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ABSTRACT

In recent work regarding gesture recognition and muscle
computer interfaces, ultrasound-based sensing strategies
have been demonstrated as a viable alternative to the
pervasive surface electromyography (sEMG) modality.
However, in order to facilitate switching between available
gestures, both SEMG and ultrasound-based strategies have
traditionally relied on unintuitive control mechanisms. The
most common among these are: requiring the users to
return to rest as an intermediary state between motions;
mode switching through co-contraction or other ad-hoc
user input; and switching based on muscle activations that
are functionally unrelated to the desired motion. The
unintuitive nature of such control has historically led to
increased user frustration, and is often cited a major reason
for device abandonment in the prosthetic control setting. In
this work, we propose using an approach inspired by
Hidden Markov Models (HMMs) with a novel continuous
gesture recognition mechanism, for ultrasound-based
sensing. We empirically calculate the average classification
accuracy of our novel method during non-transitionary
periods to be 99%. We then demonstrate that including
predictions made during transition periods reduces this
value to 69% Finally, by encoding the temporal
dependency of the system within a Hidden Markov Model
framework, we show that we can reduce the error caused
by the instability of predictions during transitions,
measured as the normalized Levenshtein distance from the
true ordering, by approximately 98.8%.

Index Terms— Ultrasound, Muscle Computer
Interface, Gesture Recognition, Hidden Markov Models

1. INTRODUCTION

With the recent and ongoing advancements in domains
such as robotics, medicine, prosthetics, and general muscle
computer interfaces [1-3], there is a clear need for robust
and intuitive control strategies that are driven by non-
invasive sensing of volitional motor intent of a human user.
Surface Electromyography (sEMG) has found widespread
use in these domains, and as a result a lot of research
efforts have been devoted to building intuitive control
around sSEMG as a sensing modality [4-7]. However, low
signal-to-noise ratio, inadequate specificity with regards to
deep-seated muscle, sensor crosstalk and the absence of
robust proportional control are all well-known
shortcomings of this technology that limit functionality [8-
12]. On the other hand, ultrasound-based sensing strategies
have been demonstrated to enable a more natural motion
paradigm, as well as a more intuitive control interface [13-
17].
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However, both the ultrasound and sEMG sensing
strategies lack intuitive and directly responsive, continuous
control. Although attempts have been made to overcome
this problem for SEMG sensors [18-19], intuitive switching
has yet to garner attention in ultrasound sensing paradigms.
For a practical gesture recognition interface, a user must be
able to transition seamlessly between motions without
having to increase the amount of effort or cognitive load
required to operate a device every time use of different
hand gesture is desired. To this end, developing
classification strategies that are robust to motion transitions
and can make accurate classifications continuously, are key
to the success of any muscle computer interface.

2. RELATED WORK

Sikdar et al. [13], Shi et al. [14], and Castellini et al. [15],
have all demonstrated that ultrasound imaging can be used
to classify individual finger flexion in able-bodied
individuals with high accuracy. Akhlaghi et al. have shown
that ultrasound based sensing strategies can be used to
robustly classify significantly more complex hand motions,
such as pronated grasps, in a computationally inexpensive
manner with average offline classification accuracy of 91%
and real-time average classification accuracy of 92% for 15
different motions of varying complexity [16]. Furthermore,
the technology for ultrasound imaging has been undergoing
significant miniaturization. Hettiarachchi et al. have
utilized the images captured from eight custom built
transducers, arranged into two wearable bands, to classify
muscle activity in both able-bodied and amputee
participants [17]. These advances make ultrasound a
suitable alternative to sEMG as a wearable sensor for
gesture recognition.

Of the work done in the gesture recognition domain
the two most pertinent to the efforts of this paper are the
works of Akhlaghi et al. on ultrasound based recognition
[16], and the work done by Chan et al. on using HMMs for
continuous prediction using sEMG [18]. The work
described herein, builds directly upon the contributions of
these two papers.

Akhlaghi et al. utilize a nearest neighbor classifier and
demonstrate that the simplest of classifiers could yield very
high discriminability among classes. However, they utilize
a feature representation that depends on the motions
beginning at rest which forces users to return to rest in
order to switch between motions. To remedy this, we
utilize a new feature representation so that the dependency
on rest is removed. We demonstrate that the new feature
representation offers high discriminability using the same
classification model while allowing for continuous motion
prediction and intuitive switching.
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Chan et al. utilize an HMM approach that encodes a
higher probability of staying at a motion rather than
transitioning, and an equal probability of transitioning to all
possible classes. We adapt this approach due to its ability to
garner high classification accuracies in their work.
However, we modify their probabilistic model in order to
better integrate it with the nearest neighbor classifier used
by Akhlaghi et al and apply it to the ultrasound domain.

3. EXPERIMENTAL SETUP

The following sections give an overview of our approach.
We will first describe our classification methodology and
the evaluation metrics used to determine its merit; we then
explain how we incorporate our classification into a HMM;
and finally, we describe our experimental setup.

