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Spectral Efficiency of Mixed-ADC Massive MIMO

Hessam Pirzadeh

Abstract—We study the spectral efficiency (SE) of a
mixed-analog-to-digital converter (ADC) massive multiple-input
multiple-output (MIMO) system in which K single-antenna users
communicate with a base station equipped with M antennas con-
nected to N high-resolution ADCs and M — N 1-b ADCs. This
architecture has been proposed as an approach for realizing mas-
sive MIMO systems with reasonable power consumption. First, we
investigate the effectiveness of mixed-ADC architectures in over-
coming the channel estimation error caused by coarse quantiza-
tion. For the channel estimation phase, we study to what extent one
can combat the SE loss by exploiting just N < M pairs of high-
resolution ADCs. We extend the round-robin training scheme for
mixed-ADC systems to include both high-resolution and 1-b quan-
tized observations. Then, we analyze the impact of the resulting
channel estimation error in the data detection phase. We consider
random high-resolution ADC assignment and also analyze a simple
antenna selection scheme to increase the SE. Analytical expressions
are derived for the SE for maximum ratio combining and numer-
ical results are presented for zero-forcing detection. Performance
comparisons are made against systems with uniform ADC resolu-
tion and against mixed-ADC systems without round-robin train-
ing to illustrate under what conditions each approach provides the
greatest benefit.

Index Terms—Massive multiple-input multiple-output (MIMO),
analog-to-digital converter, mixed-ADC, spectral efficiency.

1. INTRODUCTION

HE seminal work of Marzetta introduced massive

multiple-input multiple-output (MIMO) as a promising
architecture for future wireless systems [2]. In the limit of an
infinite number of base station (BS) antennas, it was shown that
massive MIMO can substantially increase the network capac-
ity. Another key potential of massive MIMO systems which has
also made it interesting from a practical standpoint is its ability
of achieving this goal with inexpensive, low-power components
[3], [4]. However, preliminary studies on massive MIMO sys-
tems have for the most part only analyzed its performance under
the assumption of perfect hardware [5], [6]. The impact of hard-
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Fig. 1. Mixed-ADC architecture.

ware imperfections and nonlinearities on massive MIMO sys-
tems has recently been investigated in [7]-[12]. Although it is
well-known that the dynamic power in massive MIMO systems
can be scaled down proportional to VM, where M denotes
the number of BS antennas, the static power consumption at
the BS will increase proportionally to M [8]. Hence, consider-
ing hardware-aware design together with power consumption at
the BS seems necessary in realizing practical massive MIMO
systems.

Among the various components responsible for power dissi-
pation at the BS, the contribution of analog-to-digital converters
(ADCs) is known to be dominant [13]. Consequently, the idea
of replacing the high-power high-resolution ADCs with power
efficient low-resolution ADCs could be a viable approach to ad-
dress power consumption concerns at the massive MIMO BSs.
The impact of utilizing low-resolution ADCs on the spectral
efficiency (SE) and energy consumption of massive MIMO sys-
tems has been considered in [14]-[22]. In particular, studies on
massive MIMO systems with purely one-bit ADCs show that
the high spatial multiplexing gain owing to the use of a large
number of antennas is still achievable even with one-bit ADCs
[14], [15]. However, many more antennas with one-bit ADCs (at
least 2-2.5 times) are required to attain the same performance
as in the high-resolution ADCs case.

One of the main causes of SE degradation in purely one-bit
massive MIMO systems is the error due to the coarse quanti-
zation that occurs during the channel estimation phase. While
at low SNR the loss due to one-bit quantization is only about
2 dB, at higher SNRs performance degrades considerably more
and leads to an error floor [14]. The SE degradation can be re-
duced by improving the quality of the channel estimation prior
to signal detection. One approach for doing so is to exploit
so-called mixed-ADC architectures during the channel estima-
tion phase, in which a combination of low- and high-resolution
ADCs are used side-by-side. This architecture is depicted in
Fig. 1. Mixed-ADC implementations were introduced in [23],
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[24] and their performance was studied from an information
theoretic perspective via generalized mutual information.

The basic premise behind the mixed-ADC architecture is to
achieve the benefits of conventional massive MIMO systems
by just exploiting N < M pairs of high-resolution ADCs. An
SE analysis of mixed-ADC massive MIMO systems with maxi-
mum ratio combining (MRC) detection for Rayleigh and Rician
fading channels was carried out in [25] and [26], respectively.
The SE and energy efficiency of mixed-ADC systems compared
with systems composed of one-bit ADCs was studied in [27] for
MRUC detection, and conditions were derived under which each
architecture provided the highest SE for a given power con-
sumption. The advantage of using a mixed-ADC architecture
in designing Bayes-optimal detectors for MIMO systems with
low-resolution ADCs is reported in [28]. Although the nonlin-
earity of the quantization process increases the complexity of
the optimal detectors, it is shown that adding a small number
of high-resolution ADCs to the system allows for less complex
detectors with only a slight performance degradation. Moreover,
the benefit of using mixed-ADC architectures in massive MIMO
relay systems and cloud-RAN deployments is elaborated in
[291, [30].

Most existing work in the mixed-ADC massive MIMO litera-
ture has assumed either perfect channel state information (CSI)
or imperfect CSI with “round-robin” training. In the round-robin
training approach [23], [24], [26], the training data is repeated
several times and the high-resolution ADCs are switched among
the RF chains so that every antenna can have a “clean” snapshot
of the pilots for channel estimation. This obviously requires a
larger portion of the coherence interval to be devoted to training
rather than data transmission. More precisely, for M antennas
and N pairs of high-resolution ADCs, M /N pilot signals are
required in the single-user scenario to estimate all M channel
coefficients with high-resolution ADCs. This issue is pointed
out in [23] for the single user scenario and its impact is taken
into account. This training overhead will be exacerbated in the
multiuser scenario where orthogonal pilot sequences should be
assigned to the users. In this case, the training period becomes
(M /N )n, where n represents the length of the pilot sequences
(at least as large as the number of user terminals), which could
be prohibitively large and may leave little room for data trans-
mission. Hence, it is crucial to account for this fact in any SE
analysis of mixed-ADC massive MIMO systems.

In this paper, we examine the channel estimation performance
and the resulting uplink SE of mixed-ADC architectures with
and without round-robin training, and compare them with im-
plementations that employ uniform ADC quantization across all
antennas. The main goals are to determine when, if at all, the
benefits of using the round-robin approach with ADC/antenna
switching outweigh the cost of increasing the training overhead,
and furthermore to examine the question of whether or not one
should employ a mixed-ADC architecture in the first place. The
contributions of the paper can be summarized as follows.

