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ABSTRACT 
 

In recent work regarding gesture recognition and muscle 

computer interfaces, ultrasound-based sensing strategies 

have been demonstrated as a viable alternative to the 

pervasive surface electromyography (sEMG) modality. 

However, in order to facilitate switching between available 

gestures, both sEMG and ultrasound-based strategies have 

traditionally relied on unintuitive control mechanisms. The 

most common among these are: requiring the users to 

return to rest as an intermediary state between motions; 

mode switching through co-contraction or other ad-hoc 

user input; and switching based on muscle activations that 

are functionally unrelated to the desired motion. The 

unintuitive nature of such control has historically led to 

increased user frustration, and is often cited a major reason 

for device abandonment in the prosthetic control setting. In 

this work, we propose using an approach inspired by 

Hidden Markov Models (HMMs) with a novel continuous 

gesture recognition mechanism, for ultrasound-based 

sensing. We empirically calculate the average classification 

accuracy of our novel method during non-transitionary 

periods to be 99%. We then demonstrate that including 

predictions made during transition periods reduces this 

value to 69% Finally, by encoding the temporal 

dependency of the system within a Hidden Markov Model 

framework, we show that we can reduce the error caused 

by the instability of predictions during transitions, 

measured as the normalized Levenshtein distance from the 

true ordering, by approximately 98.8%. 
 

Index Terms  Ultrasound, Muscle Computer 

Interface, Gesture Recognition, Hidden Markov Models 
 

1. INTRODUCTION 
 

With the recent and ongoing advancements in domains 

such as robotics, medicine, prosthetics, and general muscle 

computer interfaces [1-3], there is a clear need for robust 

and intuitive control strategies that are driven by non-

invasive sensing of volitional motor intent of a human user. 

Surface Electromyography (sEMG) has found widespread 

use in these domains, and as a result a lot of research 

efforts have been devoted to building intuitive control 

around sEMG as a sensing modality [4-7]. However, low 

signal-to-noise ratio, inadequate specificity with regards to 

deep-seated muscle, sensor crosstalk and the absence of 

robust proportional control are all well-known 

shortcomings of this technology that limit functionality [8-

12]. On the other hand, ultrasound-based sensing strategies 

have been demonstrated to enable a more natural motion 

paradigm, as well as a more intuitive control interface [13-

17]. 

However, both the ultrasound and sEMG sensing 

strategies lack intuitive and directly responsive, continuous 

control. Although attempts have been made to overcome 

this problem for sEMG sensors [18-19], intuitive switching 

has yet to garner attention in ultrasound sensing paradigms. 

For a practical gesture recognition interface, a user must be 

able to transition seamlessly between motions without 

having to increase the amount of effort or cognitive load 

required to operate a device every time use of different 

hand gesture is desired. To this end, developing 

classification strategies that are robust to motion transitions 

and can make accurate classifications continuously, are key 

to the success of any muscle computer interface. 
 

2. RELATED WORK 
 

Sikdar et al. [13], Shi et al. [14], and Castellini et al. [15], 

have all demonstrated that ultrasound imaging can be used 

to classify individual finger flexion in able-bodied 

individuals with high accuracy. Akhlaghi et al. have shown 

that ultrasound based sensing strategies can be used to 

robustly classify significantly more complex hand motions, 

such as pronated grasps, in a computationally inexpensive 

manner with average offline classification accuracy of 91% 

and real-time average classification accuracy of 92% for 15 

different motions of varying complexity [16]. Furthermore, 

the technology for ultrasound imaging has been undergoing 

significant miniaturization. Hettiarachchi et al. have 

utilized the images captured from eight custom built 

transducers, arranged into two wearable bands, to classify 

muscle activity in both able-bodied and amputee 

participants [17]. These advances make ultrasound a 

suitable alternative to sEMG as a wearable sensor for 

gesture recognition. 

