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Light cues elicit strong responses from nearly all forms of life, perhaps most

notably as circadian rhythms entrained by periods of daylight and darkness.

Atypical periods of darkness, like solar eclipses, provide rare opportunities

to study biological responses to light cues. By using a continental scale radar

network, we investigated responses of flying animals to the total solar

eclipse of 21 August 2017. We quantified the number of biological targets

in the atmosphere at 143 weather radar stations across the continental

United States to investigate whether the decrease in light and temperature

at an atypical time would initiate a response like that observed at sunset,

when activity in the atmosphere usually increases. Overall, biological

activity decreased in the period leading to totality, followed by a short

low-altitude spike of biological activity during totality in some radars.

This pattern suggests that cues associated with the eclipse were insufficient

to initiate nocturnal activity comparable to that occurring at sunset but

sufficient to suppress diurnal activity.
1. Introduction
Light is a powerful stimulus for a great diversity of organisms, e.g. [1,2]. The

regularity of this stimulus, resulting from the rotation of the planet and its

path around the sun, makes light periodicity a critical component of biological

cycles. Experimental manipulation of light cues at large scales is all but imposs-

ible, but on rare occasions, disruptions to this predictable daily and annual

periodicity occur, such as during unusual celestial events.

One such celestial event was the total solar eclipse of 21 August 2017. The

path of totality, in which the sun was completely obscured by the moon,

spanned the continental USA from the Pacific to the Atlantic coast (figure 1).

This eclipse was the first on the USA mainland since 1979.

The uniqueness and short duration of total solar eclipses, as well as the chal-

lenge of studying biological responses at large spatial scales, have severely

constrained behavioural studies of animals during eclipses. Published accounts

of small-scale responses include initiation of a variety of nocturnal behaviours,

including diurnal birds returning to nocturnal roosts [3,4], nocturnal insects

taking flight [4,5], crickets chirping [4], diurnal fishes ceasing to feed and

nocturnal fishes emerging [6], and spiders deconstructing webs [7]. Such

stereotypically nocturnal behaviours during diurnal periods suggest that an

eclipse may mimic cues relevant to schedules of daily routines. In addition to

fluctuations in light intensity, corresponding temperature decreases can alter

behaviours during a solar eclipse, but the magnitude of temperature shifts

vary with local conditions such as the time of day of the eclipse, type of

ground cover and proximity to coast [8], and may lag behind the immediate

changes in light intensity [9]. Furthermore, wind speeds may also decrease,

as the atmosphere becomes less turbulent [10].

The August 2017 eclipse (figure 1) provided a unique opportunity to inves-

tigate migrants and other flying organisms’ reactions to changes in light at a
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Figure 1. (a) The path of eclipse totality through the network of weather surveillance radars in the continental USA, 21 August 2017. All 143 sites included in this study,
coloured by the maximum amount of obscuration. The path of totality, where obscuration is 100%, is shown in grey, and the eight sites located within the path of totality are
outlined in black. (b–g) Patterns of biological activity in the atmosphere as sampled by NEXRAD. The smoothed mean (generalized additive model) amount of vertically
integrated reflectivity (VIR) at all sites, grouped after amount of maximal obscuration: (b) during the eclipse (less than 80: n ¼ 54, 80–95: n ¼ 58, 95–100: n ¼ 26),
(c) at sunset the day of the eclipse (less than 80: n ¼ 52, 80–95: n ¼ 59, 95–100: n ¼ 26); and at the time of day of the eclipse on: (d ) 19 August (less than 80: n ¼
54, 80–95: n ¼ 58, 95–100: n ¼ 27), (e) 20 August (less than 80: n ¼ 54, 80--95: n ¼ 59, 95–100: n ¼ 27), ( f ) 22 August (less than 80: n ¼ 55, 80–95: n ¼ 59,
95–100: n ¼ 27), and (g) 23 August (less than 80: n ¼ 55, 80–95: n ¼ 60, 95 --100: n ¼ 27). Note different scale on y-axis in (c).
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large geographical scale. August is the onset of autumn

