation region, the input signals should fulfill the
Constant Envelope (CE) property, which leads to a unit
Peak-to-Average-Power Ratio (PAPR).

To this end, polar (phase-based) DACs at the transmitter
are designed to convert the discrete-time and discrete-value
base-band signals into continuous-time but discrete-value, i.e.
discrete-phase, CE signals. The number of possible discrete
phases is determined by the resolution of the DAC. The larger
the resolution is, the more accurate the phase information at
the DAC’s output is, but the larger its power consumption
is [13]. To further reduce the hardware power consumption,
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the DAC’s resolution can be reduced. The use of coarsely
quantized DACs is also beneficial in terms of reduced cost
and circuit area and can further simplify the surrounding RF
circuitry due to the relaxed linearity constraint, leading to very
efficient hardware implementations. In this way, the power
consumption is reduced twofold: power efficient PAs due to
the CE signals and less power consuming polar DACs due
to the low resolution. However, this approach can lead to
non-linear distortions that degrade the system performance
and have to be mitigated by the precoder design in massive
Multi-User (MU) MIMO downlink systems.

A. Related Works

Many works have addressed the precoding problem in
the context of CE transmit signals for massive MIMO sys-
tems such that [14]—[18], where the Multi-User Interference
(MUI) is minimized subject to the CE constraint. Another
work [19] opts for minimizing an upper bound of the Symbol
Error Rate (SER) in the case of single-user Multiple-Input
Single-Output (MISO) systems for two strategies: antenna-
subset selection, where a subset of the antennas is selected
for transmission, and unequal power allocation among the
antennas, where the magnitude of the transmit signal at
each antenna is kept constant over a transmission period
but the signal magnitudes at distinct transmit antennas are
not necessarily equal. The authors of [20] jointly optimize
the transmit CE precoding and the constellation in order to
minimize the SER in a MISO multicast system. Recent works
in [21] and [22] exploit the constructive part of the MUI to
design the CE precoder. The authors in [23] design a CE
precoder to maximize the Signal-to-Leakage-plus-Noise Ratio
(SLNR). In [24], a CE precoder is jointly designed with the
receive beamforming to minimize the SER for point-to-point
MIMO systems, while adopting antenna grouping for multi-
stream transmission. In the above contributions, the DACs are
assumed to have infinite resolution.

The contribution in [25] is an early work that addressed
the precoding task with low resolution DACs at the trans-
mitter. A linear Minimum Mean Squared Error (MMSE)
precoder is designed, while quantization distortion is taken into
account. This precoding design is not given in the context of
coarsely Quantized Constant Envelope (QCE) signals since the
DACs are not polar but Cartesian (in-phase- and quadrature).
However, the extreme case of 1-bit DACs in [25] represents
a special case of coarsely QCE signals. Many contributions
in the literature have studied this special case. They can be
categorized in two groups: linear and non-linear precoders.
In addition to the linear precoder in [25], we introduced in [26]
another linear precoder, where the second-order statistics of
the 1-bit DAC signals are computed based on Price’s the-
orem [27]. Non-linear precoding techniques in this context
were introduced in [28]-[33]. The non-linear methods can
be classified with respect to two design criteria: symbol-wise
Minimum Squared Error (MSE) and symbol-wise Maximum
Safety Margin (MSM) exploiting the idea of constructive
interference. In the context of symbol-wise MSE, the authors
in [29] presented a convex formulation of the problem and
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applied it to higher-order modulations [30]. The problem
formulation is based on semidefinite relaxation and squared
fo-norm relaxation. The same optimization problem was
solved more efficiently in [32] and [34].

In the context of symbol-wise MSM in [28], we presented
a precoding technique based on a minimum Bit Error Rate
(BER) criterion and made use of the box norm (£,,) to relax
the 1-bit constraint. Recently, the work in [33] proposed a
method to significantly improve linear precoding solutions
in conjunction with 1-bit quantization by properly perturbing
the linearly precoded signal for each given input signal to
favorably impact the probability of correct detection. In [31]
the safety margin to the decision thresholds of the received
Phase-Shift Keying (PSK) symbols is maximized subject to
a relaxed 1-bit constraint using linear programming for flat-
fading channels and extended in [35] for frequency-selective
channels. The same optimization problem was solved by the
Branch-and Bound algorithm in [36] for the special case
of 4-PSK.

To the best of our knowledge, the only works that
have considered the case of coarsely QCE transmit signals
are [37]-[40]. In [37], we propose a symbol-wise MSE
precoder based on gradient-descent under a strict CE con-
straint or a relaxed polygon constraint. In [38], the authors
extend the method in [29] to fit the context of QCE transmit
signals. In [39], the authors use a greedy approach for the
precoder design while using symbol-wise MSE as the design
criterion. The contribution in [40] addresses the task of QCE
precoding in the context of using a single common PA and
separate digital phase shifters for the antenna front-ends. The
optimization problem consists of designing the QCE precoder
while minimizing the MUI, and the idea of constructive
interference, [41], [42], is not exploited as in our work. The
concept of QCE precoding and general constellations for flat-
fading channels is studied in this contribution and is extended
partially to frequency-selective channels in [35] and [43]. It is
worth mentioning that the QCE precoding can be combined
with appropriate pulse shaping strategies as in [44] and [45]
to ensure an efficient spectral confinement. In [46], it was
shown that CE precoding is still power efficient even when
considering time-based processing. The same investigation can
be conducted for the case of QCE precoding. Here, we focus
rather on the spatial design problem.

