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ABSTRACT: Doped lead halide perovskite nanocrystals (NCs) have garnered
significant attention due to their superior optoelectronic properties. Here, we report
a synthesis of Cd-doped CsPbCl3 NCs by decoupling Pb- and Cl-precursors in a hot
injection method. The resulting Cd-doped perovskite NCs manifest a dual-wavelength
emission profile with the first reported example of Cd-dopant emission. By controlling
Cd-dopant concentration, the emission profile can be tuned with a dopant emission
quantum yield of up to 8%. A new secondary emission (∼610 nm) is induced by an
energy transfer process from photoexcited hosts to Cd-dopants and a subsequent
electronic transition from the excited state (3Eg) to the ground state (1A1g) of [CdCl6]

4−

units. This electronic transition matches well with a first-principles density functional
theory calculation. Further, the optical behavior of Cd-doped CsPbCl3 NCs can be
altered through postsynthetic anion-exchange reactions. Our studies present a new
model system for doping chemistry studies in semiconductors for various optoelectronic
applications.

Lead halide perovskites (APbX3; A = CH3NH3
+, Cs+, etc.;

X = Cl−, Br−, I−) have recently garnered an immense
amount of research interest because they offer the promise of
revolutionizing optoelectronic applications such as solar
cells,1,2 lasers,3,4 light-emitting diodes (LEDs),5−9 photo-
detectors,10 etc.11−14 All-inorganic CsPbX3 nanocrystals
(NCs) have garnered an especially large amount of attention
due to their superior optical properties and improved structural
stability compared to these of organic−inorganic hybrid
perovskites.12−16 Since Protesescu et al. first reported the
synthesis of high-quality colloidal CsPbX3 nanocubes,

17 various
synthetic protocols have been developed to obtain CsPbX3
NCs with controlled sizes,18,19 morphologies,20−22 and tunable
compositions.23−25

Doping metal ions into perovskite NCs can induce novel
changes in their optical, electronic, and magnetic properties,
opening a new research direction.26,27 Especially when dopants
with suitable electronic energy band alignment relative to the
host perovskite NCs are used, new emission features can be
introduced through a host-to-dopant energy transfer process.
In particular, dual-emission perovskite NCs have been created
via doping and found to be exceedingly useful in many
applications, such as white light LEDs28 and luminescent solar
concentrators.29 In this regard, multiple systems utilizing main
group, transition, and rare earth elements as dopants have been
reported to date.30−39 For example, Mn2+ is arguably the most
popular dopant because it can accept energy from photo-
excited host perovskite NCs, resulting in a new emission peak
(580−620 nm) through the d−d transition of the Mn-

dopants.40−46 As another well-studied example, Yb3+ trivalent
dopants can lead to a dual-wavelength emission spanning both
the visible and near-infrared spectral regions.47−51 In this case,
Yb3+-dopants act as a luminescence activator involving energy
relaxation from the excited state 2F5/2 to the ground state 2F7/2
and give rise to emission at ∼990 nm with photoluminescence
quantum yields (PL QYs) exceeding unity.48

Herein, we report a synthesis of Cd-doped CsPbCl3 NCs
through a hot injection method. The emergence of a new
broad emission band centered at ∼610 nm is observed and
attributed to the Cd-dopant PL through an energy transfer
process from the host CsPbCl3 NCs to the Cd2+ ions. In
addition, this facile synthetic approach allows us to study the
variation of optical properties of CsPbCl3 perovskite NCs with
different doping concentrations. First-principles density func-
tional theory (DFT) calculations reveal that the Cd-dopant
emission is attributed to the energy relaxation process from the
excited state (3Eg) to the ground state (1A1g) of [CdCl6]

4−

units. Lastly, we show that a Cl-to-Br anion-exchange can be
employed to tune the optical properties of the Cd-doped NCs
postsynthetically.
Our colloidal synthesis of Cd-doped CsPbCl3 NCs builds