® We first present an extension of the round-robin training

approach that incorporates both high-resolution and
one-bit measurements for the channel estimation. The
round-robin training proposed in [23], [24], [26] based the
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channel estimate on only high-resolution observations,
assuming that no data was collected from antennas
during intervals when they were not connected to the
high-resolution ADCs. In contrast, our extension assumes
that these antennas collect one-bit observations and
combine this data with the high-resolution samples to
improve the channel estimation performance.

® We use the Bussgang decompositon [31] to develop alinear
minimum mean-squared error (LMMSE) channel estima-
tor based on the combined round-robin measurements and
we derive a closed-form expression for the resulting mean-
squared error (MSE). We further illustrate the importance
of using the Bussgang approach rather than the simpler
additive quantization noise model in obtaining the most
accurate characterization of the channel estimation per-
formance for round-robin training. The analysis illustrates
that the addition of the one-bit observations considerably
improves performance at low SNR.

* We perform a spectral efficiency analysis of the mixed-
ADC implementation for the MRC and ZF receivers, and
obtain expressions for a lower bound on the SE that takes
into account the channel estimation error and the loss of
efficiency due to the round-robin training. We compare the
resulting SE with that achieved by mixed-ADC implemen-
tations that do not switch ADCs among the RF chains, and
hence do not use round-robin training. We also compare
against the SE for architectures that do not mix the ADC
resolution across the array, but instead use uniform resolu-
tion with a fixed number of comparators for different array
sizes. We show that, depending on the SNR, coherence
interval, number of high-resolution ADCs, and the choice
of the linear receiver, there are situations where each of
the considered approaches shows superior performance.
In particular, using uniform low-resolution ADCs is better
than a mixed-ADC approach for an interference limited
system. On the other hand, a mixed-ADC system, even
one with round-robin training, is superior at higher SNRs
when zero-forcing is used to reduce the interference.

* We analyze the possible SE improvement that can be
achieved by using an antenna selection algorithm that con-
nects the high-resolution ADCs to the subset of antennas
with the highest channel gain. We analytically derive the
SE performance of the antenna selection algorithm for
MRC and numerically study its performance for ZF detec-
tion, comparing against the simpler approach of assigning
the high-resolution ADCs to an arbitrary fixed subset of
the RF chains.

In addition to the above contributions, we also discuss some of
the issues related to implementing an ADC switch or multiplexer
in hardware that allows different ADCs to be assigned to differ-
ent antennas. We restrict our analysis and numerical examples to
a single-carrier flat-fading scenario, although our methodology
can be used in a straightforward way to extend the results to
frequency-selective fading or multiple-carrier signals (e.g., see
our prior work in Section IIL.B of [14] for the SE analysis of an
all-one-bit ADC system for OFDM and frequency selectivity).
The reasons for focusing on the single-carrier flat-fading case
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are as follows: (1) the mixed-ADC assumption already makes
the resulting analytical expressions quite complicated even for
the simple flat-fading case, and it would be more difficult to gain
insight into the problem if the expressions were further compli-
cated; (2) the original round-robin training idea was proposed in
[23] for the single-carrier flat-fading case, and thus we analyze
it under the same assumptions; (3) the main conclusions of the
paper are based on relative algorithm comparisons for the same
set of assumptions, and we expect our general conclusions to
remain unchanged if frequency rather than flat fading were con-
sidered; and (4) the flat fading case is still of interest in some
applications, for example in a micro-cell setting with typical
path-length differences of 50-100 m, the coherence bandwidth
is between 3—6 MHz, which is not insignificant.

Further assumptions regarding the system model are outlined
in the next section. Section III discusses channel estimation
using round-robin training, and derives the LMMSE channel
estimator that incorporates both the high-resolution and one-
bit observations. A discussion of hardware and other practical
considerations associated with using a mixed-ADC system with
ADC/antenna switching is presented in Section IV. Section V
then presents the analysis of the spectral efficiency for MRC and
ZF receivers based on the imperfect channel state estimates, in-
cluding an analytical performance characterization of antenna
selection and architectures with uniform ADC resolution across
the array. A number of numerical studies are then presented in
Section VI to illustrate the relative performance of the algo-
rithms considered.

Notation: We use boldface letters to denote vectors, and
capitals to denote matrices. The symbols (.)*, (.)T, and (.)#
represent conjugate, transpose, and conjugate transpose, respec-
tively. A circularly-symmetric complex Gaussian (CSCG) ran-
dom vector with zero mean and covariance matrix R is denoted
v ~ CN(0,R). The symbol ||.|| represents the Euclidean norm.
The K x K identity matrix is denoted by I x and the expecta-
tion operator by E{.}. We use 1 to denote the N x 1 vector of
all ones, and diag{ C} the diagonal matrix formed from the diag-
onal elements of the square matrix C. For a complex value, ¢ =
cr + jer, we define arcsin (¢) £ arcsin (cg) + jarcsin (cr ).

II. SYSTEM MODEL

Consider the uplink of a single-cell multi-user MIMO sys-
tem consisting of K single-antenna users that send their signals
simultaneously to a BS equipped with M antennas. Assuming
a single-carrier frequency flat channel and symbol-rate sam-
pling, the M x 1 signal received at the BS from the K users is
given by

-
r=>  \/Prgrsk +1, €Y
k=1
where p; represents the average transmission power from the
kth user, g, = \/Brh: is the channel vector between the kth
user and the BS where 3; models geometric attenuation and
shadow fading, and hy ~ CA (0, I, ) represents the fast fad-
ing and is assumed to be independent of other users’ channel
vectors. The symbol transmitted by the kth user is denoted by
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sr where E {|s;|?} = 1 and is drawn from a CSCG codebook
independent of the other users. Finally, n. ~ CN (0,021,,) de-
notes additive CSCG receiver noise at the BS. The assumption
of symbol-rate sampling means that the matched filter at the
receiver must be implemented in the analog domain. Better per-
formance (e.g., higher rates) could be achieved by oversampling
the ADCs, particularly those with one-bit resolution.

We consider a block-fading model with coherence bandwidth
W, and coherence time 7. In this model, each channel remains
constant in a coherence interval of length 7' = T. W, symbols
and changes independently between different intervals. Note
that 7" is a fixed system parameter chosen as the minimum co-
herence duration of all users. At the beginning of each coherence
interval, the users send their 7j-tuple mutually orthogonal pilot
sequences (K < 5 < T) to the BS for channel estimation. De-
noting the length of the training phase as 7., the remaining
T — nesr symbols are dedicated to uplink data transmission.