B. Main Contributions

The main contributions in this paper are summarized as
follows
1) We propose a method for QCE precoding in the context
of massive MIMO systems, where the transmit signals
have constant magnitude and phases drawn from a
discrete set. The precoder design is based on max-
imizing the safety margin to the decision thresholds
while exploiting the idea of constructive interference.
The design criterion in [31] is extended to the coarse
QCE case, where the QCE constraint is relaxed to
a polygon constraint to ensure convexity. While the
proposed design for PSK signaling is similar to the work
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Fig. 1. Downlink MU-MIMO system model.

in [22], we employ a relaxed polygon constraint rather
than a relaxed unit circle constraint as in [22]. Since the
polygon constraint can be expressed in terms of linear
convex inequalities, this allows us to solve the problem
using linear programming techniques, which are signif-
icantly more efficient. The simulation results related to
the proposed method show a significant gain in terms of
the uncoded BER compared to the method in [22].

2) We extend the proposed QCE precoder to the case
of Quadrature Amplitude Modulation (QAM) signaling.
The constructive interference idea has been applied pre-
viously to QAM signals in [47]-[49] for different design
criteria and in other contexts, e.g for power minimiza-
tion. In this contribution, we describe the constructive
interference regions with modified mathematical expres-
sions and a general QAM constellation that include the
safety margin to fit our design criterion. We solve the
formulated problem within a pure linear programming
framework, one of the most studied problems in opti-
mization. We also provided results where the receiver
blindly estimates the QAM scaling factor. We extend the
proposed QCE precoder to the case of QAM signaling.

C. Remainder and Notation

The remainder of this paper is organized as follows.
In Section II, we present the system model. In Section III,
the motivation behind formulating the precoding problem
as a linear programming problem is explained. Sections IV
and V present the corresponding optimization problems for
PSK and QAM signals, respectively. The complexity of each
optimization problem is discussed in Section VI. Simulation
results are introduced in VII. Finally, Section VIII summarizes
this work.

Notation: Bold lower case and upper case letters indi-
cate vectors and matrices, non-bold letters express scalars.
The operators (.)*, (.)T and () stand for complex con-
jugation, transposition and Hermitian transposition, respec-
tively. The n x n identity (zero) matrix is denoted by
I, (0n ). The n dimensional one (zero) vector is denoted by
1, (0). The vector e,, represents a zero-vector with 1 at the
m-th position. Additionally, diag(a) denotes a diagonal
matrix containing the entries of the vector a. Every vector
a of dimension L is defined as a = E;F‘:l age;. The operator
 denotes the Kronecker product. The operator < in the
context of vector inequalities applies element-wise to the
vector entries.

II. SYSTEM MODEL

The system model shown in Fig.1 consists of a single-cell
massive MU-MIMO downlink scenario with coarsely QCE

§
i

signals at the transmitter. The BS is equipped with N antennas
and serves M single-antenna users simultaneously, where
N >> M. The input signal vector s contains the signals to be
transmitted to each of the M users. Each user’s signal is drawn
from the set S that represents either an S-PSK or S-QAM
constellation, where S denotes the number of constellation
points. We assume that E[s] = 057 and E[ssf] = 021,;. The
signal vector s is precoded into the vector x € XV prior to the
DACs. The entries of x are amplitude-constrained and the set
X is a convex set that can be described by linear inequalities
as explained in Section III-A. The non-linear function P (e)
is a symbol-wise precoder designed to reduce the distortions
caused by the coarse quantization and the MUI. The operator
Qcg(e) models the non-linear behavior of the low-resolution
polar DACs combined with the power allocation at the PAs as

Px
t = Qer(x) = |/ 77 & 2, (1)

where the total transmit power Py is allocated equally among
the transmit antennas. The phase quantizer Q4(e) is a sym-
metric uniform real-valued quantizer. It is characterized by
its resolution g that defines the number of discrete output
phases

Q=21 (2)

In other words, the 27-phase range is divided into Q ZZ-
rotationally symmetric sectors. The input signal that belongs
to the k-th sector is quantized (mapped) to 1% This
can be mathematically expressed as

Q4 (arg(zn)) = ([a;i%"J + %) A=l N,
)

Thus, the information after the CE quantizer lies only in the
phase. Hence, the set T is defined as

T:{H%exp(j(%—l)%) :izl,---,Q}. @)

Note that directly designing the mapping between s and t
would lead to a discrete optimization problem that is NP-hard.
Thus, we design in an intermediate step the vector x € X%,
where X represents a convex relaxation of T as explained in
Section III-A.