migration for many North American birds and insects, and

bats are also active and present across the continent during

this month. The nocturnal migration of birds and insects is

closely associated with celestial cues at sunset, as is foraging

and migratory behaviour for most bats, and these animals

typically initiate nocturnal movements shortly after local

sunset, e.g. [11,12]. By contrast, diurnally active birds and

insects that occupy the airspace usually settle down for

night roosts around sunset [13]. Since the darkness of an

eclipse makes direct observations of flight behaviours of

birds and insects inherently difficult, we chose a remote sen-

sing approach. We leverage the power of an existing network
of sensors (i.e. 143 weather surveillance radars, NEXRAD;

figure 1) to monitor the airspace usage of birds and insects

during this celestial event. We used radar data to investigate

whether the changes in light level during the eclipse lead

to an increase in the number of biological targets in the air

(similar to what occurs at sunset), or if it mainly suppressed

diurnal activity, decreasing the number of biological targets

in the air.
2. Methods
Weather surveillance radar networks register not only meteorolo-

gical, but also biological targets (e.g. birds, bats, and insects [14]).



Table 1. Generalized additive model of the amount of VIR at 138 sites during the four hours surrounding the eclipse using a Gamma distribution with a log
link function. (Included variables were: maximum amount of obscuration at each site, minutes from eclipse maximum, the interaction between maximum
obscuration and minutes to eclipse maximum, proximity to midday of the occurrence of the eclipse at the site, and site identity (as a random effect). Test
performed in R (v. 3.4.1 [17]) with function ‘gam’ in package mgcv [18].)

estimated d.f. F p-value s.d. (95% CI)

smooth terms

maximum obscuration 1.52 0.47 0.679

time from eclipse maximum 8.39 207.83 ,0.001

maximum obscuration � time from eclipse maximum 12.56 12.72 ,0.001

time from midday 2.80 9.57 ,0.001

random effects

site identity ,0.001 1.12 (1.00–1.27)

residual error 0.40 (0.39–0.41)
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Since such networks have continental-scale coverage and operate

continuously, they are ideal for investigating rare, large-scale

events and their effects on aerial biological targets. We gathered

data from 143 NEXRAD weather radar stations across the conti-

nental USA during the total eclipse of 21 August 2017 and sunset

of the same day. We also investigated the two previous and the

two following days (19, 20, 22 and 23 August 2017) as controls

lacking the eclipse stimulus. Owing to radar malfunction or

maintenance, a few sites are missing from some of the sampling

periods. See figure 1 for number of sites used during each period.

We obtained NEXRAD weather radar data from the open

National Oceanic and Atmospheric Administration archive at

Amazon Web Services [15] and extracted biological targets using

the vol2bird algorithm in bioRad [14,16]. We integrated the

amount of reflectivity from biological targets over altitudes from 0

to 5000 m above ground level and investigated changes in this

vertically integrated reflectivity (VIR, cm2 km22, see [16]) during

the four hours surrounding the eclipsemaximum (figure 1).We col-

lected data every 5–10 min.We tested VIR during these four hours

against themaximum amount of obscuration and the absolute time

from themaximumeclipse using a generalized additivemodelwith

a Gamma distribution and a log link function (see table 1 for

included variables and details). We also calculated VIR in the four

hours surrounding sunset on the same day, as well as during the

same time of day as the eclipse on the two previous and two follow-

ing days (figure 1). Information on the amount of obscuration at

each weather radar site location was obtained from: http://aa.

usno.navy.mil/data/docs/api.php#soleclipse.
3. Results
Of the 138 sites with available data during the eclipse, the sun

reached 95–100% obscuration at 26 sites, and eight of these

experienced totality with the sun 100% obscured between

1.2 and 2.7 min (figure 1). Fifty-eight sites had a maximum

obscuration of 80–95%, and 54 sites had a maximum of

less than 80% obscuration. It took between 71 and 92 min

from the start of the eclipse until maximum obscuration

was reached at the different sites, during which the solar

radiation gradually decreased. The overall amount of VIR

was higher the closer to midday the eclipse occurred, and

sites differed significantly in the amount of VIR (table 1).

VIR decreased with proximity to the eclipse (figure 1b and

table 1), and more so at sites with more obscuration

(figure 1b and table 1). The decrease in activity started
around 50 min before maximum obscuration (figure 1b). At

this point the mean obscuration was approximately 30% at

sites that reached less than 80% obscuration, 35% in the

80–95% group and 40% in the greater than 95% group. We

did not observe a similar decrease in activity on any of the

two preceding or two following days (figure 1e–g). Biological
activity during the eclipse was markedly different than

activity at local sunset (figure 1c, note y-axis scales).
For the eight sites in the path of totality, responses varied.