upon a previously reported hot injection method,52 where we
introduce Cd(CH3COO)2·2H2O (Cd-acetate) as a dopant
precursor. In a typical synthesis, Cs2CO3, Pb(CH3COO)2·
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3H2O (Pb-acetate), and Cd-acetate were added to a mixture of
oleic acid, oleylamine, and 1-octadecene, and the resulting
solution was heated under vacuum. At 200 °C, benzoyl
chloride was swiftly injected into the flask, triggering NC
formation (see the SI for details). Compared to the
conventional approach, in which PbCl2 was commonly used
as the source of both Pb and Cl, in our synthesis, metal
acetates (i.e., Pb-acetate and Cd-acetate) were used as the
distinct Pb and Cd sources, and benzoyl chloride was used
as the sole Cl source to eliminate pre-existing Pb−Cl bonds
prior to NC formation. In this case, simultaneous incorpo-
ration of Pb2+ and Cd2+ ions in the perovskite NCs was
achieved due to fast and kinetically controlled NC nucleation
and growth,53 despite a large discrepancy in the bond
dissociation energies between Pb−Cl (301 kJ/mol) and Cd−
Cl (208 kJ/mol).54 As a control experiment, doping Cd2+ ions
in CsPbCl3 NCs failed when replacing Pb-acetate with PbCl2
as the single source for both Pb and Cl,17,52 which strongly
supports our hypothesis. In addition to enabling successful
doping, this approach allows for facile tunability in the Cd-
doping level by altering the stoichiometry of the Pb- and Cd-
precursors fed into the reaction (discussed in detail below).
Figure 1A shows the scheme for doping a Cd2+ ion into the

CsPbCl3 perovskite crystal lattice. While the undoped CsPbCl3

NCs manifested similar properties to those previously reported
(Figure 1B,C),17,52 the Cd-doped CsPbCl3 NCs showed a new
emission band at 610 nm (full width at half-maximum of 88
nm) with a maximal PL QY of ∼8% (Figure 1D). The PL
excitation (PLE) spectrum obtained from monitoring the
emission at 610 nm matched well with the absorption profile,
indicating that the emission band was a result of an energy
transfer process from host NCs to Cd-dopants (Figure 1D).
The bandgap (BG) emission peak of the Cd-doped NCs
(Figure 1D) was blue-shifted with an enlarged Stokes shift

compared to that of the undoped NCs (168 vs 96 meV)
(Figure 1B,D). This is indicative of an alloying effect that is
accompanied by lattice contraction upon introduction of Cd-
dopants,28,30 as well as a stronger quantum confinement effect
as evidenced by the smaller particle size of the Cd-doped NCs
than their undoped counterparts (8.8 ± 0.7 vs 10.2 ± 1.1 nm)
(Figures 1C,E, S1, and S2). Due to the high morphological
uniformities of both samples, the perovskite NCs can self-
assemble into an ordered monolayer whose localized selected-
area electron diffraction (SA-ED) signals indicate a cubic
symmetry (Figure 1C,E, insets). Although Cd-doped CsPbCl3
NCs have been synthesized through a postcation-exchange
process,30 Cd-dopant emission has not been observed
previously, which is likely due to the surface and crystal
defects induced by the cation-exchange reaction.
To study how Cd-doping levels affect NC optical properties,

different molar percentages of the Cd-precursor ([Cd]/([Cd]
+ [Pb])) were added during the synthesis (see the SI for
details). The actual Cd-dopant concentrations were deter-
mined through elemental analysis using an inductively coupled
plasma-atomic emission spectrometer. When adding 6, 10, 14,
and 18% Cd-precursor, the corresponding Cd-doping concen-
trations in the final NCs were measured to be 2.26, 5.40, 9.28,
and 11.49%, respectively (Table S1). The lower Cd-dopant
percentages as compared to the synthesis feed ratio are a result
of less than unity dopant reaction yields.31,40,48 While there
were no appreciable differences in the absorption spectra, the
intensity ratios of the Cd-to-BG PL peaks monotonically
increased as the Cd-doping concentration increased from 0 to
9.28%, at which it reached a maximum value of 0.36 (Figure
2A−C). Upon further increase of the Cd-doping concen-
tration, the PL intensity ratio decreased (Figure 2A−C), which
was likely caused by the presence of crystalline defects and an
interdopant coupling-induced self-quenching effect due to the
introduction of excess Cd-dopants.28,40,48

PL lifetime measurements showed that the average lifetime
(τBG) of the BG-PL decreased dramatically from 8.43 to 2.33
ns when increasing the doping concentration from 0 to 11.49%
(Figure 2D and Table S2). The trend was consistent with the
increased doping concentration, which produced more photo-
active acceptors inside of the host NCs.48 This led to a faster
energy transfer rate from the photoexcited CsPbCl3 NCs to the
Cd-dopants, thus accelerating depletion of the excitonic
transitions.30,48 However, the decay curves of the Cd-PL
showed single-exponential behavior with similar fitted lifetime
(τCd) values of 1.32−1.35 ms for all doping concentrations
(Figure 2E and Table S3). This minimal lifetime variance and
single-exponential decay behavior across all samples suggest a
uniform local lattice environment at the Cd-doping sites in the
host lattice.40,41