The signal t is transmitted through a flat-fading chan-
nel that is modeled by the matrix H of elements hugn,
m=1,---,M, n=1,---,N. At the M receive antennas,
Additive White Gaussian Noise (AWGN), which is denoted
by the vector 1 ~ CNg (0ar, Cy = L), perturbs the received
signals

r=Ht+n. 5



JEDDA ef al.: QCE PRECODING WITH PSK AND QAM SIGNALING

Since the precoder is implemented symbol-by-symbol, joint
processing at the receiver would require not only knowledge
of the channel but also the desired received signals themselves,
which are unknown at the receiver. Therefore, the precoder is
designed such that, without any noise, the received signals
would lie in their intended decision regions and no joint
receive processing is necessary. Additionally, coherent data
transmission with multiple BS antennas leads to an antenna
gain, which depends on the channel realization. Hence, the pre-
coder design leads in the best case scenario to the fact that,
the entries of the received signal vector r do not belong to the
nominal decision regions of S but to a scaled version of them.
Therefore, rescaling the received signal at each receive antenna
is required to ensure that the received signal belongs to the
nominal decision region. The rescaling operation is modeled
by the diagonal real-valued matrix G, as follows

u=G (Ht+n), (6)

where

M
G =) gmemen, @
m=1

with g > 0, m =0,--- M. The coefficients g, are blindly
estimated at the receiver over a block of received symbols
as explained in Section V-F. Note that no receive processing
G is required if S represents the PSK constellation. Finally,
based on the decision regions to which the entries of the signal
u belong, the decision operation D(e) produces the detected
symbols § at the users

s =D (G (Ht +1)). (8)

III. PRECODING TASK

In this work, we make use of the idea of constructive inter-
ference optimization [41], [42]. When the downlink channel
and all users’ data are known at the transmitter, instantaneous
constructive MUI can be exploited to move the received
signals further from the decision thresholds [42]. In contrast to
this, conventional precoding methods (MMSE, Zero-forcing)
aim at minimizing the total MUI such that the received
signals lie as close as possible to the nominal constellation
points. Constructive interference optimization exploits the
larger symbol decision regions and thus leads to a more relaxed
optimization.

For every given input signal s and for each channel realiza-
tion H, the precoding task is to find

x =P (s, H). 9)

The task consists of designing the transmit vector x such that
§ = s holds true with high probability to reduce the detection
error probability. The symbol-wise precoder aims to mitigate
all sources of distortion:

» the quantization distortions

« the channel distortions, and

+ the AWGN.
Our goal is to develop a problem formulation that jointly
minimizes all three distortion sources.
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Fig. 2. Tlustration of the relaxed polygon constraint for Q@ = 8.

A. Mitigation of the Quantization Distortions

First, it is obvious that the quantization distortions can be
omitted if we design the precoded vector x such that

xeTV, (10)

i.e. X = T. This would ensure that the quantizer Qcg(e)
produces no distortion, and we would have an undistorted
transmit signal t = x. However, the QCE constraint in (10)
would lead to a discrete optimization problem due to the
discrete nature of the set T. To avoid this problem, we relax
the discrete set T to the convex set X that represents the
polygon built by the @ scaled PSK points of the set T. Thus,
the QCE constraint is relaxed to a convex constraint that
we call the relaxed polygon constraint. Fig. 2 illustrates the
relaxed polygon constraint for the case of @@ = 8. Instead of
designing x € TV to completely eliminate the quantization
distortions, we design x € X to minimize them.

The set X can be mathematically described by a set of linear
inequalities. For g-bit polar DACs, i.e., where the transmitted
data are constrained to be () scaled PSK symbols, the polygon
can be constructed by the intersection of /4 squares that have
an angular shift of 27/Q. To this end, we define the rotation
matrix R; of angle f3; = 25(i — 1) as

e [ cos [3;

—sin 3;

sin 3;
cos f3;

]®m,i=L”me.(U)

The system of inequalities that considers the feasible set,
i.e. the relaxed polygon constraint, and hence relaxes the
constraint in (10) is given by

. T T_ P i
" R% —R%] XS”FHCOS(Q) 1ng,

12)

[R} —RT

where x = [R{x}T %{X}T]T. Since R; = Iy, the first 4N
inequalities in (12) define the bounds for X. Hence, the relaxed
polygon constraint, i.e. x € X"V, is equivalent to

jtx m _ }:tx m
L i S g g e 8
B CDS(;)]_QN X A/ 7 CDS(Q)IQN:
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and
T P s
T 1T P, TR tx
[R2 R; Rg R%} Ry (6) In(Q-9)

(13)

This reformulation leads to significant computational savings
since the final optimization problem will be written as a linear
program with bounded variables. As discussed in Section VI,
it is beneficial in terms of computational complexity to have
fewer inequalities.

B. Counteracting the Channel Distortions and the Noise

Second, to minimize the channel distortions and the noise,
we look deeper into the properties of the constellations.
As illustrated in Fig. 3a and Fig. 3b, each constellation
is defined by thresholds that separate the distinct decision
regions of the constellation points. In total, we have as
many contiguous decision regions as constellation points. Each
constellation symbol lies within a Symbol Region (SR) that is
a downscaled version of the decision region. In contrast to the
decision region, the SR has a safety margin denoted by § that
separates it from the decision thresholds. When each entry of
the noiseless received signal vector y belongs to the correct
SR and thus the correct decision region, the channel distortions
are mitigated. Additionally, the safety margin é has to be
large enough such that, when perturbed by the additive noise,
the received signals do not jump to unintended neighboring
decision regions.