III. TRAINING PHASE

In this section, we investigate the linear minimum mean
squared error (LMMSE) channel estimator for different ADC
architectures at the BS. In all scenarios, the pilot sequences are
drawn from an 7 x K matrix ®, where the kth column of ®, ¢,
is the kth user’s pilot sequence and @7 & = I . Therefore, the
M x n received signal at the BS before quantization becomes

K
X =Y Vipege®; + N, )
k=1

where N is an M x 5 matrix with i.i.d. CA(0,02) elements.
Since the rows of X are mutually independent due to the as-
sumption of spatially uncorrelated Gaussian channels and noise,
we can analyze them separately. As a result, we will focus on
the mth row of X which is

K
al, = /iPrgmie bt + 0, 3)
k=1

where g, is the mth element of the kth user channel vector,
dx» and nl is the mth row of N. Since the analysis is not
dependent on m, hereafter we drop this subscript and denote the
received signal at the mth antenna by x.

A. Estimation Using One-Bit Quantized Observations

In this subsection, to have a benchmark for comparison pur-
poses, we consider the case in which all antennas at the BS
are connected to one-bit ADCs. The received signal x” after
quantization by one-bit ADCs can be written as

v =Q(a"), @)
where the element-wise one-bit quantization operation O(-) re-
places each input entry with the quantized value 715 (1),
depending on the sign of the real and imaginary parts. Accord-
ing to the Bussgang decomposition [31], the following linear
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representation of the quantization can be employed [14]:

Q™) =/ 2a™Dat 4T,

where D, = diag{C_} and C,, denotes autocorrelation matrix
of x, which can be calculated as

(3)

.
Ce = ank.gkﬁb;ﬁbi +orL;.

k=1

(6)

In addition, g, represents quantization noise which is uncorre-
lated with @ and its autocorrelation matrix can be derived based
on the arcsine law as [32]
2 = | il L | i
Cq, = arcsin {DJCmDJ} - ZDTC.D:T. (1)
Much of the existing work on massive MIMO systems with
low-resolution ADCs employs the simple additive quantization
noise model (AQNM) for their analysis [20]-[22], [25]-[30],
[39] which is valid only for low SNRs and does not capture
the correlation among the elements of g, , which turns out to be
of crucial importance in our analysis. Hence, we consider the
Bussgang decomposition instead and will show its effect on the
system performance analysis. Stacking the rows of (5) into a
matrix, the one-bit quantized observation at the BS becomes
2
W= ;XD;E2 +Q, (8
where Qisan M x nmatrix whose mthrow is g7 . The LMMSE
estimate of the channel G = [g, - . -, g | based on just one-bit
quantized observations (8) is given in the following theorem.
Theorem 1: The LMMSE estimate of the k-th user channel,
g;., given the one-bit quantized observations Y is [14]

a &+U\/ Y, ©
where
= L
G 21/ 3Dz % (10)
2 1 2 i i I
03, = — (02 + 3 Cq, 31 ) - (n
NPk
Define the channel estimation error e £ §;. — g;. Then we have
82 2
B e i gt o Tt (12)

T Brah, T Btad,

where G'g and cr are the variances of the independent zero-
mean elements of g;. and &, respectively.

From Theorem 1, it is apparent that in the channel estimation
analysis of massive MIMO systems with one-bit ADCs, the esti-
mation error is directly affected not only by the inner product of
the pilot sequences, but also by their outer product as well [14].
To get insight into the impact of the one-bit quantization on the
channel estimation, in the next corollary we adopt the statistics-
aware power control policy proposed in [37]. Apart from its
practical advantages, this policy is especially suitable specially
for one-bit ADCs since it avoids near-far blockage and hence
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strong interference. Moreover, this power control approach also
leads to simple expressions and provides analytical convenience
for our derivation in Section V1. Although not the focus of this
paper, we note that in general a massive MIMO system employ-
ing a mixed-ADC architecture will be more resilient than an all
one-bit implementation to the near-far effect and jamming. This
is an interesting topic for further study.

Corollary 1: For the case in which power control is per-
formed, i.e., pr = -ﬁ% for some fixed value p and for k € K =
{1,..., K}, the number of users is equal to the length of pilot se-
quences, i.e., 7 = K, and the pilot matrix satisfies ®®7 = I,
we have

Cz = (Kp+o;)Ix =Dg (13)
G (1 - —) Ik, (14)
™
which yields
7, =22 a3
™1+ E:L_
2
=)=l 1
oL (& 2 L (16)
5k

Corrollary 1 states conditions under which Cg, is diagonal.
In addition, it is evident that the channel estimation suffers from
an error floor at high SNRs.

B. Channel Estimation With Few Full Resolution ADCs

Channel estimation with coarse observations suffers from
large errors especially in the high SNR regime. On the other
hand, while estimating all channels using high-resolution ADCs
is desirable, the resulting power consumption burden makes
this approach practically infeasible. This motivates the use of
a mixed-ADC architecture for channel estimation to eliminate
the large estimation error caused by one-bit quantization while
keeping the power consumption penalty at an acceptable level.
In the approach described in [23], [24], [26], N <« M pairs
of high-resolution ADCs are deployed and switched between
different antennas during different transmission intervals in an
approach referred to as “round-robin” training. In this approach,
the M BS antennas are grouped into M /N sets.! In the first
training sub-interval, users send their mutually orthogonal pilots
to the BS while the NV high-resolution ADC pairs are connected
to the first set of N antennas. After receiving the pilot symbols
from all users in the n-symbol-length training sub-interval, the
high-resolution ADCs are switched to the next set of antennas
and so on. In this manner, after (M /N)n pilot transmissions
(M /N sub-intervals), we can estimate each channel based on
observations with only high-resolution ADCs. This round-robin
channel estimation protocol is illustrated in Fig. 2 for a mixed-
ADC system with M /N = 5.

Stacking all N x 5 full-resolution observations into an M x
n matrix, X, the LMMSE estimate of the k-th user channel, g,

'We assume M /N is an integer throughout the paper.
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Antenna set 2 E
Antenna set 3 l:l No
Antenna set 4 observation
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Te
Fig. 2. Transmission protocol for estimation using full-resolution
observations.
is [5]
z 1 1 .
O = —— —F—X¢, a7
14 —=2— /1Pk

NPk Bk

and the resulting variances of the channel estimate and the error
are given respectively by

2 B 2 B
o, =———— and 0., = ———. (18)
g e £k NPk Bk
NPk Bk 1+ o}

Equation (18) states that by employing only N pairs of high-
resolution ADCs and by expending a larger portion of the co-
herence interval for channel estimation, the channel can be esti-
mated with the same precision as that achieved by conventional
high-resolution ADC massive MIMO systems. However, this
comes at the high cost of repeating the training data M /N
times, which can significantly reduce the time available for data
transmission. Indeed, we will see later that in some cases, a
mixed-ADC implementation with round-robin training achieves
a lower SE than a system with all one-bit ADCs because of the
long training interval (even with the improvements we propose
below for the round-robin method). However, we will also see
that there are other situations for which the mixed-ADC round-
robin method provides a large gain in SE. The primary goal of
this paper is to elucidate under what conditions these and other
competing approaches provide the best performance.