3.1. Classification Methodology

In order to perform continuous classification, we utilize a
I-nearest-neighbor classifier: Using Pearson’s correlation,
we compute the similarity between each incoming frame in
an unknown sequence against all of the items in a
predefined set of labeled images; each unknown frame is
then assigned the label of the item to which it has the
highest similarity. Pearson’s correlation is utilized solely
because the bounded distances it returns lend themselves
well to an incorporation into our HMM approach discussed
in the following section. Any bounded distance metric
should suffice for this approach.

We build the set of labeled images, the training set, by
asking the user to perform a pre-selected set of motions in a
sequence: the user starts at rest, then performs each motion
alternated with rest, and finally ends at rest. Fig. 1 provides
a visual representation of the motions. From this sequence,
our algorithm extracts the frames that correspond to the end
of each motion where the forearm muscles are at maximal
contraction. This is done by identifying regions in a
dynamic ultrasound sequence where the Pearson’s
correlation to a rest state starts to plateau. For each motion
in the sequence, the extracted frames corresponding to the
end of the motion are averaged into a single representative
frame and added to the training set. This feature
representation removes the dependency on rest since they
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Fig. 1. Motions used for training and classification. From left to
right, top to bottom: rest, supine key, neutral key, prone key, supine

pinch, neutral pinch, prone pinch, supine power grasp, neutral power
grasp, prone power grasp.

contain no temporal information and provide a mechanism
for framewise-prediction and continuous classification. The
frames are averaged to mitigate the effects of any small
changes in probe positioning that may occur and the small
transformations (translations, rotations) that may occur in
the ultrasound images as a result. We repeat the image
acquisition and training process until the desired number of
representative frames per motion is reached.

3.2. Evaluation Metrics

In this paper, we report the framewise classification
accuracy of our approach to give an intuitive measure of
success. It is important to note however, that due to the
continuous nature of muscle deformations, it is impossible
to define the exact discrete frame where one motion
switches to another. Furthermore, since the muscle
deformations during transition periods are an amalgamation
of the two motions they connect, and thus not exclusively
like either motion, it is very difficult to determine the
motion class to which a given transition frame belongs.
Therefore, in order to provide an appropriate evaluation of
our classifier to the best of our ability, we report the
classification accuracies both while including the transition
frames labeled as the motion state that follows them, and
while removing them from consideration entirely. In fact,
the exact temporal bounds of different motions are
somewhat inconsequential; It is more important to
determine whether a given gesture recognition system can
correctly predict the relative ordering of motions with
stability so that it may propagate movement to the end
device —be it a physical or a virtual system— with the
correct motions in a consistent and continuous manner.

Therefore, in order to supplement framewise accuracy,
a metric that assumes the exact positions of the temporal
bounds, we compute a second metric of evaluation to
quantify the stability and correctness of motion predictions;
We compute the squared Levenshtein distance [20]
between a predicted ordering of motions, and the true
ordering. The Levenshtein distance is a measure of the
number of operations (replacing, deleting, or adding items)
required to change one ordering to another. Therefore, if
two orderings, predicted and true, are unlike one another,
the number of operations required to change one ordering
into the other will be high, thus making the Levenshtein
distance between them large; conversely if two orderings
are exactly the same, the number of operations required to
change one to the other will be zero thus making the
Levenshtein distance between them be zero as well. We
report the Levenshtein distance for our HMM
implementations after normalization such that the squared
Levenshtein distance for the motion ordering predicted
without the HMM is considered 100% erronecous, the
ground truth ordering is considered 0% erroneous, and
everything else is scaled proportionally in between. This
allows us to intuitively quantify the extent to which the
error is reduced by varying the parameters of our HMM
implementation. Henceforth, we shall refer to this measure
as the prediction error.
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Fig 2. This figure demonstrates the noisiness of predictions given
varying transition costs (top to bottom: 0, 2.5, 10) in comparison to
the ground truth (bottom). The colors represent different motions and
the horizontal axis represents time. For a HMM model with
transition cost = 0, motion predictions are noisy around transitions;
as transition cost increases the noise in the transitions is smoothed
out; if the transition cost is too high, the model very rarely transitions
to a new motion.

3.3. Hidden Markov Model Framework

A complete tutorial of Hidden Markov Models can be
found at [21]; here, we only discuss Markov Models in
terms of their adaptation for this work. Traditionally,
Hidden Markov Models compute the probabilistic
likelihood of being in a particular hidden-state at the
current timestep when given: the current emissions of some
variables that are probabilistically related to the hidden
states, the probabilistic likelihood of transitioning from one
state to another, and information about the hidden-state at
the previous timestep. In our model, we consider a non-
probabilistic, cost-based adaptation.

The emissions at a given timestep are directly
computed from the correlation values between the
unknown frame at the current timestep and the training set.
We average the correlation values by class label and
subtract them from 1 so that high similarity values
(correlation values close to 1) become low cost (close to 0)
and low similarity values (correlation values close to 0)
become high cost (close to 1). The likelihood of
transitioning in our model is also encoded non-
probabilistically as a constant cost for transitioning to a
new motion class and a cost of 0 for predicting the same
motion class. The predicted motion class at a given
timestep, t, can then be defined as: the class with the
minimum corresponding cost at time t where cost C for a
class i at time t is defined by eq. 1.