C. General Problem Formulation

In summary, the problem formulation has to take into
account the relaxed QCE constraint in (13), the SR for each
received signal and maximizing the safety margin. Thus,
the optimization problem for the symbol-wise precoder, which
we call the MSM precoder, can be written in general as follows

m)?xﬁ (14)
st. 4. € SRy, Vm (15)
and x € XV, (16)
where
y' = Hx a7
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N

Fig. 4. Tllustration of the PSK symbol region in a modified coordinate system.

represents the relaxation of y due to the relaxation of
(10) to (13). Exact expressions for the safety margin J and
the SRs as a function of x are provided in Section IV and
Section V for PSK and QAM signaling, respectively.

IV. PROBLEM FORMULATION FOR PSK SIGNALING
A. Symbol Region for PSK Signals

In this section, we assume that the input signals s,
m=1,---, M, belong to the S-PSK constellation. The set S
in this case is defined as
m
?.

(18)

Each SR in the PSK constellation, as shown in Fig. 3a,
is a circular sector of infinite radius and angle 26. To find
mathematical expressions for the SRs, the original coordinate
system is rotated by the phase of the symbol of interest s, to
get a modified coordinate system as illustrated in Fig. 4. The
coordinates of the noiseless received signal y;,, in the modified
coordinate system are given by

S:={exp(j(2i—1)0):i=1,.---,5}, where 0 =

(19)

Zmp = %{y;nsfn}m
m

(20)

Zmp = %{y;n‘g:n}m'
m

Since PSK signals have unit magnitude, plugging (17) into the
above equations gives

Zmp = R{eLHxs } = R{el Hx} (21
zm; = S{er Hxs? } = S{eL Hx}, (22)
where
H = diag(s*)H. (23)
The m-th SR can be hence described by
b (24)
|zm;| € (zmgp —7)tanf, VYm, (25)

where 7 = %. Note that the inequality in (24) is already
fulfilled if the inequality in (25) is satisfied. Plugging (21)
and (22) into (25), the SRs for all M users can be defined by

IS{Hx}| < (éR{fIx} - T1M) tan6 (26)
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as also given in [42]. When using the following real-valued

representation
= ~ ~ [ R{x
R{Hx} = [R{H} —E}{H}]J [;{Lxﬂ =Ax (27)
—A
i o ~ o [R{x 1
o(fix) = [ i) [S) -Bx o9
N,
=B
the SR constraints in (15) can be rewritten as
B — tanfA } ]_Mr %
Cofg [ 5} < O2p- (29)
—B — tanfA ]_Mr
cosf

B. Safety Margin for PSK Signals
The safety margin J in (14) can be expressed for the PSK
case as

d= mmi_n (sin(@)zgr — cos(0) |z1]), (30)

where the operator |e| is applied element-wise to the entries
of z;. Note that an equivalent objective function was intro-
duced in [22] in the context of continuous-phase CE precoding
for PSK signaling. In [22], the strict CE constraint is relaxed to
the convex unit circle, whereas in our work the QCE constraint
is relaxed to the linear polygon constraint. Consequently, due
to the linear objective function and the linear constraints, our
optimization problem can be formulated as a linear program-
ming problem unlike [22].

C. Optimization Problem

Finally, the optimization problem for the symbol-wise pre-
coder with PSK signaling is obtained by combining (14), (29)
and (13) and is expressed for the case of Px = N as

e b 1]

1
B —tanfA 1Mr
cosf =
RE | Bl —— M
cosf
E On(q-1)
Oans
< m
— | cos 5 1N(Q—4)

s 3 s
and — cos (6) 1oy < |:I;] < cos (6) 1on e
0 00

The resulting optimization is a linear programming problem
for which there exist very efficient solution methods [50].
In order to solve the problem for different P values, it is
sufficient to scale the solution of (31) by % due to the linearity
of the optimization.

When the optimization terminates, the optimal signal
x € X" is found. The signal t that goes through the channel
is obtained as described in (1). In other words, each entry in
x gets mapped to the corresponding CE point depending on
the circular sector in which it lies.
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D. Interpretation of the Safety Margin & for PSK Signals

The safety margin § is a parameter that affects the receiver
Signal-to-Noise Ratio (SNR) and the SER. These relationships
will be given for the relaxed problem; that is the quantization
is omitted and we consider the relaxed received signal y’.

The receiver SNR at the m-th user is given by

;12
s [E;”' - (197

n

SNR,,, = (32)
since we assume unit-variance AWGN. The expected value can
be computed by averaging over N, transmit signals. Hence,
we get

N = w2

T oA
v =}
SNRm 2 N, é (si_nﬂ)

Thus, we can conclude that maximizing the safety margin ¢
leads in turn to maximizing the lower bound of the receive
SNR at each user.

Moreover, it can be proven that the SER at the m-th user
is upper bounded by

1 o0
SER,, < I_FZ/ "
= T En#

(33)

erf (% i ’ytan(ﬁ)) %

x e dy, (34)

which explains why maximizing § minimizes the SER.

