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Abstract

Dramatic appearance variation due to pose constitutes
a great challenge in fine-grained recognition, one which re-
cent methods using attention mechanisms or second-order
statistics fail to adequately address. Modern CNNs typi-
cally lack an explicit understanding of object pose and are
instead confused by entangled pose and appearance. In this
paper, we propose a unified object representation built from
pose-aligned regions of varied spatial sizes. Rather than
representing an object by regions aligned to image axes,
the proposed representation characterizes appearance rel-
ative to the object’s pose using pose-aligned patches whose
features are robust to variations in pose, scale and viewing
angle. We propose an algorithm that performs pose estima-
tion and forms the unified object representation as the con-
catenation of pose-aligned region features, which is then
fed into a classification network. The proposed algorithm
attains state-of-the-art results on two fine-grained datasets,
notably 89.2% on the widely-used CUB-200 [46] dataset
and 87.9% on the much larger NABirds [45] dataset. Our
success relative to competing methods shows the critical im-
portance of disentangling pose and appearance for contin-
ued progress in fine-grained recognition.

1. Introduction

What makes fine-grained visual categorization (FGVC),
commonly referred to as fine-grained recognition, different
from general visual categorization? One important distinc-
tion lies in the difficulty of the datasets. General-purpose
visual categorization often involves the classification of ev-
eryday objects, such as chairs, bicycles and dogs, which are
easy for humans to identify. Fine-grained recognition, on
the other hand, consists of more detailed classifications such
as identifying the species of a bird. This is extremely dif-
ficult for non-expert humans as it requires familiarity with
domain knowledge and hundreds of hours of training. Com-
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Figure 1: Motivation for Pose-Aligned Regions. Two
terns of the same species (images on left), but in differ-
ent poses, have dramatically different appearances while
two different species of woodpecker (images on right) ap-
pear nearly identical except for the barring pattern on the
outer tail (and the shape of the beak). The large intra-
class variance and small inter-class variance of the full im-
ages make the feature space distance inaccurately reflect the
true class relationships. Such observations motivate the use
of pose-aligned regions that disentangle intrinsic part ap-
pearance from variations in object pose, leading to a fea-
ture space that facilitates correctly classifying the species
or fine-grained category.

puter algorithms for fine-grained recognition have the po-
tential to be far more accurate than most humans and can
thus benefit millions of people by providing services like
species recognition through mobile applications [7, 2, 28].

An intrinsic challenge of fine-grained recognition is
small inter-category variance coupled with large intra-
category variance. Discriminative features for two visually
similar categories often lie in a few key locations; while
the appearances of two objects from the same category may
dramatically different due simply to pose variation. The en-
tangling of appearance and pose presents a great challenge
and motivates the need for stable appearance features that
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Figure 2: Filter Visualization. We visualize the 25 im-
ages that maximally activate an example filter. Different
semantic parts (e.g. red beak, red eye, et al.) with similar
appearance can all activate this filter, causing confusion for
the classifier when such semantic parts would be discrimi-
native. This problem can be solved by disentangling pose
and appearance.

are invariant to variations in pose, scale and rotation.
It’s almost instinct for humans to identify and visually

compare key locations across objects in different poses,
establishing correspondences. Convolutional neural net-
works, however, struggle on this task because the convo-
lutional mechanisms are purely appearance-based and lack
an understanding of geometry or pose. Their built-in pool-
ing mechanisms can tolerate a certain amount of scale and
rotation variation [4, 5, 6, 36, 47], but exactly how much
is still largely an open question [39]. We show this in Fig-
ure 2 via the visualization of some final convolutional layer
responses. We show the top-activated images together with
the feature map as a masked region. It’s evident that this
convolutional filter is attuned to red beaks. However, due
to its lack of pose-awareness, this filter also fires strongly
at visually similar parts such as red crowns, red throats, red
eyes, etc. This causes confusion for the classifier because
of the noisy entangled pose-appearance representation.

In the feature embedding space, dramatic pose variation
can make images of the same category farther separated and
images of different but visually-similar categories appear
closer together as shown in Figure 1. It is therefore vital
that pose-aligned regions, which explicitly factor out pose
variation, should be the building block of the disentangled
image representation.