Cl= ¢l +min(EL, +Tj; + ED (1)
J

Where C._; is the cost corresponding to class i, at time
t-1; Etj_1 is the emission corresponding to class j at time #-
I1; Tj; is the cost of transition from class j to class i and is
equal to 0 when i = j and some predefined constant
otherwise; finally, E} is the emission corresponding to class
i at time . The cost for all classes at time =0 is 0. It is
important to note that after the cost C} is computed for all
classes, that the costs are normalized according to eq. 2.

ct= (Ctl — miin Ct‘)/ (mlax cl— miin C,_f) 2)

This ensures that the lowest computed cost of
predicting a class is always 0 and the highest computed

cost is always 1, thus ensuring that a strong bias is not
developed in favor of a given class solely because it has
been predicted continuously for a long time.

3.4. Experiment

Three able-bodied participants were recruited for this
study. All experiments were approved by the institutional
review board of our university. A custom designed cuff
held the ultrasound probe firmly against the participants’
forearms to limit probe movement and ensure consistency
in data collection. The probe was placed laterally on the
anterior portion of the forearm at approximately 60% of the
forearm length (closer to the elbow). Each participant was
asked to perform nine motions alternated with rest (for a
total of 10 classes). Five sequences were collected from
each participant and 5-fold validation was performed for
each participant such that four sequences were used for
training (4 examples per class x 10 classes = 40 training
examples) and the remaining sequence was used for testing.
The sequences varied in length between 800 to 1100
frames. Classification accuracy is reported for each fold,
for each participant. The prediction error for HMMs is
computed at all possible combinations of transition cost
between 0 and 10 at steps of size 0.1. A visual
representation of the effects of the different cost settings on
the noisiness of predictions is provided (Fig. 2). The cost
yielding the lowest average prediction error across all
participants and all trials is reported along with the
prediction errors themselves (Fig. 3).

4. RESULTS AND DISCUSSION

The best transition cost was found to be 2.2. The average
framewise classification accuracy if the transition periods
are not considered, was found to be 98.8%. If the transition
periods are considered, the average framewise
classification accuracy was found to be 69.4%. At a
transition cost of 2.2, the average prediction error was
lowered to 1.2%.

TABLE I. CLASSIFICATION ACCURACY WITH AND WITHOUT TRANSITIONS

Subject 1 Subject 2 Subject 3
With/Without With/Without With/Without
Trial 1 100.0% | 70.8% | 100.0% | 71.8% | 100.0% | 72.7%
Trial 2 100.0% | 70.3% | 100.0% | 67.9% 96.8% 63.1%
Trial 3 98.6% 69.4% 95.4% 66.1% | 100.0% | 70.6%
Trial 4 100.0% | 68.3% 91.8% 64.7% | 100.0% | 69.5%
Trial 5 100.0% | 75.5% | 100.0% | 70.0% | 100.0% | 70.6%
Average 99.7% 70.9% 97.4% 68.1% 99.4% 69.3%
TABLE II. PREDICTION ERROR AT OPTIMAL TRANSITION COST
Subject 1 Subject 2 Subject 3
Trial 1 0.2% 2.4% 6.6%
Trial 2 0.0% 1.9% 1.0%
Trial 3 0.3% 1.0% 1.1%
Trial 4 0.0% 0.5% 0.0%
Trial 5 0.0% 3.2% 0.0%
Average 0.1% 1.8% 1.7%

Our study shows that using a cost-based adaptation of
HMMs, the noisy predictions of this classifier during
transition periods can be easily overcome (Table 2, Fig 2
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Fig 3. The average and subject specific prediction error as impacted
by transition cost. The minimum average prediction error was found
to be 1.2% at a transition cost of 2.2

and Fig 3). Our predictions were made in an online fashion,
i.e. we did not change past predictions once they had been
made, or use information from future frames to make
current predictions. However, we did not perform testing in
real-time in this study nor did we address the problem of
changes in probe positioning that may result from the user
doffing the device and donning it on another day. This
means that the important question of prediction latency
caused by the HMM bias against transitioning is still
unevaluated, as is the ability of the user to adjust to the
response of the device in real-time. Furthermore, the effect
of utilizing one day’s data to make prediction on another
day where the sensor has been removed and replaced is
also absent in this work. We plan to continue evaluating
these factors and improve upon this work by testing it in
real-time settings with donning and doffing on a larger
number of able-bodied participants as well as amputees.

5. CONCLUSIONS

In this work, we propose a novel algorithm that enables
continuous prediction of the volitional motor intent of a
user with high fidelity using ultrasound-based sensing of
muscle activity. Our study demonstrates the feasibility of a
continuous ultrasound based gesture recognition system
that facilitates intuitive switching with low prediction
errors.
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