V. PROBLEM FORMULATION FOR QAM SIGNALING
A. The Need for an Additional Degree of Freedom o

In this section, we assume that the input signals s,
m = 1,---, M, belong to the S-QAM constellation, where
S is assumed to be a power of 4. The QAM symbols are
drawn from the set S defined as

S:={£(2i—1)£j@2—1):i=1,---,logy(S)}. (35)

As explained in Section III, the safety margin ¢ has to be
maximized such that the entries of the noiseless received signal
y’ belong to the intended SRs. The SRs in turn are determined
by the constellation set S and the safety margin 4. Hence,
the safety margin § must satisfy

§<1. (36)

Independently of the available transmit power, the entries of y’
cannot have a distance to the decision thresholds larger than 1.
Hence, the available transmit power cannot be exploited to the
fullest, which is a limitation of the problem formulation.
Thanks to the receive processing G, we can introduce an
additional degree of freedom « such that the entries of the
received signal y* do not have to belong to the SRs of the set
S but rather to a scaled version of them. That is, the QAM
constellation at each receiver is scaled by «, and thus the

constraint in (36) is replaced by
i, 37)

where « has to be jointly optimized with §. Note that maximiz-
ing 4 leads in turn to maximizing ¢, which leads to a maximal
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exploitation of the available transmit power. Thus, the entries
of the signal vector x will get closer to the polygon corners,
which decreases the variations between t and x.

The factor o denotes the expansion or shrinkage factor
of the constellation at the receiver side depending on the
available transmit power Py. As explained in Section III,
the optimization problem is formulated for the specific case,
i Pyp—DN:

B. Scaled Symbol Region for QAM Signals

In order to describe the SRs for QAM signaling in the same
coordinate system for all possible QAM constellation points,
we define a new coordinate system, that is a shifted and rotated
version of the original coordinate system while considering .
First, the QAM coordinate system at each receiver is shifted
by om

om = a((iﬁ‘f{sm} —sgn(R{sm}))

+i(S{sm} —sgn (& {sm}))) . (38)

We get the following expressions for the received and the
desired signal in the new coordinate system depicted in Fig. 5

ymEom) = Ym — Om

= er Hx — o, (39)
Sm(om) = XSm — Om

= a(sgn(R{sm}) +isgn(S{sm})). (40)

Second, the intermediate coordinate system is rotated by the
phase of the symbol of interest sy, (,,,.)- So the received signal
y, has the following coordinates in the shifted and rotated
coordinate system

e 1S (0m)|
and
" |81 (0mm) | '
We get
ymfo Sm*o A
) ) o (Hx - ac) : 43)
1S (0m)|
where
. S
H = — ding (sgn (R{s)) —jsen (S (5) H, (49
and
c= \/1% diag (sgn (R[s]) — jsen (S[s))o.  @5)

Note that ¢, ¥m, does not depend on « as can be concluded
from (38) and (45). Plugging (43) into (41) and (42), we get

Zmp = 6- VX — aR {cn ) (46)
Zm; = eR WX — oS {em ), (47)
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/\j ﬁ(om}

Fig. 5. Tllustration of the QAM receiver symbol region for R {8} > 0 and
S {sm} > 0 in the shifted coordinate system (in black) and in the shifted
and rotated coordinate system (in gray): &5 /2 € {2, 00}.

where

V= [R{H} —S{H}]
W = [3{H} R{H}].

(48)
(49)

The m-th SR, as shown in Fig. 5, can hence be described by

Zmp > V20 (50)
tmn <\ (01, — 02+ (0o, — 62 (5D)
o] < (2me — v26) (52)
Zm; < —Zmg + V2 (0fz,, — &) (53)
T T (T (54)

Note that &, and &, € {2,00} depending on which
constellation point the symbol of interest s,, corresponds to.
If s,, is one of the outer constellation points, then at least one
of &, or &, must be equal to oc. Since (50) and (51) are
inherently fulfilled by (52), (53) and (54), the constraint of the
SRs in (15) can be rewritten as

W-V 1y R{c}—S{c} <
-W-V 1y R{c}+S{c} 1
W+V 1y —R{c}-S{c} - V2%, -
~-W+V 1y —R{c}+S{c} -2,

< O4pr. (33)

C. Safety Margin § for QAM Signals

For the QAM case, the safety margin § in (14) can be
expressed as

§ = minmin (% i Tl i~ \/ii o —m),
oy~ (an+m)), (50

where the operator |e| is applied element-wise to the
entries of zy.
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W=V V21,
X -W-V \/§1Mr
max [0y 1 0] |6| st |[W+V V21,
s o -W+V 21y
E Oy (g-1)
— cos (1) 1oy
and Q <
0
0
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R{c}—S{c}
R{c}+S{c}
—R{c} - S{c} - v2¢,
—R{c} + S {c} - v2¢,
On(g-9)

COs = 1an
_|=(3)

3 # 00

O4nr

cos| = | IN(Q—4
Q (@-9)

R o M
A

(57)

2 oM

o0

D. Optimization Problem

We are interested in maximizing the safety margin as
presented in (14). In contrast to the PSK case, there is a
constraint on § in the QAM case, stated in (37), which is
inherently fulfilled by (55). Combining (14) with the SR
constraint in (55) and the relaxed polygon constraint in (13),
we get a linear programming problem for the design of the
symbol-wise precoder for QAM signaling. The optimization
problem for the case of Px = N is given in (57), shown at the
top of this page. In order to solve the optimization problem
for different Py values, it is sufficient to scale the optimal
solution of (31) by %"- due to the linearity of the optimization
problem.

