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Abstract—Cooperative jamming is deemed as a promising
physical layer based approach to secure wireless transmissions
in the presence of eavesdroppers. In this paper, we investigate
cooperative jamming in a two-tier 5G heterogeneous network
(HetNet), where the macro base stations (MBSs) at the macrocell
tier are equipped with large-scale antenna arrays to provide space
diversity and the local base stations (LBSs) at the local cell tier
adopt non-orthogonal multiple access (NOMA) to accommodate
dense local users. In the presence of imperfect channel state infor-
mation, we propose three robust secrecy transmission algorithms
that can be applied to various scenarios with different security
requirements. The first algorithm employs robust beamforming
(RBA) that aims to optimize the secrecy rate of a marco user
(MU) in a macrocell. The second algorithm provides robust
power allocation (RPA) that can optimize the secrecy rate of
a local user (LU) in a local cell. The third algorithm tackles
a robust joint optimization (RJO) problem across tiers that
seeks the maximum secrecy sum rate of a target MU and a
target LU robustly. We employ convex optimization techniques
to find feasible solutions to these highly non-convex problems.
Numerical results demonstrate that the proposed algorithms are
highly effective in improving the secrecy performance of a two-
tier HetNet.

Index Terms—Heterogeneous networks; cooperative jamming;
physical-layer security; collusive eavesdropping; non-orthogonal
multiple access; massive MIMO; secrecy rate; imperfect channel
state information.

I. INTRODUCTION

Wireless networking has contributed significantly to the
ongoing societal developments such as social networks and
smart cities. In turn, these developments place great challenges
to the design of the fifth generation (5G) and future wireless
systems. Particularly, there is an increasing need to deliver on-
demand information and various services wirelessly, giving
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rise to mobile big data. Additionally, it is predicted that
human-centric communications would be complemented by
a huge increase in device-to-device (D2D) communications
(e.g., Internet of Things). The demand on mobile big data and
the coexistence of human-centric and D2D applications require
5G wireless systems to be modular, flexible, and extensible.
To accommodate these rising needs, tiered heterogeneous
networking has been proposed as a promising technology for
5G wireless systems [1]–[3].
An example of a two-tier heterogeneous network (HetNet)

under our consideration is illustrated in Fig. 1, in which
the macrocell tier consists of one or more macrocell base
stations (MBSs) providing access services to macro users
(MUs) and the local cell tier consists of a number of local
base stations (LBSs) within each macrocell to serve their
local users (LUs). This architecture provides an excellent
platform to accommodate emerging wireless technologies such
as massive multiple-input multiple-output (MaMIMO) [4] and
non-orthogonal multiple access (NOMA) [5], offering greating
potential for achieving high spectrum efficiency and energy
efficiency [6], [7].
However, the rich diversity of devices and applications of

HetNets poses unprecedented security challenges. Compared
to conventional cellular networks, tiered HetNets are more vul-
nerable to wireless eavesdropping attacks [8]. Consequently,
it is critical to design and implement eavesdropping coun-
termeasures to secure wireless transmissions in a HetNet.
Note that although confidentiality can be directly achieved by
encryption, there are numerous operating scenarios where key
distribution, computational complexity, or management issues
prevent the establishment or use of shared keys for encryption.
It has been recognized that the physical layer of wireless

systems can enable novel ways to secure transmissions. In
this paper, we focus on secure transmissions provided by
cooperative jamming, where the core idea is to degrade the
received signal quality of an eavesdropper by jamming signals
emitted from a friendly jammer [9], [10]. There has been
considerable work on cooperative jamming for traditional
network architectures [11]–[14]. In [11], a power allocation
strategy is presented to maximize the secrecy rate for point-to-
point wireless communications with multiple eavesdroppers.
Then, the secrecy rate of a multiple-input-single-output (MIS-
O) system with a multiple-antenna eavesdropper is investigated
in [12], and a secure transmission strategy for multi-point to
multi-point wireless networks is investigated in [13] using
a non-convex game approach. Considering a relay commu-
nication system with multiple eavesdroppers, the authors in
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[14] have discussed the optimal jamming selection issue and
designed the optimal beamforming vectors to achieve secure
transmission in [15].

For research on secure heterogeneous transmission, the
authors first introduce physical layer security (PLS) to HetNets
in [16]; they propose three secrecy transmission beamforming
algorithms to maximize the secrecy rate of a legitimate user
based on a pre-fixed spectrum allocation in a fixed area. The
authors in [17] exploit stochastic geometry theory to derive
the closed-form expression for the secrecy outage probability
in HetNets, and claim that the secrecy performance could
be improved by deploying more low power transmitters in
environments with severe path loss. Heterogeneous networks
are the basic framework of 5G communications. Thus, it is
especially important to study secure data transmission and
sharing in such heterogeneous networks. However, little has
been done to investigate the use of cooperative jamming for
physical layer security in tiered HetNets.

We investigate cooperative jamming in a two-tier HetNet
system as depicted in Fig. 1, where an MaMIMO-enabled
MBS and multiple NOMA-enabled LBSs are employed to
serve legitimate MUs and LUs, respectively. To the best of
our knowledge, we are the first to explore cooperative jamming
under such a network structure. In our study, we adopt two
realistic assumptions that set apart from previous work: i)
channel state information (CSI) is imperfectly known; and
ii) multiple eavesdroppers may collude. To overcome the
challenges brought by these two assumptions, we establish
a deterministic error model to characterize the uncertainty of
imperfectly known CSI and model the colluding eavesdroppers
as a super eavesdropper with multiple antennas.

Based on these two modeling approaches, we propose three
robust secrecy transmission algorithms that can be applied
to various scenarios with different security requirements. Our
contributions are as follows.

• Firstly, we propose a robust beamforming algorithm
(RBA) that operates at the macrocell tier. For multiple
macro eavesdroppers (MEs) who wiretap a MBS to get
the information intended for a particular macro user, RBA
aims to maximize the secrecy rate of the target MU
subject to the QoS constraints of other MUs. In RBA,
we only consider the interference caused by other MUs
rather than LBSs because of the low transmit power of
LBSs. The novelty of the RBA lies in the transformation
of the original non-convex problem of the secrecy rate
maximization problem into a second-order cone program
(SOCP) by invoking a first-order Taylor approximation.

• Secondly, we propose a robust power allocation algorithm
(RPA) that operates at the local cell tier. Considering the
transmission distance and radio power, the interference
of an LU in a local cell should be derived from other
LUs of the same cell and the MBS. The proposed RPA
focuses on optimizing the secrecy rate of a target LU
based on the beamforming vectors of the MBS under the
QoS constraints of other LUs in the same local cell. The
beamforming vectors of the MBS can be obtained via
applying RBA or zero-forcing beamforming (ZFBF). We

transform the original non-convex problem into a convex
one.

• Lastly, we study a two-tier scenario, i.e., simultaneous
secure transmission for both the macrocell tier and the
local cell tier. Different from the aforementioned two
schemes for intra-tier secure transmission, we propose
a robust joint optimization (RJO) algorithm that intends
to maximize the secrecy sum rate of both a target MU
and a target LU across both tiers. The RJO takes into
account the QoS requirements of all MUs and LUs in
the system. Applying the D.C. (difference of convex
functions) approximation programming [18], we solve
this non-convex optimization problem by an iterative
algorithm. In essence, the RJO algorithm employs users’
cooperation in both tiers to achieve the overall physical
layer security of multiple users.

The rest of the paper is organized as follows. Related
work is described in Section II. Our heterogeneous network
architecture shown in Fig. 1 and the corresponding data
transmission models for the macrocell and the local cells
are detailed in Section III. We propose three robust secure
transmission algorithms in Section IV based on cooperative
jamming, and report our numerical results to demonstrate the
effectiveness of these algorithms in Section V. Concluding
remarks on future research are provided in Section VI.
Notations: Bold upper and lower case letters denote ma-

trices and vectors, respectively. The expectation operation,
Hermitian transpose, trace, and Euclidean norm of a matrix
are depicted as E[·], (·)H , Tr(·), and ∥ · ∥, respectively;
x ∈ Ci×j represents that x is a complex matrix with i rows
and j columns; an integer set {1, 2, ...,M} is abbreviated
as [1,M ]; and N (µ, σ2) and CN (µ, σ2) denote a Gaussian
variable and a complex Gaussian variable with mean µ and
variance σ2, respectively. For convenience, we provide a list
of abbreviations in Table I.