Before analyzing the tradeoff between the gain (lower chan-
nel estimation error) and cost (longer training period) of the
round-robin approach, in the next subsection we propose chan-
nel estimation based on the use of both full-resolution and one-
bit data received by the BS in order to further improve the
performance of the mixed-ADC architecture with round-robin
channel estimation. To our knowledge, this approach has not
been considered in prior work on mixed-ADC massive MIMO.

C. Estimation Using Joint Full-Resolution/One-Bit
Observations

While channel estimation performance based on coarsely
quantized observations suffers from large errors in the high
SNR regime, it provides reasonable performance for low SNRs.
Hence, in this subsection we consider joint channel estimation
based on observations from both high-resolution and one-bit
ADC:s to further improve the channel estimation accuracy. Un-
like the previous subsection in which the one-bit ADCs were not
employed, here we incorporate their coarse observations into the
channel estimation procedure. The protocol for this method is
illustrated in Fig. 3 for a mixed-ADC system with M /N = 5. It
can be seen that, in addition to one set of full-resolution obser-
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/ / ) Full-resolution
Antenna set 1 [ g - observations
Antenna set 2 E .
Antenna set 3 : Ome-hit
Antenna set 4 observations
Antenna set 5 We

Te

Fig. 3. Transmission protocol for estimation using full-resolution/one-bit

observations.

vations for each antenna, there are (M /N) — 1 sets of one-bit
observations which are also taken into account for channel esti-
mation. The next theorem characterizes the performance of this
approach.

Theorem 2: Stacking all N x n full-resolution observations
into an M x n matrix, X, and all (M/N)—1 N x n one-
bit quantized observations into M x n matrices, Y;, t € 7 =
{1, ..., M/N — 1}, the LMMSE estimate of the k-th user chan-
nel, g;., is

-1
.S 1 * _N_ i ;
Gr = [ — | Woo, X g + w1, Z Yid |, 19
TPk Y
where
ﬂ%k_
s = % 20)
t _5% + 25 + G (pr) (
M _ 1) (o
wy, = (IN 3 k (Pe) (1)
g + 5+ (pr)
o) = —— 2 1) (22)
U'E'k + (% B ) Ok
oh, = —— (02 + &1 Cq. b1 ) (23)
NPk
]. =T o
s o | z 24)
Ok P ﬁbk q ‘}f’k (
_ 2 . L S 2 S S |
C,, = —arcsin {D,,Q CaDs? } - D7 CD." (29)
i K’
Co =) nBrdidr (26)
k=1
D, = diag{C_}. (27)

This approach yields the following variances for the channel
estimate and the estimation error, respectively:

AEE + G (Pr)
= : @8)
5 + B+ (pe)
1
b = - (29)
i B + G ()
Proof: See Appendix A. |

Theorem 2 demonstrates the optimal approach for combin-
ing the observations from high-resolution and one-bit ADCs. In
addition, this highlights the importance of considering the corre-
lation among the one-bit observations in the analysis of mixed-
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ADC channel estimation, something that could not be addressed
by the widely-used AQNM approach. More precisely, it can be
seen that the impact of joint high-resolution/one-bit channel es-
timation is manifested in the variance of the channel estimation
error by the term ¢z (p;. ). To see this, assume that the correlation
among one-bit observations in different training sub-intervals is
ignored (as would be the case with the AQNM approach). As
shown in the appendix, this is equivalent to setting pr = 0 in
(24). Under this assumption, ¢ (px ) becomes

M
Sko (Pr) = % > 6k (Pk )

Wi

(30)

and thus, o, > o7, where o2, denotes the estimation error
for pr, = 0. Consequently, the AQNM model yields an overly
optimistic assessment of the channel estimation error compared
with the more accurate Bussgang analysis. We will see below
that the impact of the AQNM approximation is significant for
mixed-ADC channel estimation.

The next corollary provides insight into the impact of the
system parameters on the joint high-resolution/one-bit LMMSE
estimation.

Corollary 2: For the case in which power control is per-
formed, i.e., p; = I% for k € K={1,..., K}, the number of
users is equal to the length of pilot sequences, i.e., 7 = K, and
the pilot matrix satisfies dPT = I, we have

Ce = Kplg = Do, (3D
and
2
(G- (1 = —) Ix, (32)
m
which yields
22 +<(p) 1
2 o
T — — ,8 al‘ld oy - 6 ’
PR 144
(33)
where
(3 1)
(p) = ——= (34)
e+t E-1)(F-1

In addition,
Kp
o2

(M -1 ()
—1 " %32 — and wy = ————, (35)

1+ 2 +6(p)’

Wog —

where w,, and w; denote the weights of the high-resolution and
one-bit observations in the LMMSE estimation, respectively.
Corallary 2 states that in contrast to Theorem 1 where the cor-
relation among one-bit observations within each training sub-
interval can be eliminated by carefully selecting the system
parameters as in Corollary 1, we cannot overcome the corre-
lation among one-bit observations from different training sub-
intervals. This phenomenon makes the addition of the one-bit
observations less useful especially in the high SNR regime. For
instance, in the asymptotic case, as the SNR = % goes to in-
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Fig. 4. Channel estimation error Jgk /By versus p/ol.

finity, we have
1

T

(36)

Wo — 1, wy — 0.

(37)

It is apparent from (36) that in the asymptotic regime ¢ tends to
a finite value and also is independent of M /N. Moreover, (37)
implies that the optimal approach for high SNRs is to estimate
the channel based solely on the high-resolution observations.
The error for the three channel estimation approaches in
Egs. (12), (18), and (29) is depicted in Fig. 4 for a case with
M = 100antennas, K' = 10users, and various numbers of high-
resolution ADCs, N and training lengths 7. The label “Joint”
refers to round-robin channel estimation that includes the one-bit
observations as described in the previous section, “Full resolu-
tion” indicates the performance achieved using a full array of
high-resolution ADCs, and “One-bit” refers to the performance
of an all-one-bit architecture. We also plot the performance pre-
dicted for the Joint approach based on the AQNM analysis,
which ignores the correlation among the one-bit observations.
We see that the AQNM-based analysis yields an overly opti-
mistic prediction for the channel estimation error. In particular,
unlike AQNM, the more accurate Bussgang analysis shows that
channel estimation with all an one-bit BS actually outperforms
the Joint method for low SNRs, a critical observation in analyz-
ing whether or not a mixed-ADC implementation makes sense.
However, we see that the mixed-ADC architecture eventually
overcomes the error floor of the all one-bit system for high SNRs
and in such cases can reduce the estimation error dramatically.
Fig. 4 focuses on channel estimation performance, but does
not reflect the full impact of the round-robin training on the
overall system spectral efficiency, since reducing N increases
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the amount of training required by the round-robin method. This
will be taken into account when we analyze the SE in Section V.