Of the work done in the gesture recognition domain 

the two most pertinent to the efforts of this paper are the 

works of Akhlaghi et al. on ultrasound based recognition 

[16], and the work done by Chan et al. on using HMMs for 

continuous prediction using sEMG [18]. The work 

described herein, builds directly upon the contributions of 

these two papers. 

Akhlaghi et al. utilize a nearest neighbor classifier and 

demonstrate that the simplest of classifiers could yield very 

high discriminability among classes. However, they utilize 

a feature representation that depends on the motions 

beginning at rest which forces users to return to rest in 

order to switch between motions. To remedy this, we 

utilize a new feature representation so that the dependency 

on rest is removed. We demonstrate that the new feature 

representation offers high discriminability using the same 

classification model while allowing for continuous motion 

prediction and intuitive switching. 
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Chan et al. utilize an HMM approach that encodes a 

higher probability of staying at a motion rather than 

transitioning, and an equal probability of transitioning to all 

possible classes. We adapt this approach due to its ability to 

garner high classification accuracies in their work. 

However, we modify their probabilistic model in order to 

better integrate it with the nearest neighbor classifier used 

by Akhlaghi et al and apply it to the ultrasound domain. 
 

3. EXPERIMENTAL SETUP 
 

The following sections give an overview of our approach. 

We will first describe our classification methodology and 

the evaluation metrics used to determine its merit; we then 

explain how we incorporate our classification into a HMM; 

and finally, we describe our experimental setup. 
 

3.1. Classification Methodology 
 

In order to perform continuous classification, we utilize a 

1-nearest-neighbor classifier: 

we compute the similarity between each incoming frame in 

an unknown sequence against all of the items in a 

predefined set of labeled images; each unknown frame is 

then assigned the label of the item to which it has the 

highest similarity. 

because the bounded distances it returns lend themselves 

well to an incorporation into our HMM approach discussed 

in the following section. Any bounded distance metric 

should suffice for this approach. 

We build the set of labeled images, the training set, by 

asking the user to perform a pre-selected set of motions in a 

sequence: the user starts at rest, then performs each motion 

alternated with rest, and finally ends at rest. Fig. 1 provides 

a visual representation of the motions. From this sequence, 

our algorithm extracts the frames that correspond to the end 

of each motion where the forearm muscles are at maximal 

contraction. This is done by identifying regions in a 

dynamic ultrasound sequence where the 

correlation to a rest state starts to plateau. For each motion 

in the sequence, the extracted frames corresponding to the 

end of the motion are averaged into a single representative 

frame and added to the training set. This feature 

representation removes the dependency on rest since they 

contain no temporal information and provide a mechanism 

for framewise-prediction and continuous classification. The 

frames are averaged to mitigate the effects of any small 

changes in probe positioning that may occur and the small 

transformations (translations, rotations) that may occur in 

the ultrasound images as a result.  We repeat the image 

acquisition and training process until the desired number of 

representative frames per motion is reached.  
  

3.2. Evaluation Metrics 
 

In this paper, we report the framewise classification 

accuracy of our approach to give an intuitive measure of 

success. It is important to note however, that due to the 

continuous nature of muscle deformations, it is impossible 

to define the exact discrete frame where one motion 

switches to another. Furthermore, since the muscle 

deformations during transition periods are an amalgamation 

of the two motions they connect, and thus not exclusively 

like either motion, it is very difficult to determine the 

motion class to which a given transition frame belongs. 

Therefore, in order to provide an appropriate evaluation of 

our classifier to the best of our ability, we report the 

classification accuracies both while including the transition 

frames labeled as the motion state that follows them, and 

while removing them from consideration entirely. In fact, 

the exact temporal bounds of different motions are 

somewhat inconsequential; It is more important to 

determine whether a given gesture recognition system can 

correctly predict the relative ordering of motions with 

stability so that it may propagate movement to the end 

device be it a physical or a virtual system  with the 

correct motions in a consistent and continuous manner. 

