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ABSTRACT

We consider channel estimation for an uplink massive multi-

ple input multiple output (MIMO) system where the base sta-

tion (BS) uses a first-order spatial Sigma-Delta (Σ∆) analog-

to-digital converter (ADC) array. The Σ∆ array consists of

closely spaced sensors which oversample the received signal

and provide a coarsely quantized (1-bit) output. We develop

a linear minimum mean squared error (LMMSE) estimator

based on the Bussgang decomposition that reformulates the

nonlinear quantizer model using an equivalent linear model

plus quantization noise. The performance of the proposed

Σ∆ LMMSE estimator is compared via simulation to channel

estimation using standard 1-bit quantization and also infinite

resolution ADCs.

Index Terms— Channel estimation, massive MIMO, Σ∆
ADCs, one-bit quantization.

1. INTRODUCTION

Massive MIMO systems provide high spatial resolution and

throughput, but the cost and power consumption of the as-

sociated RF hardware, particularly the analog-to-digital con-

verters (ADCs) can be prohibitive, especially at higher band-

widths and sampling rates. To save power and chip area,

low resolution quantizers have been suggested. There has

been extensive research on 1-bit ADCs for channel estimation

in massive MIMO systems [1–4]. While it has been shown

that 1-bit quantization causes only a minimal degradation, at

medium to high SNR the loss is substantial.

To improve the performance of low-resolution sampling,

one can of course increase the resolution of the quantizer.

Simulations have shown that using ADCs with 3-5 bits of res-

olution in massive MIMO provides performance that is very

close to that achievable with infinite precision, and still pro-

vides higher energy efficiency (e.g. see [5]). As an alternative

to increasing the ADC resolution, one can increase the sam-

pling rate at which the 1-bit quantizers operate. This approach

has been studied in [6–8] and found to also be effective in re-

ducing the medium-to-high-SNR performance loss for 1-bit

quantization.

This work was supported by the National Science Foundation under
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A well-known technique that combines 1-bit quantization

and oversampling is the Σ∆ ADC, which to date has primar-

ily found application in ultrasound imaging. The Σ∆ con-

verter scheme consists of an oversampled modulator which is

responsible for digitization of the analog signal and a nega-

tive feedback loop. This architecture provides noise shaping

that alters the power spectral density of the quantization noise

such that it is no longer uniform, as in regular quantization,

but is shifted to higher frequencies. The quantization noise

can then be processed by a digital low-pass filter and decima-

tion stage so that it has a reduced effect on the signal. The use

of Σ∆ ADCs in parallel architectures for MIMO systems has

been studied in [9, 10].

A similar effect can be achieved by oversampling in space

instead of time, i.e., using an antenna array whose elements

are separated by less than one half wavelength. In spatial Σ∆
ADCs, the integration is performed by feeding the quantiza-

tion error from one stage to the adjacent antenna input in-

stead of feedback via a time delay. The spatial frequency, or

the number of cycles per radian, is proportional to the sine

of the angle of arrival measured from the array broadside. A

low spatial frequency implies that signals are impinging from

near broadside, and the Σ∆ modulator can be expected to ex-

hibit lower quantization error than for signals from the end-

fire direction. The noise shaping characteristics of first and

second-order spatial and cascaded (space-time) Σ∆ architec-

tures have been the focus of prior work in this area [11–15].

In this paper, we consider optimal channel estimation for

massive MIMO systems with first-order spatial Σ∆ ADCs.

The model for this system is derived and the Bussgang de-

composition is applied in order to find an equivalent linear

signal-plus-quantization-noise representation that is the ba-

sis for the LMMSE channel estimation [1]. Our approach

explicitly takes into account the spatial correlation between

the quantized outputs of the Σ∆ ADC array. The feed-

back structure of the Σ∆ array complicates the calculation

of the required covariance matrices needed for the Bussgang

approach, rendering a closed-form solution impossible. How-

ever, the special structure of the data flow allows us to find

a recursive solution for the covariance matrices, and hence

the LMMSE estimator. The case with orthogonal pilots is

considered since the block-diagonal nature of the correlation

matrices can be leveraged. Our simulation results indicate
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that, at low-to-medium SNRs, the LMMSE channel estimator

for the Σ∆ array yields channel estimates that are very close

to those provided with infinite resolution, and significantly

better than standard 1-bit quantization, with a very small

increase in hardware complexity.

