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ABSTRACT

We consider channel estimation for an uplink massive multi-
ple input multiple output (MIMO) system where the base sta-
tion (BS) uses a first-order spatial Sigma-Delta (¥ A) analog-
to-digital converter (ADC) array. The XA array consists of
closely spaced sensors which oversample the received signal
and provide a coarsely quantized (1-bit) output. We develop
a linear minimum mean squared error (LMMSE) estimator
based on the Bussgang decomposition that reformulates the
nonlinear quantizer model using an equivalent linear model
plus quantization noise. The performance of the proposed
3 A LMMSE estimator is compared via simulation to channel
estimation using standard 1-bit quantization and also infinite
resolution ADCs.

Index Terms— Channel estimation, massive MIMO, XA
ADC:s, one-bit quantization.

1. INTRODUCTION

Massive MIMO systems provide high spatial resolution and
throughput, but the cost and power consumption of the as-
sociated RF hardware, particularly the analog-to-digital con-
verters (ADCs) can be prohibitive, especially at higher band-
widths and sampling rates. To save power and chip area,
low resolution quantizers have been suggested. There has
been extensive research on 1-bit ADCs for channel estimation
in massive MIMO systems [1-4]. While it has been shown
that 1-bit quantization causes only a minimal degradation, at
medium to high SNR the loss is substantial.

To improve the performance of low-resolution sampling,
one can of course increase the resolution of the quantizer.
Simulations have shown that using ADCs with 3-5 bits of res-
olution in massive MIMO provides performance that is very
close to that achievable with infinite precision, and still pro-
vides higher energy efficiency (e.g. see [5]). As an alternative
to increasing the ADC resolution, one can increase the sam-
pling rate at which the 1-bit quantizers operate. This approach
has been studied in [6—8] and found to also be effective in re-
ducing the medium-to-high-SNR performance loss for 1-bit
quantization.
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A well-known technique that combines 1-bit quantization
and oversampling is the XA ADC, which to date has primar-
ily found application in ultrasound imaging. The XA con-
verter scheme consists of an oversampled modulator which is
responsible for digitization of the analog signal and a nega-
tive feedback loop. This architecture provides noise shaping
that alters the power spectral density of the quantization noise
such that it is no longer uniform, as in regular quantization,
but is shifted to higher frequencies. The quantization noise
can then be processed by a digital low-pass filter and decima-
tion stage so that it has a reduced effect on the signal. The use
of XA ADCs in parallel architectures for MIMO systems has
been studied in [9, 10].

A similar effect can be achieved by oversampling in space
instead of time, i.e., using an antenna array whose elements
are separated by less than one half wavelength. In spatial XA
ADCs, the integration is performed by feeding the quantiza-
tion error from one stage to the adjacent antenna input in-
stead of feedback via a time delay. The spatial frequency, or
the number of cycles per radian, is proportional to the sine
of the angle of arrival measured from the array broadside. A
low spatial frequency implies that signals are impinging from
near broadside, and the A modulator can be expected to ex-
hibit lower quantization error than for signals from the end-
fire direction. The noise shaping characteristics of first and
second-order spatial and cascaded (space-time) XA architec-
tures have been the focus of prior work in this area [11-15].

In this paper, we consider optimal channel estimation for
massive MIMO systems with first-order spatial XA ADCs.
The model for this system is derived and the Bussgang de-
composition is applied in order to find an equivalent linear
signal-plus-quantization-noise representation that is the ba-
sis for the LMMSE channel estimation [1]. Our approach
explicitly takes into account the spatial correlation between
the quantized outputs of the XA ADC array. The feed-
back structure of the XA array complicates the calculation
of the required covariance matrices needed for the Bussgang
approach, rendering a closed-form solution impossible. How-
ever, the special structure of the data flow allows us to find
a recursive solution for the covariance matrices, and hence
the LMMSE estimator. The case with orthogonal pilots is
considered since the block-diagonal nature of the correlation
matrices can be leveraged. Our simulation results indicate
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that, at low-to-medium SNRs, the LMMSE channel estimator
for the XA array yields channel estimates that are very close
to those provided with infinite resolution, and significantly
better than standard 1-bit quantization, with a very small
increase in hardware complexity.

2. SYSTEM MODEL

We consider an uplink massive MIMO system with K single-
antenna user terminals, and a BS equipped with M > K an-
tennas and a first-order spatial XA array. During the training
period, all K users transmit their pilot sequences of length N
simultaneously. The received signal, X € CM*N | at the BS
is

X=,pH®; +N, @))

where p is the SNR ratio common to all the users, H €
CM*K i5 the channel matrix, ®, € CK*¥ is the pilot matrix
and N is the additive noise whose elements satisfy [N];; ~
CN(0,1). We also define the vectorized channel as h =
vec(H). Following the Kronecker model, the channel co-
variance is assumed to satisfy Cy, = Cg ® Cyg where ®
represents the Kronecker product and Cs = E[H H] and
Cu = E[HHY] are the transmit and receive antenna ar-
ray spatial covariance matrices respectively. Since we as-
sume single-antenna uncorrelated users, Cg = Ik and, thus,
Cyp = Ix ® Cy. Vectorizing (1), we get

x = vec(X) =/p (‘IDtT ® I) vec (H) + vec (N)
=®h + n.