Recent efforts in fine-grained recognition have largely
focused on two directions. One is algorithms related to
second-order statistics[9, 16, 32, 24]. Representative works
include Bilinear Pooling[32], its memory efficient vari-
ants [16, 24], and those that extend to higher-order statis-
tics [9]. The idea is to project the features into a higher-

order space where they can be linearly separated. Such
methods have both sound theoretical support and work well
in practice. However, they look at the image globally, and
thus having little hope of finding subtle highly-localized dif-
ferences. Also, they lack interpretability and insights for
further improvement.

The second direction is attention-based methods [15, 29,
35, 41, 48, 57] that use subnetworks to propose possible
discriminative regions to attend to. However, the regions
proposed by these networks are often weakly-supervised by
some heuristic loss function, lacking proof that they really
attend to the right location. Both of these directions suf-
fer from a lack of pose awareness and moreover the entan-
glement of pose and appearance features limits their per-
formance. Furthermore, training data is often scarce in
the long-tailed distributions seen in many fine-grained do-
mains; in such cases, both techniques suffer as the limited
training imagery does not adequately span the space of pose
and viewing angle for each category, hindering their ability
to recognize any species in any pose.

Based on the above observations, we propose to disen-
tagle pose and appearance via a unified object represen-
tation built upon pose-aligned regions. Those regions are
characterized by rectangular patches defined relative to two
keypoints anchors. The final object representation is an
aggregation of the features from all pose-aligned regions.
This representation comprises a pose-invariant and over-
complete basis of features at multiple scales. We contrast
the pose-aligned regions with weakly-supervised regions
that are generated in a purely data-driven fashion and with
“axis-aligned” rectangular bounding boxes centered around
a keypoint or landmark. The features from these types of
regions are subject to natural variations in pose, scale and
viewing angles. We experimentally demonstrate that axis-
aligned regions are less-capable of classifying fine-grained
datasets compared to pose-aligned regions (see Figure 6).

To automate the process of applying the unified object
representation to fine-grained recognition, we propose an
algorithm that first performs pose-estimation via keypoint
detection, enabling the generation of pose-aligned region
features. The local features from these aligned regions, re-
gions of varying size/scale relative to the object, are con-
catenated to comprise the unified representation for the ob-
ject and are then fed into a classification network to produce
a final classification prediction. We call the proposed al-
gorithm PAIRS: Pose and Appearance Integration for Rec-
ognizing Subcategories. It achieves state-of-the-art results
on two key fine-grained datasets: CUB-200-2011 [46] and
NABirds [45]. Keypoint annotations are used only dur-
ing training. In consideration of the annotation cost, key-
point annotations may actually be less expensive and time-
consuming than collecting additional training samples be-
cause keypoints can be annotated by human non-experts



whereas fine-grained image category annotations require
the consensus of multiple domain experts.

2. Background and Related Work
Fine-grained visual categorization (FGVC) lies between

generic category-level object recognition like VOC [12],
ImageNet [40], COCO [31], etc. and instance-level clas-
sification like face recognition or other visual biometrics.
The challenges inherent to FGVC are many. Differences be-
tween similar species are often subtle and highly-localized
and thus difficult even for (non-expert) humans to identify.
Dramatic pose changes introduce great intra-class variance.
Generalization also becomes an issue as the network strug-
gles to find truly useful and discriminative features.

FGVC has drawn broad interest within the computer
vision community. Early work includes [10, 13, 34, 50,
51, 53, 54], two of which explicitly tackle the challeng-
ing interplay of pose and appearance. Birdlets [13], a
volumetric poselet representation, was proposed to ac-
count for the pose and appearance variation. Zhang,
et al. [54] further proposed pose-normalized descriptors
based on computationally-efficient deformable part models.
While they seek to address pose and appearance, their hand-
engineered features result in limited success.