Again the optimized vector x € X goes through the
quantizer, as stated in (1), to obtain the transmit vector t.

E. Interpretation of the Safety Margin & for QAM Signals

Again we consider the relaxed problem; that is the quan-
tization is omitted and we consider the received signal y’
instead of y. Hence, the receive SNR at the m-th user can
be approximated by

N,
SNR,, =~ Nis ;(a(“)%f. (58)
Since § < a, we get
SNR,,, > Li(gm)zgz_ (59)
~ N, i=1 ’

Thus, maximizing § results in maximizing the lower bound of
the receiver SNR.

Moreover, it can be proven that the SER at the m-th user
is upper bounded by

Ny

1 Zﬁa(i)—zf;)’R
SER,, < 1+ — /
" Ny Z 2,

w (1= 2erf (V36D 4 7)) o= e dy. (60)
(1 zert ) 7

Since erf is a monotonically increasing function, larger values
of § lead to minimize the upper bound of the SER.

FE. Receive Processing

The variables of the optimization problem are the transmit
vector x, the safety margin é and the expansion factor o.
The latter determines the receive processing G. Note that the
optimal value of « is determined on a symbol-by-symbol basis,
and its value cannot be communicated to the receiver. How-
ever, due to the large number of users combined with the
massive MIMO assumption, the fluctuations of « across the
symbols are small as explained in Section V-H. Therefore
an exact value of « is not required at the receiver. Only
the positions of the decision thresholds are needed to rescale
the receiver constellation points to the nominal constellation
points, and these only depend on the mean value of a.
An estimate of the mean of o can easily be computed by
averaging over a block of received signals.

After multiplication with the receiver coefficient gy,
the scaled received signal is

(61)

where 7, denotes the deviation of u,, from the nominal
point s, due to the AWGN 1,,, the SR constraint and the
quantization applied on the relaxed optimized vector x. Then,
we can write

[R{rm}| + [Im{rm}|

Um = gmTm = Qmegz Ht + Imm = Sm +77:;m

= g (R{sm + 1 H + |S{sm + 7 }) (62)
~ g (IR{sm}| + [S{sm})
+ g (R} +S{nl}), (63)

where the approximation is very accurate when the receiver
Signal-to-Interference-Noise Ratio (SINR) is much larger
than 1, which is the case for massive MIMO systems. Having
zero-mean noise plus interference 7/, we get

E[|R{rm}| + [S{rm}]]| = g ElR{sm}| + [S{sm}]
~ gn'V8,

when using the definition of the QAM constellation in (35).
Based on (64), we propose a blind estimation method to
obtain the scaling factor g, for each user prior to the decision
operation; that is

(64)

T /5
) T » = ]
o=t [Rirm[E}] + [S{rml[i]}
where T is the length the received sequence. The method does
not require any feedback or training from the BS nor any

gm = 65)
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Fig. 6. The noiseless received symbols for an arbitrary user m and an
arbitrary i.i.d. channel realization with N =64, M =8 and Q = 4.

knowledge of the noise plus interference power at the user
terminal.

G. Symbol-Wise Processing vs. Block-Wise Processing

One might ask why we opt for symbol-wise processing
and not block-wise processing. The factor a cannot be com-
municated to the receiver and hence has to be estimated.
The estimation is based on averaging over a block of T
received signals. Thus, one expects that the design of « at the
transmitter has to be computed for the same block length, i.e.
B =T. However, fixing « for a certain block length B means
that B vectors x have to be designed jointly with a single
factor « instead of having a distinct factor « for every vector x.
Additionally, the joint optimization of B vectors results in a
higher-dimensional linear programming problem, where the
number of inequalities is increased by a factor of B. Hence,
block-wise processing not only increases the computational
complexity of the problem as can be deduced from Section VI
but also reduces the degrees of freedom of the optimization
problem at the transmitter. This leads to the entries of the
vector x moving farther from the polygon corners, thus
increasing the quantization distortions. This effect is illustrated
in Fig. 6, where the entries of e, Hx, e} Ht and Le} Ht
of an arbitrary user m are obtained by transmitting 1024
16-QAM signal vectors through an i.i.d. channel of coefficients
hmn ~ CNg(0,1), n =1,--- N, m = 1,--- ,M, where
N =64, M = 8 and @ = 4. The optimization is computed
for both symbol-wise processing, i.e. B = 1, and block-wise
processing with B = 4. As can be deduced from the plots,
block-wise processing leads to a larger safety margin with
the relaxed vector x. However, after applying the quantization
this gain is lost and the symbol-wise processing is more
robust against the quantization operation. This can be further
explained by the results in Table I, which shows E wl ;
the percentage of entries of x that are distorted due to the
quantization and the MSE between t and x. We see that
increasing B significantly increases the quantization distortion.
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TABLE I
QUANTIZATION DISTORTION VS. B

