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A continental system for forecasting
bird migration

Benjamin M. Van Doren’* and Kyle G. Horton>

Billions of animals cross the globe each year during seasonal migrations, but efforts to monitor them
are hampered by the unpredictability of their movements. We developed a bird migration forecast
system at a continental scale by leveraging 23 years of spring observations to identify associations
between atmospheric conditions and bird migration intensity. Our models explained up to 81% of
variation in migration intensity across the United States at altitudes of O to 3000 meters, and
performance remained high in forecasting events 1 to 7 days in advance (62 to 76% of variation was
explained). Avian migratory movements across the United States likely exceed 500 million
individuals per night during peak passage. Bird migration forecasts will reduce collisions with
buildings, airplanes, and wind turbines; inform a variety of monitoring efforts; and engage the public.

illions of birds migrate between distant
breeding and wintering sites each year,
through landscapes and airspaces increas-
ingly transformed by humans. Hundreds
of millions die annually from collisions
with buildings, automobiles, and energy installa-
tions (Z), and light pollution exacerbates these ef-
fects (2). Pulses of intense migration interspersed
with periods of low activity characterize birds’
movements aloft (3, 4), and efforts to reduce negative
effects on migrants (e.g., turning off lights and wind
turbines at strategic times) (5) would be most
effective if they targeted the few nights with intense
migratory pulses. However, bird movements are
challenging to predict days or even hours in advance.
For decades, scientists have studied the drivers
of avian migration. Winds, temperature, baromet-
ric pressure, and precipitation play key roles
(6-8). However, such general relationships have
not produced migration forecasts accurate at both
broad continental extents and fine spatial and tem-
poral resolutions (9, 10). Local topography, regional
geography, and time of season modify relationships
between conditions and migration intensity, and
hundreds of species with diverse behaviors fre-
quently pass over a single location during migration.
The complex interactions between environmental
conditions and animal behavior make predicting
bird migration at the assemblage level a challenge.
One major difficulty has been amassing behav-
ioral data that appropriately characterize bird mi-
gration at a continental scale. Radar, used globally
as a tool to study animal migration (3, 11-14),
offers a realistic solution to monitor hundreds of
species (15). In the continental United States, the
Next Generation Weather Radar (NEXRAD) net-
work comprises 143 weather surveillance radars
(16) and an archive with more than two decades
of data. Although designed for meteorological ap-
plications, these radars measure energy reflected
by a diversity of aerial targets, including birds.
Only recently have advances in computational
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methods [e.g., (17)] facilitated the use of the entire
radar archive for longitudinal studies of bird mi-
gration at continental scales.

Using the NEXRAD archive, we quantified
23 years (1995 to 2017) of spring nocturnal bird
migration across the United States (Fig. 1). We
developed a classifier to eliminate radar scans
contaminated with precipitation. We then trained
gradient-boosted trees (I8) to predict bird migra-
tion intensity from atmospheric conditions re-
ported by the North American Regional Reanalysis
(19). Our model used 12 predictors, including

winds, air temperature, barometric pressure, and
relative humidity (fig. S1), which we used to pre-
dict a cube-root-transformed index of migration
intensity (expressed in square centimeters per
cubic kilometer). The cube-root transform reduces
skewness but is less extreme than a log trans-
formation, which would have given considerable
weight to biologically unimportant differences
between small values. We measured migration
intensity in 100-m altitude bins up to 3 km to
model the three-dimensional distribution of mi-
grating birds over the continent. To express migra-
tion intensities in numbers of birds, we assumed a
radar cross section per bird of 11 cm? The radar
cross section is a measure of reflected energy; this
value is typical of medium-sized songbirds and
representative of migratory species (12).

Our migration forecast model explained 78.9%
of variation in migration intensity over the
United States (Figs. 2 and 3A). Performance was
consistent across years (mean yearly coefficient of
determination R? = 0.781 + 0.010 SD). We quantified
the importance of each predictor by calculating
gain, a measure of how much predictions improve
by adding a given variable. Air temperature was
most important, with an average gain more than
three times that of the second-ranked predictor, date
(fig. S2). High temperatures coincided with large
migration pulses (Fig. 4 and figs. S3 and S4). As a
predictor of bird migration, temperature likely
plays a dual role as an index of spring phenology
and a short-term signal for movement, as favorable
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Fig. 1. Methodology for generating migration forecasts. \We used weather surveillance radars to quantify
23 years of spring bird migration, modeled migration intensity as a function of observed atmospheric
conditions, and used this model to forecast future migration events under predicted weather conditions.
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southerly winds usually accompany warmer air
masses. Other important predictors included al-
titude, longitude, surface pressure, latitude, and
wind (fig. S2).