TABLE I: List of the major abbreviations

Abbreviation Definition
ME A macro eavesdropper who wiretap a MBS
LE A local eavesdropper who wiretap a LBS
RBA Robust beamforming algorithm
RPA Robust power allocation algorithm
RJO Robust joint optimization
CSI Channel state information
CCI Co-channel interference
CSCG Circularly symmetric complex Gaussian
ZFBF Zero-forcing beamforming
SOCP Second-order cone program

MaMIMO Massive multiple-input multiple-output

II. RELATED WORK

Early studies on PLS can be traced back to Shannon’s secure
communication theory [19] and Wyner’s secrecy analyses on
wiretap channels [20]. PLS intends to exploit characteristics of
the wireless medium to ensure that eavesdroppers cannot de-
code private information. It can provide an additional layer of
protection without compromising existing cryptography-based
security mechanisms [9]. Existing studies on PLS mainly focus
on traditional networks such as point-to-point transmissions
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or single-cell communications [21]. A number of techniques
have been developed based on channel characteristics [22],
[23], error correction coding [24], [25], or signal processing
[26], [27]. These studies validate that PLS can provide reliable
transmissions with certain secrecy rates in many practical
scenarios [28], especially for low-end devices with limited
computational capability.

Cooperative jamming is a signal-based strategies that is
first presented in [26] to achieve secure transmissions. With
this strategy, a legitimate user transmits information-bearing
signals while a neighbor node (called the friendly jammer)
transmits artificial noise (AN) signals to interfere with the
eavesdroppers’ reception [29]. This idea is extended to sub-
sequent investigations from different perspectives [12], [30]–
[35]. In [30], the authors have analyzed the achievable rate
based on AN for downlink transmissions from a base station
with multiple antennas to a user with a single antenna. They
also suggest that more AN power should be transmitted when
the number of eavesdroppers grows. Considering single- and
multi-antenna scenarios, the authors have analyzed the impact
of the number of cooperative jammers on secrecy performance
in [31]. In [32], the authors develop a friendly jamming
strategy to keep information from being wiretapped by an
untrusted relay. From the perspective of signal generation, an
orthogonal jamming signal is employed in [33] to interfere
with the eavesdroppers without affecting the legitimate users.
Besides, the authors in [34] focus on secrecy performance via
selecting different jammers while the authors in [35] propose
a power allocation scheme to maximize the system secrecy
capacity subject to power constraints.

Yet, most of the existing secrecy optimization designs hinge
on perfect CSI of both the legitimate users and the eavesdrop-
pers. In fact, it is clearly impractical to obtain the perfect CSI
due to two reasons. On one hand, weak channel reciprocity
and non-robust estimation algorithms cause non-negligible
estimation errors, yielding only inaccurate CSI. The impact of
these errors on secrecy rate are studied and a series of power
allocation strategies to maximize the worst-case secrecy rate
are designed [36]–[38]. In [39], a robust cooperative jamming
scheme is designed in the case of eavesdroppers with uncertain
channel state, where the secrecy rate maximization problem
is solved by using a Stackelberg game. On the other hand,
passive wiretapping has to deal with completely unknown
CSI of the eavesdroppers. To tackle this challenge, various
mathematical methods are introduced into the PLS design
[40]–[44]. For examples, the stochastic geometry theory [40]
is employed in [41] to derive the secrecy outage probability;
this work is extended by the authors in [42] who propose a
compromised secrecy region (CSR) minimization scheme; and
[43], [44] put forward a novel cooperative jamming scheme
based on space power synthesis.

Although PLS research has made great progress in tradition-
al wireless networks, it is still in its infancy for 5G wireless
systems [45]. In [46], the authors have analyzed the connection
probability and secrecy probability of an arbitrarily located
user in a HetNet and then evaluated the secrecy throughputs
of the whole system and a random user. In [47], a tractable
upper bound of the secrecy outage probability is provided for a

random user in a MaMIMO aided HetNet; and physical layer-
based secure strategies are put forward in [48] for MaMIMO
by using matched filter precoding and AN generation. Besides,
in [49], the maximization of the secrecy sum rate is studied in
a NOMA-enabled single-input single-output (SISO) system,
and the authors have demonstrated a feasible region of the
transmit power based on all users’ QoS requirements. Further-
more, the NOMA-based secrecy transmissions are investigated
using stochastic geometry theory in multiple-antenna wireless
networks [50]. Despite many works on PLS in 5G networks,
little has been done for an MaMIMO-NOMA enabled HetNet,
which motivates our work in this paper.

III. SYSTEM MODEL AND PRELIMINARIES

A. System Description

We consider a two-tier HetNet similar to the one adopted by
[7], depicted in Fig. 1, which is composed of a macrocell and
several local cells. An MBS with a large-scale antenna array
is located at the center of the macrocell. It can provide various
services for its legitimate MUs. Each MU communicates
with the MBS through its single antenna. To accommodate
densely deployed MUs, the MBS exploits space diversity via
MaMIMO technology to improve spectral efficiency.

MBS

MBS: Macro Base Station MU: Macro User

LBS: Local Base Station LU: Local User

Eve: Eavesdropper

: Legitimate wireless link

: Eavesdropping link

:  Interference from MBS to local cells

Local cell

Local cell

MU

MU

LBS
Eve

LBS
LU

LU

MU

Eve

Eve

Local cell

LBS

LU
LU

Macrocell

Fig. 1: A heterogeneous network model.

Numerous single-antenna LBSs are scattered within the
area covered by the macrocell. The deployment of the LBSs
may be ultra-dense to meet the need for high capacity and
ubiquitous coverage. Meanwhile, there also exist a number of
LUs covered by each LBS. If the number of LUs is too large,
LUs’ experience may be degraded due to insufficient spectrum
resources. To tackle this challenge, we assume that LBSs
in our model can exploit the NOMA technique to improve
spectral efficiency and utilize successive interference cancel-
lation (SIC) to combat the inter-user interference resulted from
the non-orthogonal spectrum use. Note that LBSs transmit
at much lower power than that of the MBS and they can
communicate with each other directly to achieve cooperative
resource allocation.
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This heterogeneous network model greatly increases the
security vulnerability of information transmissions due to the
open wireless environment and the flexible user access. Several
single-antenna eavesdroppers (abbreviated as Eves in Fig.1)
may exist in both the macrocell and the local cells. Gen-
erally speaking, these eavesdroppers may passively wiretap
private information of either an MU or an LU individually
in a non-colluding case. Yet, an even worse scenario occurs
when there exist collusive eavesdroppers that can exchange
illegally acquired information with each other to enhance their
wiretapping capability.

Note that the HetNet model in [7] considers sparsely de-
ployed LUs within a local cell with perfect downlink channel
state information, whereas our model assumes the existence of
densely deployed LUs in a local cell, imperfect channel state
information, and NOMA-incurred interference among LUs.
Moreover, our study focuses on the secrecy performance of
the HetNet while [7] investigates coverage, spectral efficiency,
and energy efficiency.

In this paper, we employ cooperative jamming to prevent
Eves from eavesdropping on target users. The key idea is
to purposely exploit the inter-user interference emitted from
MBSs or LBSs to cooperative legitimate users to degrade
the channel quality of the eavesdroppers, without having to
generate intentional jamming signals. As we know, intentional
jamming of eavesdroppers comes at the cost of extra power
emission and hence lowered power efficiency, which can be
effectively avoided when treating inter-user interference as
cooperative jamming. We can deliberately design one user’s
information-bearing signals as jamming signals targeted at
eavesdroppers. Therefore, we exploit inter-user jamming sig-
nals to achieve secure physical layer transmission with power
efficiency. For clear exposition of the HetNet structure in
Fig. 1, we provide the major variables and their semantic
meanings in Table II.