B=1] B=4

E[L30] [o2176 | 0443

E [||t-x||§] 2.5458 | 12.6429
TABLE II

Aa AND dyom VS. N AND M': SINGLE a

N 64 200
M Aa Onom Aa Onom
2 1.3 -0.3 12 02

8 0.5 0.2 0.4 0.3
14 | 03 0.2 0.3 0.4

TABLE 111
A AND dyom VS. N AND M: M o’s

N 64 200

M | da | Spom | A& | Snom
2 2 -0.2 1.1 -0.1
8 G| -0.8 0.5 0.3
14 | 16 -2 0.7 0.4

Therefore, symbol-wise processing is chosen in this contribu-
tion, i.e, an optimal value of « is designed for each vector x.

H. One Joint o vs. M Distinct o’s for M Users

Symbol-wise transmit processing followed by block-wise
receive processing is reliable only if the obtained values of a,
e a(‘), ¢t =1,---,T, do not vary much from one vector
x( to another. Otherwise, estimating the mean value of a
at the receiver would not be sufficient for correct detection.
To understand this behavior, we introduce the nominal safety
margin dyom, Which is obtained after the receive filter G in the
noise-free case. It can be proven that

min §()

T
Sim @®/T
where A represents the maximal relative fluctuation of a.
From (66), we can conclude that smaller fluctuations of «a
lead to larger values of d,0m. This observation is justified by
numerical results, where the MSM optimization is run for
T = 128 16-QAM symbols, for 100 i.i.d. channel realizations
and for @ = 4. The obtained values for Aa and d&pom
are averaged over the channels and shown in Table II and
Table III. We can deduce from Table II, where a common «
is designed for all users, that the values of a fluctuate less
and hence d,om increases by increasing the number of users.
However, no monotonic behavior of the fluctuations is noticed
in Table III, which shows relatively larger values of Ao and
hence smaller values of dpom compared to Table II.

§n0m = QAO:: (66)

VI. COMPUTATIONAL COMPLEXITY OF MSM

Both optimization problems in (31) and (57) are formulated
as linear programming problems with bounded variables in
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Fig. 7. Uncoded BER performance for a MU-MIMO system with NV = 64

and M = 8 for different precoding designs and 4-PSK signaling.

inequality form as

maxc'x st Ax<b
xX

and ] < x < u, (67)

where c, x, land u € R", A € R™*" b € R™ and b has
only non-negative entries.

With the use of the simplex method to solve (67), the num-
ber of operations (multiplication and addition pairs) on each
iteration is given by, [51, p. 83],

3m or (m+1)(n+1)+2m, (68)

depending on whether pivoting is required or not. According
to [51, p. 86], in most iterations no pivoting is required and
hence less computation is needed.

Thus, the number of operations (multiplication and addition
pairs) for each iteration for PSK and QAM signaling is on the
order of

2N +4MN +8M +2(Q —4) (2N? +4N)  (69)

and
2N +8MN +20M +3+ (Q —4) (2N? +5N), (70)

respectively. For the special case of 1-bit quantization, i.e.
@ = 4, the complexity is linear in N and M. However,
the complexity is quadratic in N for Q > 4. Note that
the sparsity of E can be exploited by deploying the revised
simplex method to reduce the number of required operations
[51, p. 89].

VII. SIMULATION RESULTS

For the simulations, we assume a BS with NV = 64 antennas
serving M = 8 single-antenna users. The channel H is com-
posed of i.i.d. Gaussian random variables with zero-mean and
unit variance. The numerical results are obtained with Monte
Carlo simulations of 100 independent channel realizations.
The additive noise is also i.i.d. with variance one at each
antenna. The performance metric is the uncoded BER averaged
over the single-antenna users. For the blind estimation of the
coefficients g, we use a block length of T' = 128.

In the first simulation set, depicted in Fig. 7, we assume full
Channel State Information (CSI), choose 4-PSK modulation
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and compare the uncoded BER as a function of the transmit
power P for the following precoders:

o The proposed MSM method with @ = 4.

« The SQUID precoder presented in [29] with @ = 4,
where the precoder design criterion is the symbol-wise
MSE between u and s under a quantization constraint.
The latter is equivalent to the QCE constraint for the
special case @ = 4. The SQUID precoder is a semi-
definite relaxation based algorithm.

+ The quantized Wiener Filter (WF) precoder denoted by
“QWEF” from [25] with @ = 4. This precoder design is
based on linearizing the quantizer and considering the
resulting quantization noise as additive Gaussian noise.

» The CE precoder presented in [37] denoted by “CE [37]",
with @ = oo, where the symbol-wise MSE between y
and a scaled version of s is minimized under the CE
constraint. The scaling factor that is applied to s is jointly
optimized.

« The CE precoder from [22] denoted by CVX-CIO that
aims at maximizing the constructive interference under
the CE constraint.