2. SYSTEM MODEL

We consider an uplink massive MIMO system with K single-

antenna user terminals, and a BS equipped with M > K an-

tennas and a first-order spatial Σ∆ array. During the training

period, all K users transmit their pilot sequences of length N
simultaneously. The received signal, X ∈ C

M×N , at the BS

is

X =
√
ρHΦt +N, (1)

where ρ is the SNR ratio common to all the users, H ∈
C

M×K is the channel matrix, Φt ∈ C
K×N is the pilot matrix

and N is the additive noise whose elements satisfy [N]ij ∼
CN (0, 1). We also define the vectorized channel as h =
vec(H). Following the Kronecker model, the channel co-

variance is assumed to satisfy Ch = CS ⊗ CH where ⊗
represents the Kronecker product and CS = E[HHH] and

CH = E[HHH ] are the transmit and receive antenna ar-

ray spatial covariance matrices respectively. Since we as-

sume single-antenna uncorrelated users, CS = IK and, thus,

Ch = IK ⊗CH. Vectorizing (1), we get

x = vec (X) =
√
ρ
(

ΦT
t ⊗ I

)

vec (H) + vec (N)

=Φh+ n.
(2)

The first-order spatial Σ∆ converter array can be imple-
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Fig. 1. A first-order Σ∆ array.

mented as illustrated in Fig. 1, where xm denotes the mth

row of X. The array consists of M 1-bit ADCs, where the

input to the mth ADC is the quantization error from the pre-

vious stage subtracted from the signal received at the mth

antenna. More specifically, the output of the mth Σ∆ ADC

at the nth time instant, ym[n], n = 0, . . . , N − 1, is

ym[n] = Q (xm[n] + em−1[n]) ,

where Q(x) = 1/
√
2 (sign(x) + jsign(x)) is the 1-bit quan-

tization operation and em−1[n] is the difference between the

input and the output of the (m − 1)th quantizer. The vector-

ized output of the Σ∆ array can be represented as

y = Q(Ux− Γy
︸ ︷︷ ︸

z

),
(3)

where U = IMN + Γ and Γ = IN ⊗ Γd with

Γd =










0 0 0 0 . . . 0
1 0 0 0 . . . 0
1 1 0 0 . . . 0

...

1 1 1 1 . . . 0










.

3. LMMSE CHANNEL ESTIMATION

We use the Bussgang decomposition to derive an LMMSE

estimator of the channel from using measurements from the

Σ∆ array. According to the Bussgang model, the output of

the Σ∆ array can be represented as

y =Az+ q, (4)

where q is the quantization noise and A is a matrix chosen

to make q uncorrelated with z, i.e., A = CH
zyC

−1
z , where

Czy is the cross-correlation matrix between z and y and Cz

is the auto-correlation matrix of z. Let Σz = diag(Cz) be the

matrix formed by the diagonal elements of Cz and let Cy be

the auto-correlation matrix of y. For 1-bit quantization, the

following relations can be obtained:

A =

√

2

π
Σ−0.5

z ,

Cy =
2

π

[

arcsin
(π

2
ARe(Cz)A

H
)

+

jarcsin
(π

2
AIm(Cz)A

H
)]

,

Cz = UCxU
H + ΓCyΓ

H −UCxyΓ
H − ΓCH

xyU
H .

(5)

We note here that there is a complicated inter-relationship

between Cy and Cz for the Σ∆ array that is the primary dif-

ficulty for calculating the matrix A. We show below that,

while it is not possible to obtain closed form expressions for

Cy and Cz, their elements can be computed recursively. To

begin, note that

Cxy =E[xzH ]AH + E[xqH ]

=CxU
HAH −CxyΓ

HAH + E[xqH ]

=(CxU
HAH + E[xqH ])(I+ ΓHAH)−1.