TABLE II: List of the major variables

Variable Definition
M The number of MUs
KM The number of antennas of the MBS
KL The number of LBSs
L The number of LUs covered by each LBS
PM The maximum transmit power of an MBS
PL The maximum transmit power of each LBS

MUm The mth MU
MEn The nth Eve to eavesdrop the information sent to MUm

LUl The lth LU
LEn The nth Eve to eavesdrop the information sent to LUl

hm The channel vector from the MBS to MUm

hMEn The channel vector from the MBS to MEn

gl The channel vector from the MBS to LUl

gLEn The channel vector from the MBS to LEn

hl The channel gain from LBS to LUl

hLEn The channel gain from LBS to LEn

B. Uncertainty of Channel Estimation
The transmission performance greatly depends on the ac-

curacy of channel estimation. Various channel estimation
techniques can be employed, such as data-aided, blind and
semi-blind techniques [51], [52]. Obviously, all channel esti-
mation methods introduce errors. In this case, one can only

obtain imperfect CSI, which means that the estimated channel
characteristic, h (or h), is partially uncertain. We can employ
an Euclidean ball (or circle) to characterize the uncertainty for
the legitimate channels as well as the wiretapping channels,
i.e.,

H = {h | ∥h− ĥ∥ ≤ θ} (or H = {h | |h− ĥ| ≤ θ}), (1)

where the estimated result, ĥ (or ĥ), is the center of the ball (or
circle), and the radius θ is determined by the chosen channel
estimator and the sensing time. Note that error-free channel
estimation corresponds to θ = 0. Then the actual channel state
can be formulated as follows:

h = ĥ+∆h (or h = ĥ+∆h), (2)

where the uncertainty ∆h (or ∆h) is norm-bounded by
∥∆h∥ ≤ θ (or |∆h| ≤ θ).
Note that channel estimation may be a non-trivial task in

practical scenarios, especially for the CSI estimation of the
eavesdroppers. In this paper, we assume that only imperfect
CSIs of all users can be available.

C. Data Transmissions in Heterogeneous Networks

Within a macrocell, the MBS with KM antennae sends
private information sm to the mth MU via MaMIMO. Since
the MBS has larger power than LBSs, it is reasonable for
MUs to ignore signal interference resulted from LBSs. The
signal vector transmitted by MBS to M MUs is denoted by
s = [s1, ..., sM ]T ∈ CM×1 with E[smsHm] = 1, where si is an
information symbol of MUi. The signal vector s is multiplied
by a transmit beamforming matrix, Ω = [w1, ...,wM ] ∈
CKM×M , before transmission. wi ∈ CKM×1 is the beam-
forming vector for MUi. Let pm denote the transmit power
allocated to MUm. Then the received information at the mth
MU (MUm) and the nth Eve (MEn) can be expressed as

ym =
√
pmhmwmsm +

M∑
i=1,i̸=m

√
pihmwisi + zm, (3)

yMEn =
√
pmhMEnwmsm+

M∑
i=1,i̸=m

√
pihMEnwisi+ zMEn , (4)

where the first term on the right-hand side of (3) and (4)
refers to the private information received by MUm and MEn,
respectively, and the second term represents the interference
among the MUs. Since MEs intend to wiretap the information
sent to MUm, the second term can be considered as a
cooperative jamming signal for secure transmissions. Here,
hi ∈ C1×KM and hMEn ∈ C1×KM , denote the channel state
vectors from the MBS to MUi and to MEn, respectively.
Besides, zm ∼ CN (0, σ2

m) and zMEn ∼ CN (0, σ2
MEn

) are the
additive white Gaussian noise (AWGN) at MUm and MEn,
respectively.
Within a local cell, the lth LU may receive private informa-

tion from its LBS. Different from the case of the macrocell,
LUs may exploit SIC technology to decode different users,
in which the interference caused by the decoded users is
subtracted before decoding other users. Generally speaking,



1536-1276 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2019.2912611, IEEE
Transactions on Wireless Communications

5

the decoding order is related to channel fading coefficients, and
a user with a better channel state can eliminate the interference
of other users with poor channel states. Thus, without artificial
noise, the secrecy rate of an LU whose channel gain is lower
than those of the eavesdroppers with SIC may be zero. In
this case, we may require that the LBS to stop sending
any private information to the LU 1. Thus, if we ignore the
cooperation between the macrocell and local cells, we only
need to focus on the LUs with better channel conditions than
the eavesdroppers.

Taking the same channel fading model as that adopted
by [53], [54], we assume that data transmissions from an
LBS to all its LUs experience a block fading channel, in
which a fading coefficient remains constant within a time
slot but changes independently from one slot to another.
We assume that the channel gains of the LUs are sorted as
0 < |ĥ1|2 ≤ ... ≤ |ĥl|2 ≤ ... ≤ |ĥL|2. Furthermore, we
consider a worse case where the eavesdroppers also adopt the
SIC technology; thus we have 0 < |ĥ1|2 ≤ ... ≤ |ĥng |2 ≤
|ĥLEn |2 ≤ |ĥng+1|2 ≤ ... ≤ |ĥl|2, where ng ∈ [0, L − 1],
0 < |ĥ0|2 < |ĥL|2, and ĥLEn denotes the estimated channel
gain from the LBS to the nth Eve (LEn) when N colluding
eavesdroppers wiretap the information sent to LUl.

Accordingly, the received signals at LUl and LEn can be
respectively expressed as

yl =hl

√
ρlPLxl + hl

L∑
j=l+1

√
ρjPLxj

+∆hl

l−1∑
j=1

√
ρjPLxj + gl

M∑
i=1

√
piwisi + zl, (5)

and

yLEn =hLEn

√
ρlPLxl + hLEn

L∑
j=ng+1

j ̸=l

√
ρjPLxj (6)

+∆hLEn

ng∑
j=1

√
ρjPLxj + gLEn

M∑
i=1

√
piwisi + zLEn ,

where the first term on the right-hand side of (5) and (6)
refers to the private information received by LUl and LEn,
respectively. The second term is the inter-user interference
among local users after SIC decoding from users of larger
channel gains, and the third term is the residual interference
due to channel estimation errors from users of smaller channel
gains [55]. The fourth term denotes the interference caused
by the MBS. Also note that zl ∼ CN (0, σ2

l ) and zLEn ∼
CN (0, σ2

LEn
) are the AWGN at LUl and LEn. Here, gl and

gLEn are respectively the channel vectors from the MBS to LUl

and to LEn, ρj (
∑L

j=1 ρj = 1) is a power allocation factor
that describes the local signal power transmitted to LUj , and
PL is the maximum power of a local cell.

1Particularly, secure transmissions for a user whose channel gain is lower
than those of its eavesdroppers should be guaranteed by using cryptography
technologies at upper layers [49].

According to the received information of the legitimate user
and Eve, we define the corresponding secrecy rate as follows:

Rx(γx, ΓX) = log(1 + γx)− log(1 + ΓX), (7)

where γx ∈ {γm, γl} represents the received SINR of MUm

or LUl and ΓX ∈ {ΓME, ΓLE} denotes the aggregate SINR of
N collusive eavesdroppers in a macrocell or a local cell. As
claimed in [56], one can consider the collusive eavesdroppers
as a super eavesdropper with N antennae who intends to
wiretap the information sent to either MUm or LUl. It is
possible to perform equal-gain combining (EGC) of available
eavesdroppers’ SINR to calculate the aggregate SINR of the
super eavesdropper. Here, we believe this is a feasible case for
multiple collusive eavesdroppers. As a result, the SINR values
in (7) can be computed as

γm =
pm|hmwm|2∑M

i=1,i̸=m pi|hmwi|2 + σ2
m

, (8)

ΓME =

∑N
n=1 pm|hMEnwm|2∑N

n=1(
∑M

i=1,i̸=m pi|hMEnwi|2 + σ2
MEn

)
, (9)

γl =
ρlPL|hl|2

Q
(in)
l +

∑M
i=1 pi|glwi|2 + σ2

l

, (10)

and

ΓLE =

∑N
n=1 ρlPL|hLEn |2∑N

n=1(Q
(in)
e +

∑M
i=1 pi|gLEnwi|2 + σ2

LEn
)
, (11)

where Q
(in)
l = |hl|2PL

∑L
j=l+1 ρj + |∆hl|2PL

∑l−1
j=1 ρj and

Q
(in)
e = |hLEn |2PL

∑L
j ̸=l

j=ng+1
ρj + |∆hLEn |2PL

∑ng

j=1 ρj are
the interference powers of the local cell for LUl and LEn,
respectively. Note that the numerators in these SINR ex-
pressions represent the powers of the received signals, while
the denominators denote the power sum of the cooperative
jamming signals and AWGN.

IV. SECURE TRANSMISSION ALGORITHMS WITH
IMPERFECT CSI

Based on the above preliminary definitions, we present three
robust optimization formulations for secrecy maximization
under channel uncertainty in this section. First, for a macrocell
with cooperative jammers, we present a robust beamforming
algorithm to mitigate the wiretapping capability of collusive
macro eavesdroppers. Then, for a local cell with NOMA-
enabled inter-user interference, we provide a robust power
allocation algorithm to counter against collusive local eaves-
droppers. Finally, we develop a joint optimization algorithm
that can simultaneously satisfy the secrecy requirements of a
target MU and a target LU in a tiered system.