Our work is related to part-based CNN models [3, 21,
25, 30, 52, 55] which seek to decompose the object into se-
mantic parts. Zhang, et al. [52] employed the R-CNN [19]
object detection framework for object and part detection.
Part-Stacked CNN [22] proposes a fully-convolutional net-
work for keypoint detection and a two-stream convolu-
tional network for object- and part-level feature extraction.
Deep LAC [30] proposes a valve linkage function for back-
propagation chaining, forming a deep localization, align-
ment and classification system. Zhang et al. [55] introduce
an end-to-end learning framework for joint learning of pose
estimation, normalization and recognition. These models
all use a handful of image-aligned patches, which can ap-
pear very different depending on object pose and viewpoint.

Our work is perhaps most closely related to POOF [1]
which also uses keypoint pair patches. Unlike POOF, we
employ a fully-convolutional network for keypoint detec-
tion. And where POOF computes 5000 patch features per
image, whereas we’re only computing 35-70.

Other methods focus on object alignment. Unlike previ-
ous methods which relied on detectors for part localization,
Gavves et al. [17, 18] propose to localize distinctive details
by roughly aligning the objects using just the overall shape.
Spatial Transformer Networks [23] introduced a differen-
tiable affine transformation learning layer to transform and
align the object or part of interest.

Another direction in fine-grained recognition is feature
correlation and kernel mapping. Bilinear Pooling [32] com-
putes a second order-polynomial kernel mapping on CNN

features. Several extensions [9, 16, 24] followed this simple
paradigm. Compact Bilinear Pooling [16] proposes a com-
pact representation to approximate the polynomial kernel,
reducing memory usage. Low-rank Bilinear Pooling [24]
represents the covariance features as a matrix and applies
a low-rank bilinear classifier. Kernel Pooling [9] proposes
a general pooling framework that captures the higher-order
interactions of features in the form of kernels. This line of
work achieves relatively good results with only weak su-
pervision. These approaches, however, attend to the image
globally, lacking a mechanism for part-level discovery. This
constrains their potential for further improvement.

Inspired by human attention mechanisms, many attempts
have been made to guide the attention of CNN models to-
ward informative object parts. Works along this direction
include [15, 29, 35, 41, 48, 57]. Zheng et al. [58] proposes
a multi-attention convolutional neural network (MA-CNN),
where part generation and feature learning can reinforce
each other. Lam et al. [29] leverages long short-term mem-
ory (LSTM) networks to unify new patch candidate genera-
tion and informative part evaluation. This work establishes
the current state-of-the-art performance on CUB-200-2011
dataset, achieving an accuracy of 87.5% with part annota-
tions (excluding works like [8, 27] that utilize outside train-
ing data ). The key difference in our PAIRS representation
is that it integrates pose and appearance information and ex-
plicitly achieves multi-scale attention over semantic object
parts at the same time.

3. PAIRS - Pose and Appearance Integration

We illustrate our algorithm pipeline in Figure 3. We
first apply a simple yet effective fully-convolutional neu-
ral network for keypoint-based pose estimation. We follow
the prevailing modular design paradigm by stacking convo-
lutional blocks that have similar topology. We show that
our pose estimation network achieves superior results on
the CUB-200 dataset, both qualitatively and quantitatively.
Second, given detected keypoint locations, a rectangular re-
gion is aligned to each keypoint pair and cropped from the
original image. The region is then similarity-transformed
into a uniform-sized patch (see Figure 4), such that both
keypoints are at fixed positions across different images. As
the representation is normalized to the keypoint locations,
the patches are well-aligned, independent of the pose or the
camera’s angle. Third, we train a separate CNN model as
the feature extractor for each pose-aligned patch representa-
tion. Last, we explore different classification architectures
for the unified representation based on the assumption that
parts differ in their respective contributions for different im-
ages and classes. We find surprisingly that the Multi-Layer
Perception (MLP), while perhaps the most simple method,
achieves the best final classification accuracy.
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Figure 3: Overview of the Proposed Framework for Fine-grained Recognition. We first apply a pose-estimation network
to the image for keypoint detection. Pose-aligned regions are then extracted from the image using the predicted keypoint
locations. We then extract features from the individual regions using region-specific networks. The concatenated features
collectively form a unified multi-scale representation that is invariant to pose, scale and rotation change. This representation
is then fed into a classification network for the final fine-grained classification.