High altitude activity decreased at most sites during the

entire duration of the eclipse (figure 2), especially at KCAE,

KGSP and KLNX. At four (KHPX, KLSX, KPAH and

KOHX) out of five sites where a radar scan was recorded

overlapping with totality there were brief increases in activity

during the moment of totality with sudden peaks in the

numbers of biological targets at low altitudes (figure 2; elec-

tronic supplementary material, movie S1, animating the

lowest elevation scans of radars in the path of totality).

These short peaks of activity appeared only during totality,

and were too short and small to affect the overall mean

decrease of activity seen at the 26 sites with 95% obscuration

or more (figure 1). At one site in the path of totality (KRIW),

we saw no clear response. Even at the sites with an increase

in activity, the response was still minor relative to the increase

of activity at sunset the same day (electronic supplementary

material, figure S1).
4. Discussion
With our remote sensing approach, we determined that the

darkness of a total solar eclipse was insufficient to trigger

biological activity in the air with the same magnitude as that

typically observed at sunset duringmigration season. Further-

more, biological activity decreased leading up to and after the

maximum eclipse, indicating that diurnally active birds and

insects were landing. This is consistent with radar obser-

vations of decreasing reflectivity in the air at one site during

a partial eclipse in Oklahoma [9]. It is also consistent with

anecdotal observations of wildlife exhibiting behaviours

such as roosting, ceasing vocalizations, and increasing statio-

narity during an eclipse [3,4]. Many observers also reported

birds descending and exhibiting roost-like behaviours

during the eclipse [19]. The decrease of biological activity

http://aa.usno.navy.mil/data/docs/api.php%23soleclipse
http://aa.usno.navy.mil/data/docs/api.php%23soleclipse
http://aa.usno.navy.mil/data/docs/api.php%23soleclipse
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Figure 2. Reflectivity from biological targets for each of the eight sites in the path of totality over time. Heatmap shows the amount of reflectivity at different
altitudes (left y-axis), black line shows the sum of reflectivity integrated over altitude (VIR, right y-axis). Altitude is in metres above sea level (m.a.s.l.; data start at
ground level) and time is local time at each site. Black vertical lines mark start and end of eclipse, dashed vertical line marks time of maximum sun obscuration
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scan (electronic supplementary material, movie S1). Grey areas are data gaps.
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started at low levels of obscuration, where humans would not

perceive much change in light levels. The closest analogy to

the sudden decrease of solar radiation (light and temperature)

for flying animals might be rapidly increasing cloud cover,

which could lead to a decrease in activity at low levels of

obscuration.
At four out of five sites where a radar scan overlapped

with totality, there was a short peak of biological activity at

low altitudes in the scan during totality only. We could not

reliably separate birds from insects in this study: peak move-

ments were short and not concentrated in particular

directions, making speed measurements unreliable. At the
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sites with a peak in activity, spatial extents appear to be

widespread, and not concentrated to specific points in the

landscape, as we would expect to see with emerging bats

[20]. The site with the largest peak in activity during the

eclipse is also the site with the most immediate reaction to

sunset, where activity increased as soon as the sun set (elec-

tronic supplementary material, figure S1). Both nocturnally

migrating insects and birds are expected to initiate migration

after sunset, the first birds leaving around an hour after

sunset [12], while insects range from immediately after

sunset to approximately half an hour after sunset [11]. This

could indicate that insects have a more immediate and

explicit reaction to darkness, as seen by accounts of crickets

starting to sing during an eclipse [4], honeybees returning

to hives [4] and nocturnal moths taking flight during an

eclipse [5]. This suggests insects, rather than birds, may be

more likely to contribute to these peaks in activity.

The next total eclipse in North America will occur on the 8

April 2024. We will then be able to compare reactions of

spring migrants to this autumn data. Furthermore, with care-

fully designed observation schemes and detailed measures of
light levels and cloud cover at different sites, we can gain

further insight into how different types of biological targets

react to unexpected celestial events. This study highlights

the wide scope of the effect of light cues on animal behaviour.

Even this relatively short period of darkness was sufficient to

affect the behaviour of animals across large scales.
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