A. Robust Beamforming Algorithm (RBA) at a Macrocell

Generally speaking, we need to increase the secrecy rate of
a target MUm as much as possible while satisfying the SINR
requirements of other MUs. In addition, the total power of the
wireless system should be bounded. Taking into account these
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constraints, we obtain the following optimization problem for
MUm:

max
{wi}M

i=1

Rm(γm, ΓME) (12a)

s.t. γi ≥ ϵi, i ∈ [1,M ] (12b)
M∑
i=1

pi∥wi∥2 ≤ PM , (12c)

where ϵi is the threshold of the minimum acceptable SINR of
each MUi and PM represents the maximum transmit power
of the MBS.

The beamforming design in (12) hinges on the CSI h, but
we only have an estimated ĥ at hand. We opt to a robust design
based on the worst feasible case. The Lemma 1 specifies
the minimum γm and the maximum ΓME with respect to the
channel uncertainty.

Lemma 1. Considering the channel uncertainty defined in (1),
the minimum γm and the maximum ΓME are

γ̃m =
Tr(Ĥ↓

mWm)
M∑
i=1
i̸=m

Tr(Ĥ↑
mWi) + σ2

m

, (13)

and

Γ̃ME =

N∑
n=1

Tr(Ĥ↑
MEnWm)

N∑
n=1

M∑
i=1
i̸=m

(
Tr(Ĥ↓

MEnWi) + σ2
MEn

) , (14)

where Wi = wiw
H
i , Ĥ↑ , ĥH ĥ+ ζI, Ĥ↓ , ĥH ĥ− ζI, and

ζ , θ2 + 2θ∥h∥ is an upper bound of the uncertainty.

Proof. See Appendix A.

Using the worst-case SINR results in Lemma 1, we trans-
form (12) into a robust formulation as follows:

RBA: max
{wi}M

i=1

Rm(γ̃m, Γ̃ME) (15a)

s.t. γ̃i ≥ ϵi, i ∈ [1,M ] (15b)
M∑
i=1

pi∥wi∥2 ≤ PM (15c)

Intuitively, (15) consists of a fractional objective function
and a set of affine inequalities. Thus, it is non-convex and is
hard to solve. In the following we relax some constraints in
(15) and employ the Taylor series expansion to transform it
into a second-order cone program (SOCP).

Lemma 2. (Taylor series expansion) Let fa,H(w, x) =
wHHw
x−a and ub,H(w) = bwHHw. The first-order Taylor series

expansions around certain points (w∗, x∗) and w∗ are as
follows [57]:

Fa,H(w, x,w∗, x∗) =
2Re{w∗HHw}

x∗ − a
− w∗HHw∗

(x∗ − a)2
(x− a),

Ub,H(w,w∗) = (−w∗HHw∗ + 2Re{w∗HHw})b.

Proof. See Appendix B.

Theorem 1. The non-convex problem (15) can be transformed
into (16), which is a tractable SOCP problem 2, where Iζ , ζI
and α0, α1, α2 are three slack variables satisfying 0 ≤ α1 ≤
1 + γ̃m, 0 ≤ α2 ≤ 1

1+Γ̃ME
, α1α2 ≥ α2

0.

Proof. See Appendix C.

It is generally known that a SOCP form problem is convex.
Thus, (16) can be solved by existing convex optimization
problem solvers such as CVX [58]. The algorithm of our
proposed RBA is summarized as Algorithm 1.

Remark 1. (Convergence) Our RBA employs an iterative
process to find the optimal beamforming vectors for the
considered secrecy rate maximization. The optimal beamform-
ing vectors {w1, ...,wM} is calculated by solving problem
(16) for a given {w∗

1, ...,w
∗
M , α∗

1, α
∗
2}. For each iteration,

{w∗
1, ...,w

∗
M , α∗

1, α
∗
2} is updated from the optimal solutions

of the last iteration. Hence, {w∗
1, ...,w

∗
M , α∗

1, α
∗
2} is always

feasible for the next iteration. As a result, the objective metric
α0 which reveals the secrecy rate increases (or at least non-
decreasing) during the whole iterative process. Yet, it has an
upper limit due to the constraint of MBS’s transmit power.
Thus, the proposed RBA can converge.

Remark 2. (Conservative solutions) Our RBA is mainly aimed
at maximizing the secrecy rate of the MUs. The CSI of all
legitimate MUs and eavesdroppers are imperfect and are
available at the MBS. Note that the result of our optimization
problem indicates the worst case secrecy rate of the system.
Thus, our algorithm provides a conservative strategy. And our
solution subsumes the perfect CSI case by setting θ = 0.

Remark 3. (Non-collusive solutions) Although the scenario
of collusive eavesdroppers is taken into account in RBA, it is
applicable to the case of non-collusive eavesdroppers (i.e., set
N = 1): when the eavesdroppers are non-collusive, we only
consider the one with the best channel state.

B. Robust Power Allocation Algorithm (RPA) at Local Cells

The above analysis on the MUs’ secrecy rate only considers
the inter-MU interference, while ignoring the interference
caused by the LBSs. This is because the transmit powers of
the LBSs are low and do not produce strong interference on
the MUs. Nevertheless, at the local cell tier, an LU is subject
to not only the interference of other LUs of the same local
cell, but also the interference from the MBS. Considering the
complex interference structure in NOMA-enabled local cells,
we now develop a robust power allocation algorithm for the
LUs in the case of collusive eavesdropping.
Similar to the optimization problem presented in the previ-

ous subsection, we formulate a power allocation optimization
problem aiming at maximizing the worst-case achievable se-
crecy rate. Suppose that the imperfect CSIs of all LUs are
available to their LBSs as well as the MBS. We focus on the
secrecy rate of an LU (i.e., LUl) whose information is wire-
tapped by collusive eavesdroppers. Note that the total power

2Without loss of generality, we assume all variances of AWGN are equal
to 1 in our article.
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max
{wi}Mi=1
α0,α1,α2

α0 (16a)

s.t. ∥[2wH
1 ĥ

H

m, ..., 2wH
m−1ĥ

H

m, 2wH
m+1ĥ

H

m, ..., 2wH
M ĥ

H

m, 2
√
ζ1wH

1 , ..., 2
√
ζm−1wH

m−1,

2
√
ζm+1wH

m+1, ..., 2
√
ζMwH

M , (t1 − 1)]T ∥ ≤ t1 + 1 (16b)

∥[2wH
1 ĥ

H

ME1
, ..., 2wH

M ĥ
H

ME1
, 2wH

1 ĥ
H

ME2
, ..., 2wH

M ĥ
H

ME2
, ..., (16c)

2wH
1 ĥ

H

MEN
, ..., 2wH

M ĥ
H

MEN
, 2wH

m

√
ζME1 , ..., 2w

H
m

√
ζMEN , 2

√
N, (t2 − 1)]T ∥ ≤ t2 + 1 (16d)

∥[2wH
1 ĥ

H

i

√
ϵi, ..., 2wH

i−1ĥ
H

i

√
ϵi, 2wH

i+1ĥ
H

i

√
ϵi,

..., 2wH
M ĥ

H

i

√
ϵi, 2wH

i

√
ζi, 2

√
ϵi, (t3i − 1)]T ∥ ≤ t3i + 1, i ∈ [1,M ] (16e)

∥[√p1wH
1 ,

√
p2wH

2 , ...,
√
pMwH

M ]T ∥ ≤
√
PM (16f)

∥[2α0, (α1 − α2)]
T ∥ ≤ α1 + α2 (16g)

α0, α1, α2 > 0 (16h)

Algorithm 1 A Robust Beamforming Algorithm

Initialization:
δ: a convergence threshold;
k: the number of iterations.