(6)
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Using the fact that z and q are uncorrelated, UE[xqH ] =
ΓE[yqH ] = ΓCq. Since Cq = Cy − ACzA

H , (6) can be

written as

Cxy = (CxU
HAH +U−1ΓCq)(I+ ΓHAH)−1. (7)

Substituting for Cxy in (5),

Cz =UCxU
H

︸ ︷︷ ︸

Term1

+ΓCyΓ
H

︸ ︷︷ ︸

Term2

−UCxU
HAH(I+ ΓHAH)−1ΓH

︸ ︷︷ ︸

Term3

− Γ(I+AΓ)−1AUCxU
H

︸ ︷︷ ︸

(Term3)H

− ΓCq(I+ ΓHAH)−1ΓH

︸ ︷︷ ︸

Term4

−Γ(I+AΓ)−1CqΓ
H

︸ ︷︷ ︸

(Term4)H

.

(8)

From (8), we see that the first term is known and terms 2, 3

and 4 are required to be computed. To simplify the subsequent

derivation, we will assume that the pilots are orthogonal, and

that the minimum possible number of pilots N = K are used

for channel estimation. This leads to Φ∗ΦT = ρI, and will

result in the matrices UCxU
H , Cz and Cy all being block

diagonal. We illustrate the recursive algorithm for computing

the necessary covariances using one of the blocks.

First, we note that multiplication by Γ on the left and

ΓH on the right is equivalent to computing a running sum

across the rows and columns and shifting the result diagonally

across. For example, consider the first block of ΓCyΓ
H . The

(m,n)th element of this block is

[

ΓCyΓ
H
]

mn
=

m−1∑

i=1

n−1∑

j=1

[Cy]ij . (9)

Next, consider the product (I + ΓHAH)−1ΓH . Let the first

M×M block of A be Ad. We note that ΓH
d AH

d is a nilpotent

matrix that satisfies (ΓH
d AH

d )M = 0. This gives us:

(I+ ΓH
d AH

d )−1 = I−
M−1∑

k=1

(ΓH
d AH

d )k. (10)

Using mathematical induction, it can be shown that (I +
ΓH
d AH

d )−1ΓH
d has the following structure:

(I+ ΓH
d AH

d )−1ΓH
d

=














0 1 (1−A2,2) . . .

M−1∏

k=2

(1−Ak,k)

0 0 1 . . .

M−1∏

k=3

(1−Ak,k)

...

0 0 0 . . . 0














.
(11)

We can use (11) to analyze the structure of Term3 and Term4

in (8). More specifically,

[Term3]mn =[UCxU
H ]m,n−1An−1,n−1+

[UCxU
H ]m,n−2An−2,n−2(1−An−1,n−1)+

· · ·+ [UCxU
H ]m,1A1,1

n−1∏

k=2

(1−Ak,k)

[Term4]mn =

m−1∑

i=1

[Cq]i,n−1 +

m−1∑

i=1

[Cq]i,n−2(1−An−1,n−1)

+ · · ·+
m−1∑

i=1

[Cq]i,1

n−1∏

k=2

(1−Ak,k).

(12)

From (9)-(12), it can be seen that to compute [Cz]mn, it is

only necessary to know the elements of the matrices Cy, Cq

and A up to and including the indices m− 1 and n− 1. It is

also worth noting that the first column of Term3, and the first

row and first column of Term4 consist of zeroes.

The shaping of the quantization noise to higher spatial fre-

quencies can be exploited by means of a low-pass spatial fil-

ter, or beamformer, which implies that the majority of signal

energy from the users of interest should arrive from a sector

centered near the broadside of the array (as is typically the

case in sectored cellular systems). The beamformed output is

given by

r = Gy, (13)

where G ∈ C
M ′×MN with M ′ < MN . The specific choice

of G will depend on the degree of oversampling in the array

as well as the size of the sector from which the user signals

are assumed to come from.

The LMMSE estimate of the channel from the beam-

formed array output r is thus given by

ĥ =ChrC
−1
r r

=ChyG
H
(
GCyG

H
)−1

Gy.
(14)

Here,

Chy =E[hzH ]AH + E[hqH ]

=E[hxHUH − hyHΓH ]AH + E[hqH ]

=ChΦ
HUHAH −ChyΓ

HAH + E[hqH ]

=
(

ChΦ
HUHAH + E[hqH ]

)(

I+ ΓHAH
)−1

,

(15)

where E[hqH ] can be obtained from Cxq by noting that

Φ†x = h+Φ†n. We ignore the noise term due to the asymp-

totic orthogonality of n and Φ, to get E[hqH ] = Φ†Cxq.