3.1. Pose Estimation Network

Pose estimation networks usually follow one of two
paradigms for prediction. The first is to directly regress dis-
crete keypoint coordinates, e.g. (xi, yi). Representative ap-
proaches include [44]. The alternate approach [43] instead
uses a two-dimensional probability distribution heat map to
represent the keypoint location. We call this resulting multi-
channel probability distribution matrix a pose tensor.

In this paper, we adopt the second strategy, proposing
a fully convolutional network to produce the desired pose
tensor. Specifically, we take a pretrained classification net-
work and remove the final classifier layer(s), retaining what
can be seen as an encoder network that encodes strong vi-
sual semantics. We follow the prevailing modular design
to stack repeated building blocks to the end of the network.
This building block consists of one upsampling layer, one
convolutional layer, one batch normalization layer and one
ReLU layer. The parameter-free bilinear interpolation layer
is used for upsampling. The convolutional layer uses 1x1
kernel and reduces the input channel size by half. Last, a
final convolutional layer and upsampling layer are added
to produce the pose tensor. There are many modifications
one can make to enhance this basic model, including us-
ing larger 3x3 kernels, adding more convolutional layers to
the building block, adding residue connection to each block,
stacking more building blocks, and using a learnable trans-
posed convolutional layer for upsampling. We find these
structures provide only limited improvement but introduce
more parameters, and we therefore adopt this simpler archi-
tecture.

3.2. Patch Generation

Historically, part-based representations would model
parts either as rectangular regions [14, 52] or keypoints.

Keypoints are convenient for pose-estimation. However, the
square or rectangular patches, each centered on a given key-
point and extracted to characterize the part’s appearance, are
far from optimal in the presence of rotation or more general
pose variation. We instead, propose to use keypoint pairs as
anchor points in extracting pose-aligned patches.

Given two keypoints ~pi = (xi, yi) and ~pj = (xj , yj), we
define the vectors ~rij = ~pj − ~pi, and ~̂rij = ~rij/||~rij ||2. We

also define the vector ~̂tij = ~̂z × ~̂rij , a unit vector perpen-
dicular to ~rij , and the distances d = ||~rij ||2 and h = d/2
for convenience. We seek to extract a region around ~pi and
~pj that is aligned with ~rij and has dimensions 2d × d. The
four corners of this rectangular region are then given by:[

(~pi − h~̂rij) + h~̂tij (~pj + h~̂rij) + h~̂tij

(~pi − h~̂rij)− h~̂tij (~pj + h~̂rij)− h~̂tij

]
(1)

A similarity-transform is computed from these corners
to extract the pose-normalized patch. Patches generated in
this way contain stable pose-aligned features – features near
these keypoints appear at roughly the same location in a
given patch across different images, independent of the ob-
ject’s pose or the camera viewing angle. Details are shown
in Figure 4.

3.3. Patch Feature Extraction

A separate patch classification network is trained for
each posed-aligned A | B patch as a feature extractor (A and
B are keypoints). The softmax outputs from those networks
are concatenated as the representation for the input image.
Alternately, the final convolutional layer output after pool-
ing can also be used and the result is comparable. We find
that leveraging symmetry can help reduce the overall num-
ber of classifiers by nearly 50%, described in Section 4.2.
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Figure 4: Pose-aligned Patch Generation. For each pair
of keypoints, we fit a rectangular region whose corners are
calculated as in (b). Objects in different poses and/or from
different viewpoints can be compared directly by proposed
keypoint pair patches shown in (a). Details are described in
Section 3.2.

The proposed patch representation can be seen as a spatial
pyramid that explicitly captures information from different
parts at multiple spatial scales on the object.

3.4. Classification Network

To fully utilize the abundant patch representations, we
explore different ways to form a strong combining network.
Based on the assumption that only a small fraction of the
patches contains discriminative information and patch con-
tribution should therefore be weighted, we explore the fol-
lowing strategies:

Fixed patch selection: take the average score for a fixed
number of top ranking patches. This strategy can also pre-
dict the performance ceiling of our PAIRS representation.

Dynamic patch selection: employ the sparsely gated
network [42] to dynamically learn a selection function to
select a fixed number of patches for each given input.

Sequential patch weighting: apply a Long Short Term
Memory Network (LSTM) to reweight different patch fea-
tures in a sequential way.