1: Transform the original problem (12) into the worst-case
optimization problem (15) based on Lemma 1;

2: Transform the non-convex problem (15) into a SOCP
solvable one (16) based on Lemma 2 and Theorem 1;

3: Initialize beamforming vector set {w∗
1, ...,w

∗
M} satisfying

(15c); set α∗
1 and α∗

2 to any positive values; k = 0;
4: while |α(k)

0 − α
(k−1)
0 | ≤ δ do

5: Set k = k + 1;
6: Solve problem (16) with {w∗

1, ...,w
∗
M , α∗

1, α
∗
2} to find

an optimal solution for {w(k)
1 , ...,w

(k)
M , α

(k)
1 , α

(k)
2 } and

αk
0 ;

7: {w∗
1, ...,w

∗
M , α∗

1, α
∗
2} = {w(k)

1 , ...,w
(k)
M , α

(k)
1 , α

(k)
2 };

8: end while
9: return {w1, ...,wM} = {w∗

1, ...,w
∗
M}.

of all the transmitters should satisfy the power constraint.
Therefore, the power allocation optimization for LUl can be
formulated as follows:

RPA: max
{ρj}L

j=1

Rl(γ̃l, Γ̃LE) (19a)

s.t. γ̃j ≥ ϵj , j ∈ [1, L] (19b)
L∑

j=1

ρj = 1, (19c)

where ϵj is a threshold of the minimum acceptable SINR for
LUj . Considering the uncertainty of channel estimation, we
employ ĥ↑ , ĥ + θ, ĥ↓ , ĥ − θ, Ĝ↑ = ĝH ĝ + Iζ and
Ĝ↓ = ĝH ĝ − Iζ . Therefore, the minimum SINR of LUl and
the maximum SINR of the collusive eavesdroppers can be

expressed as below,

γ̃l =
ρlPL|ĥ↓

l |2
L∑

j=l+1

ρjPL|ĥ↑
l |2 + θ2l

l−1∑
j=1

ρjPL +
M∑
i=1

Tr(Ĝ↑
lWi) + σ2

l

,

and

Γ̃LE =

N∑
n=1

ρlPL|ĥ↑
LEn |2

N∑
n=1

|ĥ↓
LEn |2

L∑
j=ng+1

j ̸=l

ρjPL +
M∑
i=1

Tr(Ĝ↓
LEnWi) + σ2

LEn

 .

Obviously, (19) is non-convex; thus we introduce two slack
variables β1, and β2, and employ Taylor series expansion (i.e.,
Lemma 3) to transform it into a convex optimization problem
shown in (20).

Lemma 3. (Taylor series expansion) Let va,b(x, y) = ay
x−b .

The first-order Taylor series expansion of va,b(x, y) at a
certain point (x∗, y∗) is:

Va,b(x, y, x
∗, y∗) =

ay

x∗ − b
+

ay∗

(x∗ − b)2
(x− x∗).

Proof. Please refer to Appendix B for the prove of Lemma 3.
We omit the proof here because of its similarity to Lemma 2.

Theorem 2. The non-convex problem (19) can be transformed
into the tractable problem (20), where β1 and β2 are two slack
variables satisfying 0 ≤ β1 ≤ 1 + γ̃l and 0 ≤ β2 ≤ 1

1+Γ̃LE
.

Proof. See Appendix D.

Obviously, the problem (20) can be efficiently solved by
available solvers. Similar to Algorithm 1, we employ an
iterative method to find the optimal power allocation factor ρj .
Note that RPA needs the beamforming vectors of the MBS in
advance; thus the optimal ρj of RPA is affected by the solution
of RBA.

Remark 4. (Convergence) At each iteration, new solutions,
i.e., (ρ∗1, ..., ρ

∗
L, β

∗
1 , β

∗
2), are calculated by solving the problem
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max
{ρj}Lj=1
β1,β2

log β1 + log β2 (20a)

s.t.

L∑
j=l+1

ρjPL|ĥ↑
l |

2 + θ2l

l−1∑
j=1

ρjPL +

M∑
i=1

Tr(Ĝ↑
lWi) + 1− VPL|ĥ↓

l |2,1
(β1, ρl, β

∗
1 , ρ

∗
l ) ≤ 0 (20b)

N∑
n=1

L∑
j=ng+1

j ̸=l

(
ρjPL|ĥ↓

LEn
|2 + ρlPL|ĥ↑

LEn
|2 − VPL|ĥ↓

LEn
|2,0(β2, ρj , β

∗
2 , ρ

∗
j )

+
(β∗

2)
2 − 2β∗

2 + β2

(β∗
2)

2

(
M∑
i=1

Tr(Ĝ↓
LEn

Wi) + 1

))
≤ 0 (20c)

ϵj

 L∑
q=j+1

ρqPL|ĥ↑
j |

2 + θ2j

j−1∑
q=1

ρqPL +

M∑
i=1

Tr(Ĝ↑
jWi) + 1

− ρjPL|ĥ↓
j |

2 ≤ 0, j ∈ [1, L] (20d)

L∑
j=1

ρj = 1 (20e)

β1 > 0, β2 > 0 (20f)

(20). These solutions can be considered as the initial values
for the next iteration. The initial values are always feasible for
solving the problem (20) in the current iteration, and thus the
objective function log β1+log β2 is non-decreasing with each
iteration. Yet, log β1 + log β2 cannot exceed an upper bound
due to the power constraint of the LBSs. Thus, the convergence
of RPA is guaranteed.

Remark 5. (Non-collusive and conservative solutions) RPA
provides an optimal secrecy rate for both collusive and indi-
vidual eavesdropping. The secrecy rate is computed under the
premise that the imperfect CSIs of the users (including MUs,
LUs, and eavesdroppers) are available at the LBSs. Therefore,
the RPA algorithm is conservative and can be employed in the
case of individual eavesdropping.

Remark 6. (ZFBF-based sub-optimization problem) It is
noted that if we only consider the secrecy rates of the LUs,
the MBS can be considered as a friendly jammer to send
cooperative jamming signals. In this case, we may use ZFBF to
eliminate the co-channel interference (CCI) from the MBS to a
target LU in an LBS, while still interfering with the reception
of the eavesdroppers. More specifically, the MBS calculates its
ZFBF vectors based on the known CSI of the target LU. Then
the LBS implements RPA based on the ZFBF vectors sent by
the MBS. According to this ZFBF-based design, the secrecy
rates of the LUs can be improved. The detailed process to
obtain the ZFBF vectors can be found in [59], [60].

C. Robust Joint Optimization (RJO) across Tiers

We have developed two algorithms focusing on the secrecy
rate optimization of either a target MU or a target LU individ-
ually. On one hand, RBA achieves the maximum secrecy rate
for the MU by the optimal design of beamforming vectors at
the MBS while ignoring the interferences of the signals sent
by the MBS to the LUs. On the other hand, RPA considers

the interferences from the MBS to the LU as a constant to
achieve a sequential optimization, and the LU’s secrecy rates
can be optimized only after completing the optimization of
the MUs, i.e., after obtaining the beamforming vectors. As a
result, neither RBA nor RPA can achieve system-level optimal
solutions (including both MUs and LUs).
For system-level optimization of the two-tier network, it

is also viable to jointly optimize the secrecy sum rate of
a target MU and a target LU, at the expense of increased
design complexity. To this end, we now develop a robust joint
optimization algorithm (RJO) under collusive eavesdropping in
this subsection. RJO is subject to the power constraints of the
MBS and the LBSs as well as the received SINR requirements
of the MUs and the LUs in all local cells. Without loss of
generality, we select the first local cell as the cooperative local
cell. This problem is formulated as (21).

RJO: max
{wi}Mi=1

{ρ1,j}Lj=1

Rm(γ̃m, Γ̃ME) +Rl(γ̃l, Γ̃LE) (21a)

s.t. γ̃i ≥ ϵi, i ∈ [1,M ] (21b)
γ̃k,j ≥ ϵk,j , j ∈ [1, L], k ∈ [1,KL] (21c)∑M

i=1
pi∥wi∥2 ≤ PM (21d)∑L

j=1
ρk,j = 1, k ∈ [1,KL], (21e)

where k ∈ [1,KL] represents the kth local cell, and {ρk,j}Lj=1

denotes the power allocation factors of the kth local cell. The
objective function in (21) denotes a secrecy sum rate of MUm

and LU1,l.
Because of the fractional form and logarithmic function in

the objective function, (21) is a non-convex problem that is
difficult to solve. Applying the D.C. approximation program-
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ming [18], we can rewrite the objective function as follow.

max
{Wi}Mi=1
{ρ1,j}Lj=1

Φ, (22)

where

Φ =ϕ1(W1, ...,WM , ρ1,1, ..., ρ1,L)

− ϕ2(W1, ...,WM , ρ1,1, ..., ρ1,L), (23)

and

ϕ1(W1, ...,WM , ρ1,1, ..., ρ1,L)

= log(φ1,1) + log(φ1,2) + log(φ1,3) + log(φ1,4),

ϕ2(W1, ...,WM , ρ1,1, ..., ρ1,L)

= log(φ2,1) + log(φ2,2) + log(φ2,3) + log(φ2,4),

where {φ1,i}4i=1 and {φ2,i}4i=1 are all functions about
(W1, ...,WM , ρ1,1, ..., ρ1,L), which are defined as follows.