IV. PRACTICAL CONSIDERATIONS

The improvement in channel estimation performance pro-
vided by the round-robin training clearly comes at the expense
of a significantly increased training overhead. For example, con-
sider a simple worst-case example with a 400 Hz Doppler spread
in a narrowband channel of 400 kHz bandwidth; in this case,
the coherence time is roughly 1000 symbols. For higher band-
widths or smaller cells with lower mobility, the coherence time
can easily approach 10,000 symbols or more. A mixed-ADC
array of 128 antennas with 16 high-resolution ADCs would re-
quire repeating the pilots 8 times, which for 20 users would
amount to 160 symbols, or 16% of the coherence time when
T = 1000 symbols. This is a relatively high price to pay, and
as we will see later, in many instances the resulting loss in SE
cannot be offset by the improved channel estimate. However,
we will also see that on the other hand, there are other situations
where the opposite is true, where the round-robin method leads
to significant gains in SE even taking the training overhead into
account.

Besides the extra training overhead, the round-robin method
has the disadvantage of requiring extra RF switching or multi-
plexing hardware prior to the ADCs, as shown in Fig. 1. It is
unlikely that a single large M x M multiplexer would be used
for this purpose, since complete flexibility in assigning a given
high-resolution ADC to any possible antenna is not needed. A
more likely architecture would employ a bank of smaller mul-
tiplexers that allows one high-resolution ADC to be switched
among a smaller subarray of antennas, ensuring that each RF
chain has access to high-resolution training data during one of
the round-robin intervals. Such an approach is similar to the
simplified “subarray switching” schemes proposed for antenna
selection in massive MIMO [33]-[35]. In an interesting earlier
example, a large 108 x 108 multiplexer chipset for a local area
network application was developed in [36], composed of several
36 x 36 differential crosspoint ASIC switches that consume less
than 100 mW each, with a bandwidth of 140 MHz and a 0 dB
insertion loss.

In the 20 years since [36], RF switch technology has advanced
considerably. For the example discussed above involving a
128-element array with 16 high-resolution ADCs and 112 one-
bit ADCs, the multiplexing could be achieved using 16 8 x 8
analog switches arranged in parallel. Consider the Analog De-
vices ADV3228 8 x 8 crosspoint switch as an example of an off-
the-shelf component for such an architecture.? The ADV3228
has a 750 MHz bandwidth, a switching time of 15 ns, and a
power consumption of 500 mW, which is similar to that of an
8-bit ADC (for example, see Texas Instruments’ ADC08B200
8-bit 200 MS/s ADC?). Since the switches can be implemented
at a lower intermediate frequency prior to the I-Q demodula-

2See  http://www.analog.com/en/products/switches-multiplexers/buffered-
analog-crosspoint-switches/adv3228.html# product-overview for product
details.

3http://www.ti.com/product/ ADCO8B200/technicaldocuments
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tion, only one per subarray is required, and thus the total power
consumption of the switches would be less than half that of the
ADCs.

Note that for the vast majority of the coherence time, the
switch is idle. To accommodate the round-robin training, the
switches only need to be operated % — 1 times, once for every
repetition of the training data. This reduces the actual power
consumption to below the specification, and further reduces the
impact of the additional training. Short guard intervals would
need to be inserted between the training intervals to account for
the switching transients, but these will typically not impact the
SE. For the example discussed above with 128 antennas and 8
switches, 7 switching events are required for a total switching
time of 105 ns, which is insignificant compared to the coherence
time of 2.5 ms at a 400 Hz Doppler.

The insertion loss of the analog switches would also have to
be taken into account in an actual implementation, since this
will directly reduce the overall SNR of the received signals.
Harmonic interference due to nonlinearities in the switch are
likely not an issue; for example, the specifications for a Texas
Instruments switch (LMH6583) similar to the ADV3228 indi-
cate that the power of the second and third harmonic distortions
were —76 dBc. Furthermore, it has been shown that the use of
signal combining with a massive antenna array provides sig-
nificant robustness to such nonlinearities and other hardware
imperfections [7]-[12].

V. SPECTRAL EFFICIENCY

Although channel estimation with a mixed-ADC architecture
using round-robin training can substantially improve the chan-
nel estimation accuracy, it requires a longer training interval
and, therefore, leaves less room for data transmission in each
coherence interval. More precisely, (M /N )n symbol transmis-
sions are required for round-robin channel estimation which
could be large when the number of high-resolution ADCs, N,
is small.* Despite losing a portion of the coherence interval for
channel estimation due to the mixed-ADC architecture, the im-
provement in the signal-to-quantization-interference-and-noise
ratio (SQINR) can be significant owing to more accurate chan-
nel estimation, and thus a higher rate would be expected during
this shorter data transmission period. In this section, we study
this system performance trade-off in terms of spectral efficiency
for the three mentioned channel estimation approaches.

In the data transmission phase, all users simultaneously send
their data symbols to the BS. To begin, assume the antennas
are ordered so that the last NV antennas are connected to high-
resolution ADCs in this phase. A more thoughtful assignment
of the high-resolution ADCs will be considered below. From
equation (1), and based on the Bussgang decomposition, the

“Note that in designing a mixed-ADC system with round-robin channel train-
ing, one should consider the ratio M /NN in scaling the system instead of just
increasing the number of antennas M . In particular, increasing the number of
BS antennas requires increasing of the high-resolution ADCs, N, as well.
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received signal at the BS after one-bit quantization is

2D 0 |:qc::|
=|Vr~ T4 (38)
Ya l 0 i 0
N e’
q4
D = diag{C,} (39)
.
Cr =) mdrdr +onlu_n, (40)

k=1

where g;, denotes the M — N elements of g, corresponding to
the M — N one-bit ADCs and g, is the (M — N) x 1 quanti-
zation noise in the data transmission phase. It is apparent that
the covariance matrix in (40) is not diagonal which makes an-
alytical tractability difficult. However, by adopting statistics-
aware power control [37], ie., pp = -&, and assuming that
the number of users is relatively large (typical for massive
MIMO systems), channel hardening occurs [14], and (40) can be
approximated as

Cr 2 (Kp+02) Iy~ =D. (41)

As aresult, according to the arcsine law (see (7)), the covariance
matrix of the quantization noise in the data transmission phase
becomes Cg, = (1 — 2/m)I); _n and (38) simplifies to

.
Yy A (Z VPhisyk + n) +qy (42)
k=1
alyr-n 0
A= [ 0 IN}’

A /21
where a = T (Kp+od)

For data detection, the BS selects a linear receiver W &
CMxK ag a function of the channel estimate. Note that the
quantization model considered in (4) and (5) does not preserve
the power of the input of the quantizer since the power of the
output is forced to be 1. Thus we premultiply the received signal
as follows to offset this effect:

i =AYy (43)

By employing the linear detector W, the resulting signal at the
BSis

s=WHg,. (44)
Thus, the kth element of & is
2
S = Pwf hesi +p Y wyp hus;
i=1,i#k
+win+wi Ag, (45)
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where w;, is the kth column of W. We assume the BS treats
wf h; as the gain of the desired signal and the other terms
of (45) as Gaussian noise when decoding the signal. Conse-
quently, we can use the classical bounding technique of [37] to
derive an approximation for the ergodic achievable SE at the
kth user as

Sk = R (SQINRy), (46)

where the effective SQINR;. is defined by (47) shown at the bot-
tom of this page, and R (8) = (1 — 1.g /T') log, (1 + 6) where
e Tepresents the training duration which is  and (M/N)n
for the pure one-bit and mixed-ADC architectures, respectively.