2

The first-order spatial XA converter array can be imple-
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Fig. 1. A first-order XA array.

mented as illustrated in Fig. 1, where x,, denotes the mth
row of X. The array consists of M 1-bit ADCs, where the
input to the mth ADC is the quantization error from the pre-
vious stage subtracted from the signal received at the mth

antenna. More specifically, the output of the mth XA ADC
at the nth time instant, y,,[n],n =0,..., N — 1,is

Ym [n] =Q (mm[n] + emfl[n]) )

where Q(z) = 1/+/2 (sign(x) + jsign(z)) is the 1-bit quan-
tization operation and e,,,_1[n] is the difference between the
input and the output of the (m — 1)th quantizer. The vector-
ized output of the XA array can be represented as

y = Q(UX - Fy)7
———

z

where U =1y +T'and T = Iy ® I’ with

3)
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3. LMMSE CHANNEL ESTIMATION

We use the Bussgang decomposition to derive an LMMSE
estimator of the channel from using measurements from the
A array. According to the Bussgang model, the output of
the XA array can be represented as

y =Az+q, “4)

where q is the quantization noise and A is a matrix chosen
to make q uncorrelated with z, i.e., A = nyC; L where
C,y is the cross-correlation matrix between z and y and C,
is the auto-correlation matrix of z. Let 3, = diag(C,) be the
matrix formed by the diagonal elements of C,, and let C,, be
the auto-correlation matrix of y. For 1-bit quantization, the

following relations can be obtained:

ae [T
T &
2 . (T H
C, = - [arcsm (§ARe(Cz)A ) +

jarcsin (gAIm(CZ)AHﬂ ,

C, =UCU” +TC,I'" - UC,,T" —TCZ U".

(&)

We note here that there is a complicated inter-relationship

between Cy, and C,, for the XA array that is the primary dif-

ficulty for calculating the matrix A. We show below that,

while it is not possible to obtain closed form expressions for

C, and C,, their elements can be computed recursively. To
begin, note that

Cyy =E[xz"]A¥ + E[xq”]
=C,UfA" - C,, T A | E[xq"] (6)
=(C,UTA" + E[xq"])(I+T7 AT~
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Using the fact that z and q are uncorrelated, UE[xq”] =
T'E[lyq”] = T'Cq. Since Cq = Cy — AC,A*, (6) can be
written as

Cyxy = (CLUIAT 1 UITC )T+ THAH)L (7))
Substituting for Cyy, in (5),

C,=UcC,U” +rc, ¥
S— —

Term1 Term?2

—UC,UfAH (I +THAH)-IDH
Term3
~T(I+AT)'AUC, U
(Term3)H
—TC,(I+THAT)TIPH _ (I + AT)'C, T .

Term4

(Term4)H

®)
From (8), we see that the first term is known and terms 2, 3
and 4 are required to be computed. To simplify the subsequent
derivation, we will assume that the pilots are orthogonal, and
that the minimum possible number of pilots N = K are used
for channel estimation. This leads to ®*®7 = pI, and will
result in the matrices UC, U, C, and C, all being block
diagonal. We illustrate the recursive algorithm for computing
the necessary covariances using one of the blocks.

First, we note that multiplication by I' on the left and
' on the right is equivalent to computing a running sum
across the rows and columns and shifting the result diagonally
across. For example, consider the first block of I‘CyI‘H . The
(m, n)th element of this block is

1

[Cylij- ©
1

—1n

3

[rcyrﬂ -

mn

=1

<.
Il

Next, consider the product (I + T’ A#)=1TH | Let the first
M x M block of A be A ;. We note that I‘fAf is a nilpotent
matrix that satisfies (T AZ)™ = 0. This gives us:

M—-1

do@iADE a0

=1

I+THAD =1

b

Using mathematical induction, it can be shown that (I +
A A ITH has the following structure:

(I+Tf ATy

S

—1 T

0 1 (1 — A272) (1 - Ak,k)

=

—

an

I
(en)
(a=)
=7

(1—Agx)

™~
Il
@

We can use (11) to analyze the structure of Term3 and Term4
in (8). More specifically,

[Term3],,, =[UCx U], v o1 Ap_1 01+

[UCxUH]m,n—QAn—Q,n—Q(]- - An—l,n—1)+

n—1

+ [UC U, 1A, H (1—-Akk)
k=2

m—1

Term4 Z

=1

zn1+§
m—1 n—1

-+ HlfAkk)
k=2

=1

z n— 2 1 - Anfl,nfl)

(12)
From (9)-(12), it can be seen that to compute [Cy]p, it is
only necessary to know the elements of the matrices Cy,,, Cq
and A up to and including the indices m — 1 and n — 1. It is
also worth noting that the first column of Term3, and the first
row and first column of Term4 consist of zeroes.