φ1,1 =Tr(Ĥ↓
mWm) +

M∑
i=1
i̸=m

Tr(Ĥ↑
mWi) + σ2

m,

φ1,2 =ρlPL|ĥ↓
l |

2 +
L∑

j=l+1

ρjPL|ĥ↑
l |

2 + θ2l

l−1∑
j=1

ρjPL

+
M∑
i=1

Tr(Ĝ↑
lWi) + σ2

l ,

φ1,3 =

N∑
n=1

(
M∑
i=1
i̸=m

Tr(Ĥ↓
MEn

Wi) + σ2
MEn

)
,

φ1,4 =
N∑

n=1

(
|ĥ↓

LEn
|2

L∑
j=ng+1

j ̸=l

ρjPL

+
M∑
i=1

Tr(Ĝ↓
LEn

Wi) + σ2
LEn

)
,

φ2,1 =

N∑
n=1

Tr(Ĥ↑
MEn

Wm)

+
N∑

n=1

(
M∑
i=1
i̸=m

Tr(Ĥ↓
MEn

Wi) + σ2
MEn

)
,

φ2,2 =

N∑
n=1

ρlPL|ĥ↑
LEn

|2 +
N∑

n=1

(
|ĥ↓

LEn
|2

L∑
j=ng+1

j ̸=l

ρjPL

+

M∑
i=1

Tr(Ĝ↓
LEn

Wi) + σ2
LEn

)
,

φ2,3 =
M∑
i=1
i̸=m

Tr(Ĥ↑
mWi) + σ2

m,

φ2,4 =
L∑

j=l+1

ρjPL|ĥ↑
l |

2 + θ2l

l−1∑
j=1

ρjPL

+
M∑
i=1

Tr(Ĝ↑
lWi) + σ2

l .

Note that the optimization variables of the above optimiza-
tion problem are {Wi}Mi=1 rather than {wi}Mi=1. It can be seen
that ϕ1 and ϕ2 are both concave functions, so the objective
function remains non-convex. To deal with it, we approximate
ϕ2 by its first order Taylor approximation.
Assuming that {{W∗

i }Mi=1, {ρ∗1,j}Lj=1} is a feasible solution
of RJO, we can replace ϕ2 by its first order Taylor series
expansion at the feasible solution {{W∗

i }Mi=1, {ρ∗1,j}Lj=1}, i.e.,
the objective function of (22) can be transformed into

max
{Wi}Mi=1
{ρ1,j}Lj=1

{Φ∗ − Y1 − Y1 − Y3 − Y4} , (24)

where Φ∗,Y1, Y2, Y3, Y4 are given by (25).
As a result, the initial optimization problem (21) can be

transformed into a convex one as follows.

RJO: max
{Wi}Mi=1
{ρ1,j}Lj=1

{Φ∗ − Y1 − Y1 − Y3 − Y4} (26a)

s.t. γ̃i ≥ ϵi, i ∈ [1,M ] (26b)
γ̃k,j ≥ ϵk,j , j ∈ [1, L], k ∈ [1,KL] (26c)∑M

i=1
piTr(Wi) ≤ PM (26d)∑L

j=1
ρk,j = 1, k ∈ [1,KL] (26e)

Rank(Wi) = 1, i ∈ [1,M ], (26f)

To solve (26), we can first drop the rank-one constraint on
{Wi}Mi=1, and then by utilizing a similar iterative method to
find a feasible solution set, including the beamforming vectors
{Wi}Mi=1 and the power allocation factors {ρ1,j}Lj=1. Finally,
RT method in [61] can be used to obtain the optimal rank-
one solution {wi}Mi=1 from {Wi}Mi=1. In brief, the entire D.C.
approximation programming can be summarized as follows.

Algorithm 2 The D.C. Approximation Programming Algo-
rithm
Initialization:

δ: a convergence threshold;
k: the number of iterations.

1: Set Φ(0) = 0, k = 1,
2: Initialize {W∗

1, ...,W
∗
M , ρ∗1,1, ..., ρ

∗
1,L} satisfying (26);

3: repeat
4: Set k = k + 1;
5: Solve problem (26) with {W∗

1, ...,W
∗
M , ρ∗1,1, ..., ρ

∗
1,L}

to find an optimal solution for
{W1, ...,WM , ρ1,1, ..., ρ1,L};

6: {W∗
1, ...,W

∗
M , ρ∗1,1, ..., ρ

∗
1,L}=
{W1, ...,WM , ρ1,1, ..., ρ1,L};

7: until |Φ(k) − Φ(k−1)| ≤ δ
8: Obtain the optimal rank-one solution {wi}Mi=1 by using

RT method in [61].
9: return {wi}Mi=1 and {ρ1,j}Lj=1.

Remark 7. (Convergence) For the same reason as that elab-
orated for the previous two algorithms, the iterative conver-
gence of the proposed RJO is guaranteed [18].
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Φ∗ = ϕ1(W1, ...,WM , ρ1,1, ..., ρ1,L)− ϕ2(W
∗
1, ...,W

∗
M , ρ∗1,1, ..., ρ

∗
1,L), (25a)

Y1 =

N∑
n=1

 M∑
i=1
i̸=m

Tr
(
Ĥ↓

MEn(Wi −W∗
i )
)
+Tr

(
Ĥ↑

MEn(Wm −W∗
m)
)

φ2,1(W∗
1, ...,W

∗
M , ρ∗1,1, ..., ρ

∗
1,L) ln 2

, (25b)

Y2 =

N∑
n=1

(ρ1,l − ρ∗1,l)PL|ĥ↑
LEn |2 +

N∑
n=1

|ĥ↓
LEn |2

L∑
j=ng+1

j ̸=l

(ρ1,j − ρ∗1,j)PL +
M∑
i=1

Tr
(
Ĝ↓

LEn(Wi −W∗
i )
)

φ2,2(W∗
1, ...,W

∗
M , ρ∗1,1, ..., ρ

∗
1,L) ln 2

, (25c)

Y3 =

M∑
i=1
i̸=m

Tr
(
Ĥ↑

m(Wi −W∗
i )
)

φ2,3(W∗
1, ...,W

∗
M , ρ∗1,1, ..., ρ

∗
1,L) ln 2

, (25d)

Y4 =

L∑
j=l+1

(ρ1,j − ρ∗1,j)PL|ĥ↑
l |2 + θ2l

l−1∑
j=1

(ρ1,j − ρ∗1,j)PL +
M∑
i=1

Tr
(
Ĝ↑

l (Wi −W∗
i )
)

φ2,4(W∗
1, ...,W

∗
M , ρ∗1,1, ..., ρ

∗
1,L) ln 2

. (25e)

Remark 8. (Non-collusive and conservative solutions) Simi-
larly, RJO is designed for collusive eavesdropping based on
imperfect CSIs. Thus its solution is conservative and it can be
degenerated to an individual eavesdropping scenario.

Remark 9. (systematic design) The proposed RJO is mainly
aimed at the secrecy sum rate of multiple users under collusive
eavesdropping. It takes into account the SINR requirements
of all the legitimate users (including all MUs and LUs in the
system). Obviously, it has a great practical significance in real-
world heterogeneous network applications.

V. NUMERICAL ANALYSES

In this section, we evaluate the secrecy performance of our
algorithms in a typical heterogeneous network. This network
consists of a central MBS and two LBSs. The number of MUs
is M = 5, while the number of LUs in each local cell is
assumed to be L = 3. Suppose that there are two collusive
MEs for a target MU and two collusive LEs for a target LU.
The MBS has a larger transmit power than the LBSs in our
simulations. All multi-antenna channel vectors are generated
by an independent circularly symmetric complex Gaussian
(CSCG) distribution, and all single-antenna channel vectors
follow an independent and identically distributed Gaussian
distribution.

A. The Convergence of the Proposed Algorithms
We first investigate the convergence of our proposed algo-

rithms and report the results in Fig. 2. In testing the RBA,
the number of antennas of the MBS in Fig. 2(a) is set to
KM = 192. All channel vectors of the MUs and MEs are
i.i.d. and follow CN (0, 1). We employ the same threshold of
the minimum acceptable SINR for each MUi, i.e., ϵi = 5.
It is evident from Fig. 2(a) that the secrecy rate increases as
the number of iterations increases and eventually converges
to constants. And the larger the MBS’s transmit power, the
higher value of the converged secrecy rate.