A. MRC Detection

1) Random Mixed-ADC Detection: In this subsection, we
consider the case in which the high-resolution ADCs are con-
nected to an arbitrary set of N antennas. Denoting the estimate
of the channel by H = [hy, ..., hx], setting W = H, and fol-
lowing the same reasoning as in [14], the SE of the mixed-ADC
architecture with MRC detection can be derived as

2
S e piMas

=) B
oK et (1= &)
where the channel estimate variance o2 = "gk /Br depends on
the estimation approach as denoted in (12), (18), and (28).

From (48), it can be observed that the gain of exploiting the
mixed-ADC architecture is manifested in the SE expressions by
two factors, channel estimation improvement by a factor of 0?1,
and quantization noise reduction by a factor of 1 — N/M.

2) Mixed-ADC Detection With Antenna Selection: Having
an accurate channel estimate can help us to employ the N high-
resolution ADCs in an intelligent manner to further improve the
performance of the mixed-ADC architecture. A careful look at
the SQINR expression in (47) reveals that the effect of one-bit
quantization on the SE is manifested by the last term of the
denominator. Hence, one can maximize the SE by minimizing
this term through smart use of the N high-resolution ADCs.
We refer to this approach as Mixed-ADC with Antenna Selec-
tion. We consider an antenna selection scheme suggested by
the SQINR expression in (47). In this approach, the N high-
resolution ADCs are connected to the antennas corresponding
to rows of H with the largest energy, i.e. ZL 1 |hmk|*. Besides
numerical evaluation in Section VI, in Theorem 3 we derive
a bound for the SE achieved by MRC detection with antenna
selection.

SNote that in general, the quantization noise is not Gaussian. However, to

derive a lower bound for the SE, we assume it is Gaussian with covariance
C

qd -

SQINR; =

p[E {wl hi }|”

P E {|wf hil*} - p[E {wf ki }[* + 03 {we |2} + a—2E {w} Cq,wi}

(47)
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Theorem 3: The spectral efficiency of the mixed-ADC sys-
tem with antenna selection and an MRC receiver is lower
bounded by

pM O'E

cMRC __
ST =R 2, (-2) (M-~
pK +o3 + m(zmzl

, (49)
)

where x, is defined at the top of the next page, and F4 denotes
the Lauricella function of type A [45], (50) shown at the bottom
of this page.
Proof: See Appendix B. |
The lower bound (49) explicitly refiects the benefit of antenna
selection in the data transmission phase. By comparing (49) with
(48), it is evident that antenna selection has improved the SE by

replacing 1 — N/M by E—ﬂ—i— In Section VI we illustrate
how antenna selection i 1mproves SE for different SNRs. Note that
Theorem 3 assumes the ability to make an arbitrary assignment
of the high-resolution ADCs to different RF chains, which may
not be possible if the ADC multiplexing is implemented by a
bank of subarray switches. In the numerical results presented
later, we show that this does not lead to a significant degradation
in performance.

B. ZF Detection

In this section, we study the SE of the mixed-ADC archi-
tecture with ZF detection. To design a mixed-ADC adapted ZF
detector, we re-write the last two terms of the denominator of
(47) as follows:

wy (02Iy +a 2Cq,) wi = [WH CMW] , (51
kk
where C,,_,, = 021y + a 2Cyg,. Accordingly, the ZF detector
for the mixed-ADC architecture can be written as
=1
w=C,LA(fc,L A)

Teff Teff

(52)

Plugging (52) into (47) yields (53) shown at the bottom of this
page. Similar to the MRC case, the SQINR in (53) suggests the
same antenna selection approach for ZF detection. In general,
calculating the expected values in (53) is not tractable neither for
arbitrary-antenna mixed-ADC detection nor mixed-ADC with
antenna selection. Hence, we numerically evaluate the perfor-
mance of mixed-ADC with ZF detection in the next section.
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C. Massive MIMO With Uniform ADC Resolution

Contrary to the mixed-ADC architecture where the ADC
comparators are concentrated in a few antennas, uniformly
spreading the comparators over the array is an alternative ap-
proach [19]-[21], [41], [44]. In this subsection, we provide the
SE expressions for such systems. These expressions will be
used in the next section for performance comparisons with the
mixed-ADC architecture.

The SE for the case of all one-bit ADCs was derived in [14]
using the Bussgang decomposition. For ADC resolutions of 2
bits or higher, the AQNM model is sufficiently accurate. Using
AQNM and following the same reasoning as in [21], [41], [44],
the SE of a massive MIMO system with uniform resolution
ADC:s can be derived as

~9
sume _ g pMa;
pK + 03 + L5 (p("§+K)+02)
(54)
. M — K)&?
SJ%F =R p( (M 2&]0
pK (1-32) +03 + Y% B {wh Cowy} )
(55)
for MRC and ZF detection, respectively. In (54) and (55),
2
~92 QNP
— ; 56
Bt Al el -Gkl OO

ay is a scalar depending on the ADC resolution and can be found

w e syl
in Table T of [21], w is the kth column of W = H ()
and Cy denotes the covariance matrix of the quantization noise
based on the AQNM model [21]. The detailed calculation of
E {w{ Cowy.} in (55) is provided in [44] which we do not
include here for the sake of brevity.

VI. NUMERICAL RESULTS

By substituting from (12), (18), and (28) into (48), (49), and
(53), we can evaluate the performance of mixed-ADC architec-
tures for different system settings. For all of the following exper-
iments, we consider a system with M = 100 antennas at the BS,
and K = 10 users. Also, we assume the power control approach
of [37] is used, so that p;, 3 = p for all k. We also assume that

M!
(m—1)"(M—m

Xm =

f(”‘““ D1+K(@m+0);K,...