Static patch weighting: learn a Multi-Layer Perceptron
network, which essentially applies a non-linear weighting
function to combine the information from different patches.

We find surprisingly that the MLP network, though the
simplest network architecture, achieves the best accuracy
of all the above approaches. Details are included below in
Section 4.3.

4. Experimental Evaluation
We test our algorithm on two datasets, CUB-200-2011

and NABirds. The CUB-200-2011 [46] dataset contains
200 species of birds with 5994 training images and 5794
testing images. The NABirds [45] dataset has 555 common
species of birds in North America with a total number of

48,562 images. Class labels and keypoint locations for each
image are provided in both datasets.

Figure 5: Keypoint Detection Results. Red dots represent
the predicted location and black dots are the ground truth
locations. Three failure patterns are shown in the third row,
which are caused by the visual similarity between symmet-
ric parts and dramatic and rare pose.

4.1. Keypoint Prediction Performance

We use PCK (Percentage of Correct Keypoints) score to
measure the accuracy of our keypoint prediction approach.
A predicted keypoint p is “correct” if its within a small
neighborhood of the ground truth location g, i.e. if

||p− g||2 ≤ c ∗max(h,w)

where c = 0.1 is the constant factor used previously [21, 55]
and max(h,w) is the longer side of the bounding box.

We evaluate our pose-estimation network on CUB-200-
2011 and compare our PCK scores with those of other meth-
ods in Table 1. We achieve the highest score on all 15 key-
points with a considerable margin. We do especially well on
legs and wings where other models struggle to make precise
predictions. Visualization results are shown in Figure 5.

Although we localize the wings and legs better than com-
ponents, they are still worst predicted parts for our model.
This is caused by significant pose changes as well as the in-
herent appearance similarity between symmetric parts. We
also note that using keypoints to denote the wings isn’t al-
ways appropriate – wings are two-dimensional planar parts
that cover a relatively large area. Designating a keypoint for
the wing can be ill-posed, it’s challenging to decide which
point represents the wing location best. In fact, the ground
truth keypoint location of the CUB dataset is the average of
five annotators’ results and it’s quite hard for them to reach
a consensus.



back beak belly breast crown forehead left-eye left-leg
Huang et al. [21] 80.7 89.4 79.4 79.9 89.4 88.5 85.0 75.0
Zhang et al. [55] 85.6 94.9 81.9 84.5 94.8 96.0 95.7 64.6
Ours 91.3 96.8 89.0 91.5 96.9 97.6 96.9 80.2

left-wing nape right-eye right-leg right-wing tail throat Overall
Huang et al. [21] 67.0 85.7 86.1 77.5 67.8 76.0 90.8 86.6
Zhang et al. [55] 67.8 90.7 93.8 64.9 69.3 74.7 94.5 N/A
Ours 76.8 94.6 97.4 80.3 75.3 83.6 97.4 90.5

Table 1: Pose Estimation (Keypoint Prediction). Accuracy measured with PCK (Percentage of Correct Keypoints).

4.2. Patch Classification Network

We adopt the ResNet-50 [20] architecture for the patch
classification network due to its high performance and
compact GPU footprint, though alternate architectures like
VGG and Inception can easily be adapted. We now discuss
two considerations which facilitate training.

Symmetry. For a given object with n keypoints, the total
number of patches that can be extracted is

(
n
2

)
=

n(n− 1)

2
= O(n2)

which increases quadratically with n. Most real world ob-
jects show some kind of symmetry. Due to the visual sim-
ilarity inherent in symmetric pairs of keypoints (for ex-
ample, right and left eyes, wings and feet), we treat each
pair as a hybrid keypoint in the patch generation process.
Many real-world objects, like birds, cats, cars, etc. are sym-
metric in appearance. Based on this observation, we pro-
pose to merge the patches for a symmetric pair of key-
points into a hybrid patch category, e.g. left-eye | tail
and right-eye | tail can be merged into the hybrid
eye | tail pair, with an appropriate flip of one patch.

As a result, the total number of patch classification net-
works is reduced from 105 to 69 for the CUB dataset; on
the NABirds dataset, the number is reduced from 55 to 37.