To test RPA, we randomly generate five channel parameters
in an LBS, with each satisfying a standard normal distribution,
i.e., hl ∼ N (0, 1) and hLEn ∼ N (0, 1). Here, we assume that
collusive eavesdroppers may target LU2. The transmit power
of the LBS is about 10 dBm lower than that of the MBS.
Besides, the threshold of the received SINR for each LU is
set to 0.50. From Fig. 2(b), one can see that the secrecy rate of
the LU is low due to the low transmit power of the LBS. Yet,
the secrecy rate still grows along with the increasing transmit
power of the LBS.
Moreover, we consider a more practical application scenario

in which the local cells are deployed in areas where the signals
from the MBS are weak. In this case, these signals may
interfere with those of the LUs, but not too much. Thus, we
set that gl ∼ CN (0, 0.1) and gLEn ∼ CN (0, 0.1). Fig. 2(c)
provides the secrecy sum rate of a target MU and a target LU.
One can see that the rate improves with the increasing transmit
power of the MBS or the LBSs. On the other hand, compared
with the LBSs, the MBS’s power has a greater impact on the
secrecy sum rate, due to the fact that the MBS has a higher
transmit power.
Note that the results in Fig. 2 are obtained under the assump-

tion of error-free channel estimation, i.e., θ = 0. The impact
of channel uncertainty is to be discussed in Subsection V-D.

B. The Effect of the Number of Antennas

Next, we analyze the secrecy performance of RBA when
the number of antennas of the MBS varies. Here, we provide
three results based on various transmit powers of the MBS. It
can be seen from Fig. 3 that more antennas leads to higher
secrecy rates, due to larger array gain steered toward the target
MU. Besides, one can conclude that more antennas with a
lower power may result in a higher secrecy rate than that
of less antennas with a higher power. This indicates that we
may increase the complexity of the MBS antennas to save the
transmit power, which is an advantage of MaMIMO.
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Fig. 2: The convergence of different algorithms in various scenarios.
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Fig. 3: Secrecy rate vs. the number of antennas
for different transmit power of the MBS.

30 32 34 36 38 40

Transmission power of MBS (dBm)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
h

e 
a

v
er

a
g

e 
S

IN
R

 o
f 

M
U

s

10
-3

K
M

=16

K
M

=128

K
M

=192

Fig. 4: The average SINR of the MUs
vs. the transmit power of the MBS.

16 17 18 19 20

Transmission power of LBS (dBm)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

T
h

e 
a
v

er
a

g
e 

S
IN

R
 o

f 
L

U
s

Fig. 5: The average SINR of the LUs
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C. The Effect of SINR Constraints

Taking into account different transmit powers of the MBS,
we present the average received SINR of the MUs (except for
the target MU) in Fig. 4. Here, we omit the SINR constraints
of the MUs (i.e., removing (12b) from the optimization).
Similarly, we depict the average SINR of the LUs (except
for the target LU) vs. the transmit power of the LBS when
ignoring all the SINR constraints, i.e., removing the constraint
(19b), in Fig. 5.

From these figures, we notice that the average SINR of both
the MUs and the LUs is relatively low once we remove the
SINR constraints. Besides, one can see that the average SINR
decreases with the increase of the MBS’s transmit power, as
shown in Fig. 4. This is because more power may be allocated
to the target MU rather than other MUs when the MBS’s
transmit power increases. Besides, the average SINR decreases
along with the increasing number of antennas in the MBS,
as the MBS transmits messages to the target MU with more
power on the main lobe when using beamforming with more
antennas. As a result, other MUs get less signal power but
experience more interference.

On the contrary, the average SINR of the LUs improves
with the increasing transmit power of the LBS as shown
in Fig. 5. This can be explained by the fact that the LBSs
employ NOMA to transmit signals. Particularly, the principle
of NOMA suggests that more power should be allocated to

the users with poor channel quality. Thus, the growth of the
transmit power of an LBS can increase not only the power of
the target LU but also those of other LUs.
We illustrate the secrecy performance under different SINR

constraints of the MU and the LU in Fig. 6 and Fig. 7,
respectively. The transmit power of the MBS is set to PM = 30
dBm in Fig. 6. Intuitively, higher SINR constraints of the
MUs lead to worse secrecy performance of the target MU
because the MBS needs to allocate more power to other
MUs to meet their SINR demands. Moreover, as the number
of antennas increases, the decrease in the secrecy rate due
to the increased SINR demands become less obvious. This
phenomenon demonstrates that MaMIMO has a strong ability
to handle multi-user SINR demands. Yet, the decrease in
the target LU’s secrecy rate in Fig. 7 is much clearer. This
indicates that low-power nodes require more power to meet the
multi-user SINR demands. Note that the optimization problem
does not yield any feasible solution with Q = 16 dBm because
the SINR demands are overly high for the limited resource in
transmit power. Thus, we assume that the SINR demands of
the LUs cannot exceed 2.0.
According to our observations on the secrecy performance

under different SINR constraints, it is of great practical signif-
icance to take into account other users’ QoSs when optimizing
the secrecy rate of a target user. Further, there is an additional
advantage of adopting MaMIMO, which can satisfy the multi-
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user SINR demands.

D. Security performance Analysis

Since there are no existing secure transmission schemes of
the tiered HetNets, we design a benchmark based on [62] to
analyze the secure performance of the proposed algorithms.
The benchmark is designed to optimize the throughput of
target users while guaranteeing the QoS of other users. We
first maximize the sum rate of a target MU and a target LU
without considering security. The goal is to obtain the non-
security-oriented beamforming vectors {w∗

i }Mi=1 and the pow-
er allocation factors {ρ∗1,j}Lj=1. And then we derive the final
secrecy rate based on these non-security-oriented parameters.
More specifically, the optimization problem can be expressed
as follows.

Benchmark: max
{wi}Mi=1

{ρ1,j}Lj=1

log(1 + γm) + log(1 + γ1,l) (27a)

s.t. γi ≥ ϵi, i ∈ [1,M ] (27b)
γk,j ≥ ϵk,j , j ∈ [1, L], k ∈ [1,KL] (27c)∑M

i=1
pi∥wi∥2 ≤ PM (27d)∑L

j=1
ρk,j = 1, k ∈ [1,KL]. (27e)

Note that we still consider the QoS requirements of all users
in the system. However, we do not consider robustness, i.e.,
the channel estimation errors are ignored.

The benchmark optimization problem is a non-convex op-
timization problem. We can transform it into a semi-definite
program (SDP) problem by applying the semidefinite relax-
ation technique. We can also apply the D.C. approximation
programming in Subsection IV-C. Here, we omit the specific
solution process.

Moreover, we design a non-robust joint optimization (NR-
JO) scheme as the baseline to compare the robustness with our
proposed algorithms. The NRJO is simply a special case of
RJO by setting θ = 0, that is, ignoring the channel estimation
errors.

In our RJO scheme, we conservatively set θ = 0.05 as
the maximum channel estimation errors. Then, both RJO and
NRJO are run to produce their respective optimal solutions
in terms of the beamforming vectors and power allocation
factors. These solutions are then used to calculate the achieved

secrecy rate when the actual channel estimation error is
θ = 0.01.
The results in Fig. 8 show the secure performance of

the three schemes. Here, the non-security-oriented benchmark
scheme does guarantee a certain level of security, as claimed in
[62]. The secure performance of the security-oriented schemes,
i.e., NRJO and RJO perform better than that of the benchmark
scheme. In addition, RJO demonstrates strong robustness in
resisting channel estimation errors.

VI. CONCLUSION

In this paper, we have studied secure transmissions in a
MaMIMO and NOMA enabled 5G HetNet with cooperative
jamming. Three secrecy transmission algorithms, RBA, RPA
and RJO, have been developed to be respectively applied in
the macrocell tier, the local cell tier, and both tiers of the
HetNet. Different from the existing literature, these algorithms
can cope with two realistic yet challenging issues, imperfect
CSI and collusive eavesdroppers. To make these problems
tractable, the original non-convex optimization problems have
been transformed into the corresponding convex ones. Finally,
the secrecy performance of our proposed algorithms has been
evaluated under different parameter settings by considering the
number of antennas in the MBS, the SINR constraints of both
the MUs and the LUs, as well as the channel uncertainty.
Numerical results corroborate the effectiveness of our pro-
posed algorithms. As future work, it is of interest to investigate
secure transmissions when the CSI of the eavesdroppers is
completely unknown.