Therefore, in order to supplement framewise accuracy, 

a metric that assumes the exact positions of the temporal 

bounds, we compute a second metric of evaluation to 

quantify the stability and correctness of motion predictions; 

We compute the squared Levenshtein distance [20] 

between a predicted ordering of motions, and the true 

ordering. The Levenshtein distance is a measure of the 

number of operations (replacing, deleting, or adding items) 

required to change one ordering to another. Therefore, if 

two orderings, predicted and true, are unlike one another, 

the number of operations required to change one ordering 

into the other will be high, thus making the Levenshtein 

distance between them large; conversely if two orderings 

are exactly the same, the number of operations required to 

change one to the other will be zero thus making the 

Levenshtein distance between them be zero as well. We 

report the Levenshtein distance for our HMM 

implementations after normalization such that the squared 

Levenshtein distance for the motion ordering predicted 

without the HMM is considered 100% erroneous, the 

ground truth ordering is considered 0% erroneous, and 

everything else is scaled proportionally in between. This 

allows us to intuitively quantify the extent to which the 

error is reduced by varying the parameters of our HMM 

implementation. Henceforth, we shall refer to this measure 

as the prediction error. 
 

 
Fig. 1. Motions used for training and classification. From left to 

right, top to bottom: rest, supine key, neutral key, prone key, supine 

pinch, neutral pinch, prone pinch, supine power grasp, neutral power 

grasp, prone power grasp. 
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3.3. Hidden Markov Model Framework 
 

A complete tutorial of Hidden Markov Models can be 

found at [21]; here, we only discuss Markov Models in 

terms of their adaptation for this work. Traditionally, 

Hidden Markov Models compute the probabilistic 

likelihood of being in a particular hidden-state at the 

current timestep when given: the current emissions of some 

variables that are probabilistically related to the hidden 

states, the probabilistic likelihood of transitioning from one 

state to another, and information about the hidden-state at 

the previous timestep. In our model, we consider a non-

probabilistic, cost-based adaptation.  

The emissions at a given timestep are directly 

computed from the correlation values between the 

unknown frame at the current timestep and the training set. 

We average the correlation values by class label and 

subtract them from 1 so that high similarity values 

(correlation values close to 1) become low cost (close to 0) 

and low similarity values (correlation values close to 0) 

become high cost (close to 1). The likelihood of 

transitioning in our model is also encoded non-

probabilistically as a constant cost for transitioning to a 

new motion class and a cost of 0 for predicting the same 

motion class. The predicted motion class at a given 

timestep, t, can then be defined as: the class with the 

minimum corresponding cost at time t where cost C for a 

class i at time t is defined by eq. 1. 

 (1) 

Where  is the cost corresponding to class i, at time 

t-1;  is the emission corresponding to class j at time t-

1;  is the cost of transition from class j to class i and is 

equal to 0 when i = j and some predefined constant 

otherwise; finally,  is the emission corresponding to class 

i at time t. The cost for all classes at time t=0 is 0. It is 

important to note that after the cost  is computed for all 

classes, that the costs are normalized according to eq. 2. 

 (2) 

This ensures that the lowest computed cost of 

predicting a class is always 0 and the highest computed 

cost is always 1, thus ensuring that a strong bias is not 

developed in favor of a given class solely because it has 

been predicted continuously for a long time. 
 

3.4. Experiment 
 

Three able-bodied participants were recruited for this 

study. All experiments were approved by the institutional 

review board of our university. A custom designed cuff 

forearms to limit probe movement and ensure consistency 

in data collection. The probe was placed laterally on the 

anterior portion of the forearm at approximately 60% of the 

forearm length (closer to the elbow). Each participant was 

asked to perform nine motions alternated with rest (for a 

total of 10 classes). Five sequences were collected from 

each participant and 5-fold validation was performed for 

each participant such that four sequences were used for 

training (4 examples per class x 10 classes = 40 training 

examples) and the remaining sequence was used for testing. 