The model provides informative predictions
several days in advance. We evaluated its utility
as a true forecast system with archived weather
forecasts from the North American Mesoscale
Forecast System (NAM) and Global Forecast
System (GFS). NAM has higher spatial resolution
but is a shorter-range forecast (12-km grid, 3-day
range) than GFS (0.5° grid, >7-day range). We
made predictions up to 3 days in advance with
NAM and up to 7 days in advance with GFS, ex-
pecting performance to degrade with time because
of the decreasing accuracy of longer-range weather
forecasts. Predictions on the basis of 24-hour NAM
forecasts explained 75% of variation in migration

A 24-hr migration forecast 18 May 2009

intensity, 3-day NAM forecasts explained 71%, and
7-day GFS forecasts explained 62% (fig. S5).

The model captures patterns of bird migration
across the United States with high spatial accura-
¢y, particularly in the central and eastern regions
(fig. S6). We evaluated spatial accuracy over areas
without radar coverage by iteratively removing the
data from each radar station, retraining the model
on the remaining data, and testing performance
on the withheld station. Median R for withheld
stations was 0.72, and R? was 0.60 or higher for
75% of stations (fig. S7). Spatial variation in
performance likely stems from local influences
on migratory behavior (e.g., topography), which
our model did not explicitly incorporate.

Previous research suggests that migration be-
havior and weather conditions in the days imme-
diately preceding a migration event can predict

48-hr migration forecast 37 Mar 2010
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its intensity [e.g., (10)]. We found that including
atmospheric data from the preceding night and
24-hour changes in conditions did improve per-
formance, but not markedly. A model that included
atmospheric conditions 24 hours before an event
explained 80.1% of variation in migration intensity,
and further including observed migration intensity
from the previous night increased R> to 81.3%.
Finally, we used model predictions to estimate
the total number of birds actively migrating each
night across the United States. Summing predic-
tions countrywide, we infer that nightly move-
ments frequently exceed 200 million birds (Fig. 3B).
Peak passage occurred in the first half of May,
when the median predicted movement size was
422 million birds per night. Although our model
tended to underpredict the largest observed move-
ments (Fig. 3A), a conservative forecast system

Fig. 2. Migration forecasts and

corresponding observed migration.
(A) Countrywide migration forecast
surfaces showing predicted mean
migration intensity across altitudes.
(B) Altitudinal profiles at four stations,
showing predicted and observed
intensity values. (C) Mean migration
intensity observed at all radar stations.
Gray circles indicate stations where
migration intensity could not be
measured because of precipitation.

Fig. 3. Accuracy of forecasts and nightly
continental predictions. (A) Mean
predicted and observed migration
intensities for test data, with points
colored by observed migration intensity

(y axis). The scatterplot shows values
after averaging across altitudes.

Shading shows empirical 90% prediction
intervals, which covered 90.5% of
observed values. (B) Nightly peak
migration magnitude estimated across
the continental United States for 2008 to
2017. The size of migratory movements
varied markedly from night to night
during the peak of the migration season.
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Fig. 4. Migration intensity predictions by
air temperature and date. (A) Heat map
colors show migration intensity predictions
for dates and air temperature values.

Each data point on the scatterplot behind
the heat map represents data for one night
from one radar. Only well-supported
predictions and corresponding data points
are shown (the outer 10% of temperature
and date values are excluded). Temperature
values correspond to air temperatures

at altitudes up to 3000 m. (B) Cross
sections of model predictions for three
spring dates. For a given date, the model
predicts migration intensity to vary closely
with temperature. Fewer observations
correspond to cold temperatures later in

the season.

decreases the risk of taking unneeded mitigation
action. More accurately predicting the largest
migration events may require explicit modeling
of migrant flow across the continent, including
responses to topographical features (20).

Migration forecasts will further ecological re-
search while aiding monitoring and mortality mit-
igation efforts. Accurate predictions can inform
decisions to temporarily shut down lights and
wind turbines, halt gas flares, choose airplane
flight paths, and take other actions to prevent
human and avian mortality (10, 21). Global health
workers monitoring avian-borne diseases can use
migration forecasts to anticipate bird movements.
Further integration of large citizen science datasets
with radar observations will provide the means to
study species-specific patterns of behavior at a large
scale (22), and studying local variation in migratory
behavior will lead to more accurate models of atmo-
spheric bird distributions (23). Migration forecast
systems have great potential to aid environmental
monitoring and conservation efforts; fully realiz-
ing this potential will require the cooperation not
just of scientists but also of governments and
agencies that produce and disseminate radar
products (21).
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Bird forecast

Billions of birds migrate across the globe each year, and, in our modern environment, many collide with
human-made structures and vehicles. The ability to predict peak timing and locations of migratory events could greatly
improve our ability to reduce such collisions. Van Doren and Horton used radar and atmospheric-condition data to predict
the peaks and flows of migrating birds across North America. Their models predicted, with high accuracy, patterns of bird
migration at altitudes between 0 and 3000 meters and as far as 7 days in advance, a time span that will allow for
planning and preparation around these important events.
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