Visibility. Due to self-occlusion or foreground-occlusion,
not all keypoints are visible in the image. Previous
works [21] would eliminate patches with invisible keypoints
to purify the input data. Contrarily, we find that this would
hurt the performance of the patch classifiers. Details for
comparison can be found in Figure 7a. We believe this
degradation is caused by the reduction in training set size.
This is a similar finding to [27] that noisy but abundant data
consistently outperforms clean but limited-size data. Addi-
tionally, the pose-estimation network will make a reason-
able guess even if the keypoint is invisible. So during patch
classifier training, all keypoints are considered visible by
taking the maximally-activated location.

4.3. Classification Network

Based on the assumption that image patches should con-
tribute differently to classification, four different strategies
are explored and we describe the details in this section.
Fixed patch selection. We assume that only a few patches
contain useful information and others are redundant or even
act as noise. We propose a fixed patch selection strategy to
keep the best k patches. A greedy search algorithm would
evaluate all n choose k combinations for k ∈ [1, n]. The
number of patches grows as n! and quickly becomes in-
tractable. We thus employ the beam search [38] algorithm.
Instead of greedily searching the whole parameter space, we
iteratively consider larger and larger subsets (values of k),
while only keeping a limited number, w, of the best com-
binations at each iteration. Thus for a given k, we use the
w = 100 best patch sets from iteration k − 1, and consider,
in turn, the effect of adding each patch among those not
already in a given patch set. After all such expanded sets
are considered, the w best sets are retained toward iteration
k + 1. To explore the potentially optimal performance of
fixed patch selection on our pose-aligned patch representa-
tion, we also try this beam search on the test set with results
shown in Figure 7d. Our observation is that without over-
fitting, the potential of fixed patch selection should be well
above 89%, compared to 87.5% for the current state-of-the-
art [29]. Simply averaging the predictions of all patches
achieves 87.6% accuracy.
Dynamic patch selection. One alternative we experiment
with is the sparsely gated network [42] for dynamic patch
selection. Different from the beam search algorithm which
identifies a static set of patches for all input images, the
gated network selects different combination of patches de-
pending on the input images. A tiny network is trained
to predict weights for each patch and an explicit sparsity
constraint is imposed on the weights to only allow k non-
zero elements. A Sigmoid layer is added to normalize the
weight. The network architecture can be described as,

G(x) = softmax(top-k(H(x)))

where H(x) represents the mapping function from the in-
put image to the patch weights. G(x) is the patch selection



Approach Annotations Accuracy
Huang et al. [21] GT+BB+KP 76.2
Zhang et al. [52] GT + BB 76.4
Krause et al. [26] GT+BB 82.8
Jaderberg et al. [23] GT 84.1
Shu et al. [24] GT 84.2
Zhang et al. [56] GT 84.5
Xu et al. [49] GT+BB+KP+WEB 84.6
Lin et al. [32] GT+BB 85.1
Cui et al. [9] GT 86.2
Lam et al. [29] GT+KP 87.5
PAIRS Only GT + KP 88.7
PAIRS+Single GT + KP 89.2

Table 2: Classification score on CUB. Annotation key as
follows: GT = class labels; BB = bounding box annotation;
KP = keypoint annotations; WEB = images downloaded
from the Internet.

function. Different architectures for the tiny network are
tried and we find that a simple linear layer works well most
of the time. Best accuracy is achieved when k = 105. In-
terestingly when k=1, Our selected patch performs worse
than the best performing patch found fixed patch selection,
implying the gated network’s inability to learn useful infor-
mation for decision making.

Sequential patch weighting. Recurrent neural networks
(RNN) specialize in processing sequential data like text and
speech. RNNs have been widely adopted as an attention
mechanism to focus on different image regions sequentially.
We instead employ an RNN for sequential patch weighting,
aiming to discover different patches for decision making.
We employ a one-layer Long Short Term Memory (LSTM)
network with 512 nodes. Each node has a hidden layer of
size 1024. The last output of the sequence is selected as the
final output. We obtain 82.7% in this experiment, confirm-
ing the effectiveness of the LSTM network.