Z(—) (M m) (T(K) ™K' (1 + K (m 4+ £))

N O (R B T, GRC (S, O, | (50)

SQINRZF —

p

Neff

pK (1—05)]E{[(H C;! H) B el B (AL i) 1]kk}+]E{[(H

)]}
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Fig. 5. Weights used in the LMMSE channel estimator for high-resolution
and one-bit observations.

an optimal resource allocation has been performed [41], [42]
such that the training length, 7.#, transmission power during
the training phase, p;, and data transmission phase, p, are opti-
mized under a power constraint eg pe + (I' — et )Pa = PaveT .
In the following figures, the SNR is defined as SNR £ P, . /o2.

Figure 5 illustrates the optimal weights for combining
high-resolution and one-bit observations for the joint high-
resolution/one-bit LMMSE channel estimation. Interestingly,
it can be seen that when M/N is large, the one-bit observations
are emphasized in the low SNR regime relative to the high-
resolution observations. In addition, in contrast to the weights
for the high-resolution observations, which rise monotonically
with increasing SNR, the weight for the one-bit observations
grows at first and then decreases to zero.

To study the performance improvement due to joint chan-
nel estimation and antenna selection in mixed-ADC massive
MIMO, the sum SE for the MRC and ZF detectors for a system
with coherence interval T' = 400 symbols and N = 20 high-
resolution ADCs is depicted in Fig. 6 and Fig. 7, respectively.
In these and subsequent figures, “Joint with AS” indicates that
the channel estimation was performed with both one-bit and
high-resolution ADCs and that antenna selection (AS) was
used for data detection, “Joint without AS” represents the same
case without antenna selection, “Joint Subarray AS™ means that
the antenna selection only occurred within each M /N-element
subarray (one high-resolution ADC assigned to the strongest
channel within each subarray), and “Not Joint without AS” rep-
resents the case in which channel is estimated based on only
high-resolution observations and no antenna selection is em-
ployed. For both MRC and ZF, it can be seen that antenna
selection slightly improves the SE for high SNRs, where the
channel estimation is most accurate. At low SNR, we see that
joint channel estimation provides a gain from the use of one-bit
ADCs, which provide useful information at these SNRs. We
also see that the constrained AS required when the switching
is only performed within subarrays provides nearly identical
performance to the case where arbitrary AS is allowed.
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Fig. 7. Sum SE for ZF detection versus SNR for M = 100, N = 20, and
T = 400.

Note that the main reason for the small gain for antenna se-
lection is due to the fact that, with multiple users, selecting
a given antenna does not benefit all users simultaneously, and
the strong users responsible for a given antenna being selected
will in general be different for different antennas. Thus, the im-
provement due to increased signal-to-noise ratio for some users
is somewhat offset by the fact that other users may experience
a lower SNR on those same antennas. We would see a much
larger benefit for antenna selection if only a single user were
present.

Figures 8 and 9 provide a comparison among a mixed-ADC
massive MIMO system with joint channel estimation and an-
tenna selection, an all-one-bit architecture (“One-bit”), and a
mixed-ADC without round-robin training for which the high-
resolution ADCs are connected to a fixed set of antennas with-
out ADC switching or antenna selection (“Non-round-robin™)
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Fig. 8. Sum SE for MRC detection versus SNR for M = 100, N = 20, 10,
and T' = 400, 1000.

ol g e AS, N =10 | | |
—-—- One — bit
-------- Non — round — robin, N = 10
um) — — Joint with AS, N =20
g 500 Non — round — robin, N = 20
8 =
0
-20 -15 -10 -5 0 5 10 15 20

— — Joint with AS, N =10

—-—- One — bit T = 1000 ~T

A Non — round — robin, N = 10 ‘_(,_""’(. s
T — — Joint with AS, N =20 :

g o} [ Non — round — robin, J

w

Fig.9. Sum SE for ZF detection versus SNR for M = 100, N = 20, 10, and
T = 400, 1000.

[27]. Since mixed-ADC channel estimation improves the chan-
nel estimation accuracy by expending a larger portion of the
coherence interval for training, its benefit is directly related to
the length of the coherence interval. For MRC detection, when
T = 400, the mixed-ADC architecture performs better than the
all-one-bit architecture for N = 20, but when N = 10 the all-
one-bit architecture is better due to the larger training overhead
incurred when N is smaller. However, for 7' = 1000, mixed-
ADC outperforms the all-one-bit architecture at high SNRs for
both N = 10, 20, while the all-one-bit case is still better for
N =10 at low SNRs. Round-robin training provides better SE
performance at high SNR when N = 20 compared to the case
without antenna switching, especially for the larger coherence
interval. However, for other cases, the round-robin training over-
head significantly reduces the SE, especially for N = 10 and the
shorter coherence interval.
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For ZF detection, we see that the mixed-ADC architectures
can provide very large gains in SE compared to the one-bit case
at high SNRs, regardless of T'. For low SNRs, there is little
to no improvement. These cases still do not show a significant
benefit for round-robin training compared with a fixed ADC
assignment; only when N = 20 and 7" = 1000 do we see a
slight improvement.

For N = 20, Figs. 10 and 11 show how the coherence inter-
val T impacts the effectiveness of the mixed-ADC architecture
for MRC and ZF detectors, respectively. For mixed-ADC MRC
detection, it is apparent that the best choice among the three
architectures (all one-bit, mixed-ADC with and without round-
robin training) depends on the SNR operating point and the
length of the coherence interval. The advantage of round-robin
training becomes apparent for long coherence intervals, where
the increased training length has a smaller impact. The gain
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for round-robin training is greatest at higher SNRs. For shorter
coherence intervals, mixed ADC with fixed antenna/ADC as-
signments provides the best SE, with the largest gains again
coming at higher SNRs. For this value of N, the all-one-bit sys-
tem generally has the lowest SE, although the difference is not
large for MRC.

The next example investigates the impact of distributing the
resolution (i.e., the comparators of the ADCs) across the ar-
ray with different numbers of antennas. If we assume that the
“high-resolution” ADCs consist of 5 bits [43], a mixed-ADC ar-
chitecture with N = 20 high-resolution and M — N = 80 one-
bit ADCs will have 180 total comparators. Figs. 12 and 13
illustrate the SE achieved by distributing the 180 comparators
across arrays of different length for MRC and ZF detection,
respectively. In these figures, “Joint with AS” and “Non-round-
robin” refer to mixed-ADC architectures with N = 20 5-bit
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Fig. 15. Sum SE for ZF detection versus N for SN R = —10,0, 10 dB and
T = 1000.