The sequences varied in length between 800 to 1100 

frames. Classification accuracy is reported for each fold, 

for each participant. The prediction error for HMMs is 

computed at all possible combinations of transition cost 

between 0 and 10 at steps of size 0.1. A visual 

representation of the effects of the different cost settings on 

the noisiness of predictions is provided (Fig. 2). The cost 

yielding the lowest average prediction error across all 

participants and all trials is reported along with the 

prediction errors themselves (Fig. 3). 
 

4. RESULTS AND DISCUSSION 
 

The best transition cost was found to be 2.2. The average 

framewise classification accuracy if the transition periods 

are not considered, was found to be 98.8%. If the transition 

periods are considered, the average framewise 

classification accuracy was found to be 69.4%. At a 

transition cost of 2.2, the average prediction error was 

lowered to 1.2%.  

TABLE I.  CLASSIFICATION ACCURACY WITH AND WITHOUT TRANSITIONS 

 Subject 1 Subject 2 Subject 3 

 With/Without With/Without With/Without 

Trial 1 100.0% 70.8% 100.0% 71.8% 100.0% 72.7% 

Trial 2 100.0% 70.3% 100.0% 67.9% 96.8% 63.1% 

Trial 3 98.6% 69.4% 95.4% 66.1% 100.0% 70.6% 

Trial 4 100.0% 68.3% 91.8% 64.7% 100.0% 69.5% 

Trial 5 100.0% 75.5% 100.0% 70.0% 100.0% 70.6% 

Average 99.7% 70.9% 97.4% 68.1% 99.4% 69.3% 

TABLE II. PREDICTION ERROR AT OPTIMAL TRANSITION COST 

 Subject 1 Subject 2 Subject 3 

Trial 1 0.2% 2.4% 6.6% 

Trial 2 0.0% 1.9% 1.0% 

Trial 3 0.3% 1.0% 1.1% 

Trial 4 0.0% 0.5% 0.0% 

Trial 5 0.0% 3.2% 0.0% 

Average 0.1% 1.8% 1.7% 
 

Our study shows that using a cost-based adaptation of 

HMMs, the noisy predictions of this classifier during 

transition periods can be easily overcome (Table 2, Fig 2 

 
Fig 2. This figure demonstrates the noisiness of predictions given 
varying transition costs (top to bottom: 0, 2.5, 10) in comparison to 

the ground truth (bottom). The colors represent different motions and 

the horizontal axis represents time. For a HMM model with 
transition cost = 0, motion predictions are noisy around transitions; 

as transition cost increases the noise in the transitions is smoothed 

out; if the transition cost is too high, the model very rarely transitions 
to a new motion. 

1193



and Fig 3). Our predictions were made in an online fashion, 

i.e. we did not change past predictions once they had been 

made, or use information from future frames to make 

current predictions. However, we did not perform testing in 

real-time in this study nor did we address the problem of 

changes in probe positioning that may result from the user 

doffing the device and donning it on another day. This 

means that the important question of prediction latency 

caused by the HMM bias against transitioning is still 

unevaluated, as is the ability of the user to adjust to the 

response of the device in real-time. Furthermore, the effect 

of utilizing one  data to make prediction on another 

day where the sensor has been removed and replaced is 

also absent in this work. We plan to continue evaluating 

these factors and improve upon this work by testing it in 

real-time settings with donning and doffing on a larger 

number of able-bodied participants as well as amputees. 
 

5. CONCLUSIONS 
 

In this work, we propose a novel algorithm that enables 

continuous prediction of the volitional motor intent of a 

user with high fidelity using ultrasound-based sensing of 

muscle activity. Our study demonstrates the feasibility of a 

continuous ultrasound based gesture recognition system 

that facilitates intuitive switching with low prediction 

errors.  
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Fig 3. The average and subject specific prediction error as impacted 

by transition cost. The minimum average prediction error was found 

to be 1.2% at a transition cost of 2.2 
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