The shaping of the quantization noise to higher spatial fre-
quencies can be exploited by means of a low-pass spatial fil-
ter, or beamformer, which implies that the majority of signal
energy from the users of interest should arrive from a sector
centered near the broadside of the array (as is typically the
case in sectored cellular systems). The beamformed output is
given by

r = Gy, (13)

where G € CM'*MN with M’ < MN. The specific choice
of G will depend on the degree of oversampling in the array
as well as the size of the sector from which the user signals
are assumed to come from.

The LMMSE estimate of the channel from the beam-
formed array output r is thus given by

(14)

Here,

Chy =E[hz]A" + E[hq]
=E[hx? U — hy T"]AH 4 E[hq’]
=Cp®" U AT — Cpy T" AT 4 E[hq']

~ (Cn@"U" A" + Elhg"]) (T+T7A%) g
15)
where E[hq’!] can be obtained from Cyxq by noting that
b'x =h+&'n. We ignore the noise term due to the asymp-
totic orthogonality of n and ®, to get E[hq”] = @TCxq.
Space constraints do not allow a more detailed description
of the steps required to compute the necessary covariance ma-
trices, but the algorithm for computing the LMMSE channel
estimate for the XA array is summarized in Algorithm 1.
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Algorithm 1: Channel estimation for 1-bit XA array
1. Initialize diag(Cy) = 1, [C,]1,1, A1,1, and [Cql1,1:
[Caliy = [UCU 1, Ary=4/2(C,) 7"
[Cal11 = [Cyl1,1 — AT, [Cplu.

2. For m = 2 to M, repeat:

(i) Compute the mth column of Term3 using A & (12).

(ii) Compute [Termd];; fori,j =1 : m, using [Cqlxi.
k,l=1:m —1and (12).

(iii) Compute [Cy]s,,m using (8), and A, 1, [Cylim,m.
[Cqlm,m from (5).

(iv) Compute [Cy]pnm, [Cylnm and [Cqlnm.,
n=1:m-—1.

3. Estimate the channel, fl, from (14).

4. SIMULATION RESULTS

We compare the NMSE of the YA MMSE channel esti-
mator against that of the regular 1-bit Bussgang LLMSE
(BLMMSE) [1] and the LMMSE estimator using unquan-
tized measurements X. The receive array is a uniform linear
array (ULA) where the antennas are spaced at A/8, i.e. the
spatial oversampling factor is 4. The channel for user k is
assumed to be a line-of-sight LOS channel defined by the
direction of arrival (DOA) 6. and the distance d between the
antennas:

B |:17 e—j27rdsin 9k//\7 e e—j27rd(]\/[—1) sin ek/)\:| T /\/M,

(16)
where [y, is the large-scale fading coefficient associated with
user k. Thus, the channel is spatially correlated and Cyy is
non-diagonal. The NMSE of the channel estimate is evaluated
over 100 independent realizations of the source DOAs, which
are assumed to be uniformly distributed in [—30°, 30°]. The
spatial filter G is chosen to eliminate interference and spatial
quantization noise in the interval between —45° and 45°. The
filter tap length, L, is related to M’ as M/ = N(M — L +
1). The weights are generated by Woodward’s approach for
pattern sampling [16]. Furthermore, G is applied to all the
three algorithms used in the comparison so as to exploit the
fact that the signals originated from the sector close to the
array broadside.

Fig. 2 shows the NMSE of the channel estimate as a func-
tion of SNR with M = 32 antennas and K = 5 users. Or-
thogonal pilots are used with N = 5 and L = 6. It is ob-
served that at low-to-medium SNRs, the performance of the
3JA channel estimate is almost identical to that of the unquan-
tized MMSE channel estimate. However, the gap between the
two widens as the SNR increases. Similarly, in Fig. 3, we plot
the NMSE of the channel estimate for M = 64, N = K = §,

and L = 16. In both Fig. 2 and Fig. 3, it is seen that LMMSE
channel estimation with the XA array offers an advantage
over the conventional 1-bit quantizer array.

2
—One-bit \
3|=ZA \
= =Unquantized \

-10 -5 0 5 10 15
SNR (dB)

Fig. 2. NMSE of channel estimate, M = 32, N = K = 5.

NMSE(h) (dB)

—One-bit N
8 |—e—=32A \
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Fig. 3. NMSE of channel estimate, M = 64, N = K = 8.

5. CONCLUSION

In this paper, we considered channel estimation in massive
MIMO using spatial ©A modulation. We used the Bussgang
decomposition to derive a new LMMSE channel estimator
that takes into account the effect of correlation between quan-
tizer outputs. We derived simple expressions for the Bussgang
linearized model and provided a detailed method to compute
the required correlation matrices. For oversampled arrays,
the quantization noise is shifted to spatial frequencies higher
than the Nyquist rate and is removed by low-pass beamform-
ing. To study the performance of this LMMSE estimator, we
considered a simple LOS channel model. The simulation re-
sults suggest that spatial XA modulation can significantly re-
duce the quantization error associated with the use of low-
resolution ADCs in massive MIMO systems. In particular,
the spatial XA converter provides an advantage in situations
where the users are confined to sectors relatively close to the
array broadside and can be constructed with low resolution
hardware that requires minimal additional circuitry.
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