Static patch weighting The final, and as it turns out the
most effective method that we tried is the MLP network.
Our MLP network contains one hidden layer with 1024 pa-
rameters, followed by a batch normalization layer, a ReLU
layer, and then the output layer. On CUB our final accu-
racy is 88.7%, 1.2% higher than the current state-of-the-art
result. We combine the keypoint pair patches with single
keypoint patches and achieve a new state-of-the-art 89.2%
accuracy. We compare our result with several other strong
baselines in Table 2.

We also test our algorithm on the NAbirds dataset with
results shown in Table 3. Our algorithm attains an accuracy
of 87.9%, more than 5% better than the best known result.

Approach Accuracy
ResNet-50 [20] Baseline 79.2%
Bilinear CNN (PAMI 2017) [33] 79.4%
Pairwise Confusion [11] 82.8%
PAIRS 87.9%

Table 3: Performance on the NABirds dataset.
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Figure 6: Single Keypoint vs. PAIRS Patches. We com-
pare the accuracy of patches around keypoint k (green dots)
with PAIRS patches involving keypoint k (blue dots). The
x-axis is the keypoint id and the y-axis is the patch accuracy.
Most single keypoint patch are inferior to PAIRS patches in
terms of isolated patch accuracy.

4.4. Additional Study

Axis-Aligned vs. Pose-Aligned. In Figure 6, we
show a comparison of classification accuracy between pose-
aligned patches (keypoint pairs) and axis-aligned patches
(single keypoints). Axis-aligned patches consistently per-
form poorly relative to the pose-aligned patches, confirming
the effectiveness of our disentangled feature representation.

Patch Size Study. One hyper-parameter in our algo-
rithm is the pose-aligned patch size. We tried several size
options on the best performing patch and saw that accuracy
is generally higher for larger-size patches. We adopted a
256 × 512 patch size because our base model is pretrained
for this size.

Choice of Pose Estimation Network. To test the in-
fluence of the pose-estimation network on the proposed al-
gorithm, we train a separate Stacked Hourglass Network
(SHN) [37] model for comparison. While the SHN model
is about 2% better than the Fully-convolutional Network
(FCN) in it’s PCK score, the final classification accuracy
numbers are comparable.

4.5. Results Visualization

We show the classification accuracy for each patch when
considered independently on the CUB dataset in Figure 7c.
The best performing patch corresponds to belly | crown,
achieving 79.6% accuracy. The worst performing patch is
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Figure 7: Visualization of Results. (a) We show patch classification network accuracies using two strategies, visible-only
and all keypoint patches. This affirms that treating all keypoints as visible improves patch classifier accuracy. (b) Hard case
mining by correct prediction patch number with sample images ranging from hard to easy. (c) Distributions of patch classifier
performance. Some examples are shown in the text box. (d) Beam search results using two strategies, patch finding on the
training (blue) and testing (orange) sets. The latter is purely for the estimating of the potential of the PAIRS representation.

the left-leg | right-leg pair which achieves only
15.7% accuracy. Empirically, global patches perform bet-
ter in isolation than local patches, however local patches
are also very important for localizing discriminative object
parts. The best set of patches found by beam search (see
Figure 7d) provides insight – a combination of global and
local patches are selected to achieve an optimal result.

As hard cases often can only be classified by a few
highly-localized discriminative parts, the number of patches
with correct predictions reflects the difficulty of the image.
We propose to use the fraction of patches correctly predict-
ing the class of an image as an indicator of image difficulty.
In Figure 7b, a histogram is shown, plotting the number of
many images (y-axis) for which only the given number of
patches (x-axis) correctly predicted the class. Example im-
ages are shown below, ranging from hard on the left, to easy
on the right; hard cases can be due to very easily-confused
classes or to pose-estimation failure.

5. Conclusion

Pose variation constitutes a major challenge in fine-
grained recognition, one which recent methods fail to ef-
fectively address. This paper introduces a unified object
representation built upon pose-aligned patches instead of
image-aligned regions – this representation disentangles the
intrinsic appearance of an object from confounding influ-
ences such as pose variation. Our proposed algorithm at-
tains state-of-the-art performance on two key fine-grained
datasets, suggesting the critical importance of disentangling
pose and appearance in fine-grained recognition.
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