APPENDIX A
PROOF OF LEMMA 1

For robust beamformer design, here we evaluate the worst-
case SINR quantities at the macro cell. In the presence of the
channel uncertainty modeled in (1), the minimum γ̃ of the
target MU’s SINR γm in (8) is given by

γ̃m = min
∥Λm∥

pm|hmwm|2∑M
i=1,i̸=m pi|hmwi|2 + σ2

m

, (28)
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where Λ , ĥH∆h+∆hH ĥ+∆hH∆h. Obviously, we can
derive a bound of ∥Λ∥, i.e.,

∥Λ∥ = ∥ĥH∆h+∆hH ĥ+∆hH∆h∥
≤ ∥ĥH∥∥∆h∥+ ∥∆hH∥∥ĥ∥+ ∥∆hH∥∥∆h∥
≤ θ2 + 2θ∥ĥH∥ , ζ.

According to a lower bound and a upper bound proposed by
[63], [64], one can minimize the numerator of (28) and maxi-
mize its denominator to obtain γ̃m. Assuming Ĥ↑ = ĥH ĥ+ζI
and Ĥ↓ = ĥH ĥ− ζI, the minimum value of the numerator is

min
∥Λm∥

wH
m(Ĥm + Λm)wm =wH

m(Ĥm − ζmI)wm

=Tr(Ĥ↓
mWm),

and the maximum value of the denominator is

max
∥Λm∥

M∑
i=1,i̸=m

wH
i (Ĥm + Λm)wi + σ2

m

=
∑M

i=1,i̸=m
wH

i (Ĥm + ζmI)wi + σ2
m

=
∑M

i=1,i̸=m
Tr(Ĥ↑

mWi) + σ2
m.

Thus we can obtain (13). Similarly, the maximum ΓME can be
derived as (14). This completes the proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

For given functions fa,H(w, x) = wHHw
x−a and ub,H(w) =

bwHHw, their first-order Taylor series expansions around the
points (w∗, x∗) and w∗ can be expressed as

Fa,H(w, x,w∗, x∗) =fa,H(w∗, x∗) (29)

+
∂fa,H(w, x)

∂w

∣∣∣∣
(w∗,x)

(w −w∗)

+
∂fa,H(w, x)

∂x

∣∣∣∣
(w,x∗)

(x− x∗),

U(w,w∗) = ub,H(w∗) +
∂ub,H(w)

∂w

∣∣∣∣
(w∗)

(w −w∗). (30)

According to [57], the differentiations of functions
fa,H(w, x) = wHHw

x−a and gb,H(w) = bwHHw can be given
by

∂fa,H(w, x)

∂w
=

wH(H+HH)

x− a

a
= 2

wHH

x− a
, (31)

∂fa,H(w, x)

∂x
= −wHHw

(x− a)2
, (32)

∂gb,H(w)

∂w
= bwH(H+HH)

b
= 2bwHH, (33)

where the reason for the existence of steps a
= and b

= is that
H is a symmetric matrix.

Accordingly, we can deduce the first order Taylor expan-
sions in Lemma 2.

APPENDIX C
PROOF OF THEOREM 1

For the non-convex problem, we introduce two slack vari-
ables α1 and α2. Then (15) can be rewritten as follows:

max
{wi}M

i=1,α1,α2

α1α2 (34a)

s.t. 1 + γ̃m ≥ α1 (34b)

1 + Γ̃ME ≤
1

α2
(34c)

γ̃i ≥ ϵi, i ∈ [1,M ] (34d)
M∑
i=1

pi∥wi∥2 ≤ PM . (34e)

Here, (34b) and (34c) are two newly introduced constraints.
They, together with (34a), transform (15) into a relaxed opti-
mization problem. Obviously, (34b) to (34e) are non-convex
functions because of the fractional forms. Next, we employ
Lemma 1 and Lemma 2 to transform these constraints into
the convex ones, i.e., (16b) to (16e).
Firstly, by substituting (13) and (14), the above optimization

problem can be transformed as follows,

max
{wi}Mi=1,
α1,α2

α1α2 (35a)

s.t. 1 +

M∑
i=1,
i ̸=m

wH
i Ĥ

↑
iwi ≤

wH
mĤ

↓
mwm

α1 − 1
(35b)

N∑
n=1

 M∑
i=1,
i ̸=m

wH
i Ĥm,nwi + wH

mĤ
↑
MEnwm + 1

 ≤

M∑
n=1


M∑

i=1,
i ̸=m

(
wH

i Ĥ
↓
MEnwi

α2
+ wH

i IζMEn
wi

)
+

1

α2

 (35c)

1 +

M∑
j=1,
j ̸=i

wH
j Ĥiwj

 ϵi + wH
i Iζiwi ≤

wH
i Ĥiwi + ϵi

M∑
j=1,
j ̸=i

wH
j Iζjwj , i ∈ [1,M ] (35d)

M∑
i=1

∥wi∥2 ≤ PM , (35e)

where (35b), (35c) and (35d) are non-convex. The reason is
that these can be expressed as f(x1) ≤ f(x2), where both
f(x1) and f(x2) are convex functions but f(x1) − f(x2) is
non-convex. Based on Lemma 2, for the points (w∗, x∗) and
w∗, we can transform the right sides of (35b), (35c) and (35d)
into linear form.
Moreover, we introduce another slack variable α0 to trans-

form the quasi-convex objective function (maxα1α2) into a
convex function (maxα2

0). As a result, we should add an
additional constraint, α1α2 ≥ α2

0, to ensure an equivalent
transformation. Because α1 ≥ 0 and α2 ≥ 0, α2

0 ≤ α1α2 ⇔
4α2

0 + (α1 − α2)
2 ≤ (α1 + α2)

2 and then this additional
constraint can be rewritten as the form of inequality (16g).



1536-1276 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2019.2912611, IEEE
Transactions on Wireless Communications

14

To sum up, the non-convex problem (15) can be transformed
into a tractable SOCP form as shown in (16), where three
auxiliary linear functions t1, t2, t3i are defined as follows,

t1 =F1,Ĥ↓
m
(wm, α1,w

∗
m, α∗

1)− 1,

t2 =

N∑
n=1

{
M∑
i=1
i̸=m

(
F0,Ĥ↓

MEn
(wi, α2,w

∗
i , α

∗
2)

+ U1,IζMEn
(wi,w∗

i )

)
+

2α∗
2 − α2

(α∗
2)

2

}
,

t3i =U1,Ĥi
(wi,w

∗
i ) +

M∑
j=1
j ̸=i

Uϵi,Iζi
(wj ,w

∗
j ), i ∈ [1,M ].

This completes the proof of Theorem 1.

APPENDIX D
PROOF OF THEOREM 2

Similar to the proof of Theorem 1, (19) can be rewritten
via the relaxation technique as follows:

max
{ρj}L

j=1,β1,β2

log β1 + log β2 (36a)

s.t. 1 + γ̃l ≥ β1 (36b)

1 + Γ̃LE ≤
1

β2
(36c)

γ̃j ≥ ϵj , j ∈ [1, L] (36d)
L∑

j=1

ρj = 1. (36e)

Here, we can utilize (20), (20), and Lemma 3 to transform
the non-convex constraints (from (36b) to (36d)) into convex
forms (from (20b) to (20d)).

Firstly, by substituting (20) and (20), (36b) and (36c) can
be transformed as follows,

L∑
j=l+1

ρjPL|ĥ↑
l |

2 + θ2l

l−1∑
j=1

ρjPL

+

M∑
i=1

Tr(Ĝ↑
lWi) + 1 ≤

PL|ĥ↓
l |2ρl

β1 − 1
, (37)

N∑
n=1

L∑
j=ng+1

j ̸=l

(
ρjPL|ĥ↓

l,n|
2 + ρlPL|ĥ↑

l,n|
2

+
M∑
i=1

Tr(Ĝ↓
LEn

Wi) + 1

)
≤

N∑
n=1

L∑
j=ng+1

j ̸=l

PL|ĥ↓
l,n|2ρj
β2

+

M∑
i=1

Tr(Ĝ↓
LEnWi) + 1

β2

 . (38)

Here, the optimization problem is still non-convex and
non-linear due to the righthand sides of the constraints (37)
and (38). Again, we can apply the first-order Taylor series
expansion approximations to further transform it into a convex
and solvable optimization problem. According to Lemma 3,

the righthand sides of (37) and (38) can be approximated by
their first-order Taylor series expansions at {{ρ∗j}Lj=1, β

∗
1 , β

∗
2}.

Eventually, the initial optimization problem can be trans-
formed into a convex optimization problem, due to its concave
objective function and linear constraints.
This completes the proof of Theorem 2.
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