Space constraints do not allow a more detailed description

of the steps required to compute the necessary covariance ma-

trices, but the algorithm for computing the LMMSE channel

estimate for the Σ∆ array is summarized in Algorithm 1.
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Algorithm 1: Channel estimation for 1-bit Σ∆ array

1. Initialize diag(Cy) = 1, [Cz]1,1, A1,1, and [Cq]1,1:

[Cz]1,1 = [UCxU
H ]1,1, A1,1 =

√
2
π (Cz)

−0.5

[Cq]1,1 = [Cy]1,1 −A2
1,1[Cz]1,1.

2. For m = 2 to M , repeat:

(i) Compute the mth column of Term3 using A & (12).

(ii) Compute [Term4]ij for i, j = 1 : m, using [Cq]kl,
k, l = 1 : m− 1 and (12).

(iii) Compute [Cz]m,m using (8), and Am,m, [Cy]m,m,

[Cq]m,m from (5).

(iv) Compute [Cz]nm, [Cy]nm and [Cq]nm,

n = 1 : m− 1.

3. Estimate the channel, ĥ, from (14).

4. SIMULATION RESULTS

We compare the NMSE of the Σ∆ MMSE channel esti-

mator against that of the regular 1-bit Bussgang LLMSE

(BLMMSE) [1] and the LMMSE estimator using unquan-

tized measurements X. The receive array is a uniform linear

array (ULA) where the antennas are spaced at λ/8, i.e. the

spatial oversampling factor is 4. The channel for user k is

assumed to be a line-of-sight LOS channel defined by the

direction of arrival (DOA) θk and the distance d between the

antennas:

βk

[

1, e−j2πd sin θk/λ, . . . , e−j2πd(M−1) sin θk/λ
]T

/
√
M,

(16)

where βk is the large-scale fading coefficient associated with

user k. Thus, the channel is spatially correlated and CH is

non-diagonal. The NMSE of the channel estimate is evaluated

over 100 independent realizations of the source DOAs, which

are assumed to be uniformly distributed in [−30◦, 30◦]. The

spatial filter G is chosen to eliminate interference and spatial

quantization noise in the interval between −45◦ and 45◦. The

filter tap length, L, is related to M ′ as M ′ = N(M − L +
1). The weights are generated by Woodward’s approach for

pattern sampling [16]. Furthermore, G is applied to all the

three algorithms used in the comparison so as to exploit the

fact that the signals originated from the sector close to the

array broadside.

Fig. 2 shows the NMSE of the channel estimate as a func-

tion of SNR with M = 32 antennas and K = 5 users. Or-

thogonal pilots are used with N = 5 and L = 6. It is ob-

served that at low-to-medium SNRs, the performance of the

Σ∆ channel estimate is almost identical to that of the unquan-

tized MMSE channel estimate. However, the gap between the

two widens as the SNR increases. Similarly, in Fig. 3, we plot

the NMSE of the channel estimate for M = 64, N = K = 8,

and L = 16. In both Fig. 2 and Fig. 3, it is seen that LMMSE

channel estimation with the Σ∆ array offers an advantage

over the conventional 1-bit quantizer array.
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Fig. 2. NMSE of channel estimate, M = 32, N = K = 5.
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Fig. 3. NMSE of channel estimate, M = 64, N = K = 8.

5. CONCLUSION

In this paper, we considered channel estimation in massive

MIMO using spatial Σ∆ modulation. We used the Bussgang

decomposition to derive a new LMMSE channel estimator

that takes into account the effect of correlation between quan-

tizer outputs. We derived simple expressions for the Bussgang

linearized model and provided a detailed method to compute

the required correlation matrices. For oversampled arrays,

the quantization noise is shifted to spatial frequencies higher

than the Nyquist rate and is removed by low-pass beamform-

ing. To study the performance of this LMMSE estimator, we

considered a simple LOS channel model. The simulation re-

sults suggest that spatial Σ∆ modulation can significantly re-

duce the quantization error associated with the use of low-

resolution ADCs in massive MIMO systems. In particular,

the spatial Σ∆ converter provides an advantage in situations

where the users are confined to sectors relatively close to the

array broadside and can be constructed with low resolution

hardware that requires minimal additional circuitry.
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