ADCs and M — N = 80 one-bit ADCs, “One-bit” corresponds
to M = 180 antennas with one-bit ADCs, and “Multi-bit” indi-
cates a system with either M = 90 2-bit ADCs or M = 60 3-bit
ADCs. As we see in the figures, it can be inferred that for MRC
detection, which is interference limited, it is better to have a
larger number of antennas with lower-resolution ADCs instead
of equipping the BS with fewer antennas and high resolution
ADCs. This is consistent with the results of [30], [39], and is due
to the fact that a larger number of antennas helps the system to
more effectively cancel the interference. On the other hand, for
ZF detection which is noise limited, the use of high-resolution
ADCs avoids additional quantization noise imposed by the low-
resolution ADCs, and is more beneficial than having a larger
number of antennas with low-resolution ADCs at high SNR.
Finally, Figs. 14 and 15 show the impact of the num-
ber of high-resolution ADCs in a mixed-ADC system with
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M = 100 antennas, K = 10 users, and various numbers N of
high-resolution ADCs, where N = 100 denotes the all-high-
resolution system. It is apparent that with a large enough coher-
ence interval and a sufficient number of high-resolution ADCs,
the mixed-ADC implementation with joint round-robin channel
estimation and antenna selection outperforms the all-one-bit ar-
chitecture and mixed-ADC without round-robin training. The
gains are greatest when ZF detection is used and the SNR is
high, but such gains must be weighed against the increased
power consumption and hardware complexity.

VII. CONCLUSION

We studied the spectral efficiency of mixed-ADC massive
MIMO systems with either MRC or ZF detection. We showed
that properly accounting for the impact of the quantized re-
ceivers using the Bussgang decomposition is important for ob-
taining an accurate analysis of the SE. We introduced a joint
channel estimation approach to leverage both high-resolution
ADCs and one-bit ADCs and our analytical and numerical re-
sults confirmed the benefit of joint channel estimation for low
SNRs.

Mixed-ADC detection with MRC and ZF detectors and an-
tenna selection were also studied. Analytical expressions were
derived for MRC detection and a numerical performance anal-
ysis was performed for ZF detection. It was shown that antenna
selection provides a slight advantage for high SNRs while this
advantage tends to disappear for low SNRs.

We showed that the SNR, the number of high-resolution
ADCs and the length of the coherence interval play a pivotal
role in determining the performance of mixed-ADC systems.
We showed that, in general, mixed-ADC architectures will have
the greatest benefit compared to implementations with all low-
resolution ADCs when ZF detection is used and the SNR is
relatively high. In such cases, the gain of the mixed-ADC ap-
proach can be substantial. Gains are also possible for MRC,
but they are not as significant, and require larger numbers of
high-resolution ADCs to see a benefit compared with the ZF
case. The more complicated mixed-ADC approach based on
ADC switching and round-robin training can achieve the best
performance in some cases, particularly when the coherence in-
terval is long and more high-resolution ADCs are available to
reduce the number of training interval repetitions. Otherwise, a
mixed-ADC implementation without ADC switching and extra
training is preferred.

APPENDIX

A. Proof of Theorem 2

From (2), the observations from the high-resolution ADCs
can be written as

v(0) = y/ —Xo}, = g, + 7(0),
NPk

where 12(0) ~ CN/(0, *JEJ';;I ar ). In addition, from (8), the obser-
vations from the one-bit ADCs become

o(t) =/ %thﬁk* — g +A)+ ), teT, (58)

7
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- JE — -
where 7i(t) ~ CN(0, =2-I ) is independent of 7i(t') for ¢ #
t, and q(t) = ,/=—Q(t)dx . Since the elements of v(t) are
independent, we can estimate the mth channel g, separately.

NPk
Therefore, stacking all the observations in a vector, we can write

[ v (0) ] A [F T (0) T

wil |=lulasal Buldrim
o —1)] |1 i (B — 1) + G (2 — 1)
—— % ,

v 1 ,g_ u
(59)

As aresult, the LMMSE estimation of the mth channel coef-
ficient for the kth user is [40]

-1
3 1 s s
8 (E+1%cul1%) 1%_0“1“ (60)

In Eq. (60), C, denotes the covariance matrix of u which is a
block diagonal matrix of the form

%0 ... 0
NPk
0 G—Er.u. Ok Ia
[ = | |, (6D
: 0 S
0 Ok Cr?uk
where

ok = E{(fim (t) + G (1)) (im () + @ (t')"}, t # ¢, (62)

can be easily calculated with the aid of the Bussgang decompo-
sition and the arcsine law as in (24). Substituting (61) into (60),
we have

. 1 Pk s =
Imr = (_ + L+ 1’1_%;;._18 11%"'.——1)

B o2
C’g T =
x [—== 1y ST |v. (63)
e N
To calculate the inverse of the matrix S, we re-write it as
.3 i
S=(on, —a) Iy +aly 1% . (69

and use Woodbury’s matrix identity:
1

S le=—— Iy
¥4
ok, —ox ¥

1 1) o
et (e S ) (TS A
(G’?Uk == gk) Ok ka - Ok = L

(65)
which yields
1
1 G i . (66)
L D P
T 1 (i _ )
Ty Sy, = — (67)
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Substituting (66) and (67) into (63) completes the proof.

B. Proof of Theorem 3

Denote the energy of the mth row, m e M ={1,...,M},
of H by &g ies

(68)

To do antenna selection, we must connect the N high-resolution
ADC:s to the antennas corresponding to the largest &£, . Suppose
that the indices of the N antennas to which the high-resolution
ADCs are connected are contained in the set A". Hence, we have

S E {7y i)
k=1

= KE {hy Cq, b} = (1 - %)

Equation (69) provides a criterion for connecting the N high-
resolution ADCs in the data transmission phase. In fact, it states
that, for the MRC receiver, the expected value in (69) will be
minimized if the high-resolution ADCs are connected to the
antennas corresponding to the largest &, . Denote £,,) as the
mth smallest value of &, i.e.,

> E{&n}-

MWN

(69)

€y <&@ <+ <€)

Hence, €(m) is the mth order statistic, and assuming that the
Em) are statistically independent and identically distributed,
we have [46]

E{€m)}

~u(M7 D) [ alF@rt o - M aF @),
(70)

where x is the realization of £,,, and F'() is the cumulative dis-
tribution function of &,,. For the case that we have considered,
where the channel coefficients are i.i.d. Rayleigh distributed, the
&m are independent Gamma random variables with

I
—

h

F(z)=1v K|, (71)

where 7(.,.) denotes the incomplete Gamma function. From
[47], the integral (70) can be calculated in closed form for
Gamma random variables as

E{&m)} = 0} Xm-

This is in contrast to the unordered case where E{&,, } = K cri.
As a result

min {IE {chqdﬁk}} - (1 - %) J—égm (13)

The remaining terms in (47) can be calculated similar to the
case where the high-resolution ADCs are connected to arbitrary

(72)
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antennas. Plugging these terms and (73) into (47) and some
algebraic manipulation results in (49).
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