+« The WF precoder followed by the CE quantizer with
@ = oo denoted by “WF-CE”, and

+ The WF precoder in the ideal case denoted by “The ideal
WF” from [52], where neither quantization nor the CE
constraint is applied to the transmit signal.

It can be seen that the CE constraint leads to a loss of almost
2 dB at a BER of 10~2 compared to the ideal WF and a loss
of less than 1.5 dB when using the unquantized symbol-wise
precoders proposed in [22] and [37]. The 1-bit quantization,
which represents the QCE case of ) = 4, leads to more losses
that depend on the precoder design. With the use of the linear
precoder QWF a loss of more than 4 dB at a BER of 1072 is
noticed. However, the non-linear precoders MSM and SQUID
improve the performance drastically and show a loss of slightly
more than 2 dB compared to the ideal case at the cost of
higher computational complexity. Nevertheless, the proposed
MSM method is more efficient than SQUID as it is based on
a purely linear programming formulation.

In the second simulation set, depicted in Fig. 8a and Fig. 8b,
the uncoded BER is plotted as a function of the transmit power
Py using the MSM precoder for different modulation schemes
and two different values of @Q: @ = 4 and @ = 8. Higher
values of () are omitted since the obtained results do not differ
much from the case of Q = 8. In addition, it is beneficial in
terms of computational complexity and power consumption
to keep @ as small as possible. As expected, the higher the
number of symbols in the modulation scheme, the higher the
BER for a given P, value. However, the increase of the DAC
resolution ¢ and thus the resulting increase in () leads to a
performance improvement, which depends on the modulation
scheme. Interestingly, the 16-QAM results outperform the
16-PSK results with a gain of almost 4 dB at a BER of 1072
for the case of @ = 4, whereas in the case of () = 8 the gain
reduces to 3 dB and the 16-PSK modulation outperforms the
16-QAM for transmit power values larger than 15 dB.

Since the optimization problem in [22] has some simi-
larities with our proposed MSM, we compare the uncoded
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Fig. 8. Uncoded BER performance of MSM for a MU-MIMO system with

N = 64 and M = 8 for different modulation schemes: MSM (solid lines),
the ideal WF (dashed lines).
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Fig. 9. Comparison of the uncoded BER performance between MSM,

CVX-CIO from [22] and CVX-CIO-noCE for a MU-MIMO system with
N =64 and M =8.

BER performance for both designs in Fig. 9. In our simulation,
we pass the entries of x obtained by the CVX-CIO method
through the CE quantizer to get QCE signals. Additionally,
we introduce the method denoted by CVX-CIO-noCE that
is the same as CVX-CIO with an instantaneous power con-
straint instead of the CE constraint. As can be seen from the
results, CVX-CIO and CVX-CIO-noCE do not perform opti-
mally under the constraint of QCE transmit signals. However,
the loss compared to MSM reduces when the quantization
resolution increases. The method introduced in [21], which is
based on the Riemannian Conjugate Gradient (RGC) approach
for CE precoding with the use of the constructive interference
principle, shows similar performance as the CVX-CIO method
in the quantized case.

The fourth simulation set, depicted in Fig. 10, addresses
the system performance in the presence of channel estimation
errors. The estimated channel is defined as

H, = vV1—vH+ 7T, (71)

where I is a random matrix with i.i.d. zero-mean and unit-
variance entries. We can see that the performance of the
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Fig. 10. Uncoded BER performance as a function of the channel estimation
error variance for 16-QAM signaling and P, = 10 dB.

TABLE IV
AVERAGE NUMBER OF ITERATIONS OF MSM

Nb. ofiter | 0=4 | Q=8 | 0=16
4PSK | 45.77 | 121.05 | 187.63
8PSK | 50.15 | 12391 | 191.55
16-PSK | 5494 | 12874 | 199.61
16-QAM | 4325 | 12042 | 187.32

64-QAM | 43.04 | 12030 | 188.30

proposed MSM precoder in the case of erroneous channel
estimation is still better than the linear WF followed by the
CE quantizer with Q = oc.

In the last simulation set, we counted the average number
of iterations required by the MSM precoder. The results
are summarized in Table IV, where we observe that around
50 iterations are required for all modulation schemes for
() = 4 and more than 100 iterations for Q) > 4.

VIII. CONCLUSION

We proposed a symbol-wise precoder for a massive
MU-MIMO downlink system with coarsely QCE signals at
the transmit antennas. The CE constraint is motivated by the
high PA power efficiency for CE input signals, and the coarse
quantization provides further power savings due to the use of
the low-resolution polar DACs. The MSM precoder is based on
maximizing the safety margin to the receiver decision thresh-
olds taking the QCE constraint into account. When relaxing
the QCE constraint to a linear convex set, the optimization
problem can be formulated as a linear programming problem,
and thus can be efficiently solved via a number of methods.
The proposed precoding method comprises both PSK and
QAM modulation schemes.

The extension of the proposed method to frequency-
selective channels is straightforward. However, it requires
higher computational complexity since block-wise process-
ing is required to better mitigate the Inter-Symbol Interfer-
ence (ISI). Our initial work on this case was presented in [35].
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