TEM measurements showed that all of the Cd-doped NCs
possessed a cubic shape with high morphological uniformity
(Figures 3A−C and S3−S5). Upon increasing the Cd-doping
concentration, the average edge length decreased from 9.8 ±
1.0 nm for the NCs with a doping concentration of 2.26% to
7.7 ± 0.9 nm for the 11.49% case. Powder X-ray diffraction
(XRD) measurements revealed that all of the Cd-doped
CsPbCl3 NCs possessed a cubic perovskite phase (space
group: Pm3̅m), thus retaining the same as their undoped
counterparts (Figure 3D). However, careful examination of the
XRD patterns showed that the diffraction peaks were
monotonically shifted to higher angles upon increasing the
Cd-doping concentration, revealing a monotone lattice

Figure 1. (A) Schematic of the Cd-dopant substitution in CsPbCl3
unit cells. (B,D) Absorption (black), PL (blue, orange), and PLE
(red) spectra of the undoped and Cd-doped CsPbCl3 NCs. Insets:
photographs of the sample under UV illumination (365 nm). (C,E)
TEM images of the undoped and Cd-doped CsPbCl3 NCs. Insets:
SA-ED patterns.
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contraction trend (Figure 3D,E). The calculated lattice
constant decreased from 5.60 to 5.51 Å from undoped NCs
to the NCs with 11.49% Cd-doping (Figures S6−S10 and
Tables S4−S9). This lattice contraction was in line with the
replacement of larger Pb2+ ions (ionic radius: 119 pm) with
smaller Cd2+ ions (ionic radius: 95 pm),30 suggesting
successful incorporation of Cd-dopants inside of the host
NC lattices.
Unlike the previously reported Mn-dopant emission, which

is attributed to the Mn2+ d−d transition, the Cd2+ ion
possesses fully filled frontier d-orbitals (electron configuration:
[Kr]4d10). In this case, exciting Cd2+ in an octahedral
coordination geometry requires one electron in the eg orbital
to be transferred into a higher-energy molecular orbital. The
proposed excited state of the Cd2+ ion and its electronic
configuration are shown in Figure 4A (right panel), which is
produced when one electron in the eg orbital is lifted to the a1g
orbital (contributed mainly from the Cd 5s-orbital), resulting

in the first excited triplet state (3Eg). In this case, through an
energy relaxation process, the Cd-PL can be assigned to the 3Eg
→ 1A1g electronic transition (Figure 4A). Note that this
transition is forbidden by both the Laporte and the spin
selection rules,55 consistent with the observed slow photon
relaxation dynamics (1.32−1.35 ms) of the Cd-PL (Figures
2E). Furthermore, the electron paramagnetic resonance (EPR)
silence of all Cd-doped samples proved that the Cd-dopant had

Figure 2. (A) UV−vis absorption (black lines) and PL spectra (colored lines, λex = 340 nm) of the Cd-doped CsPbCl3 NCs with different doping
concentrations. (B) Zoomed-in Cd-PL spectra. (C) Intensity ratios of the Cd- to BG-PL as a function of Cd-doping concentration. Lifetime decay
curves for (D) BG-PL with different Cd-doping concentrations and (E) Cd-PL of the sample with different Cd-doping concentrations.

Figure 3. (A−C) TEM images and (D) XRD patterns of Cd-doped
CsPbCl3 NCs with different doping concentrations. (E) Zoomed-in
XRD patterns of the (110) diffraction peak.

Figure 4. (A) Schematic of the energy transfer process from the host
NC to Cd-dopant (left) and the corresponding ground/excited states
of Cd-dopants (right). (B) Atomic model of the [CdCl6]

4− octahedral
unit. (C) First-principles DFT calculation results for the HOMO−
LUMO energy gaps for [CdCl6]

4− using different hybrid functionals.
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an oxidation state of +2 (retaining the charge neutrality of the
NCs) with no unpaired electrons (Figure S11), further
supporting the proposed photon relaxation mechanism.
To further validate the emission mechanism and quantita-

tively understand the Cd-dopant emission from an energetic
perspective, we performed first-principles calculations of the
molecular electronic structure of [CdCl6]

4− within DFT using
the quantum chemical ab initio software MOLPRO.56 Because
conventional DFT simulations based on the Generalized
Gradient Approximation (GGA) often fail to produce accurate
binding energy curves and equations of state due to the
intrinsic self-interaction errors in GGA functionals, here we
used hybrid density functionals that include nonlocal Hatree−
Fock exchange.57−59 The energy gap between the highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) was successfully calculated for the
[CdCl6]

4− compound (Figure 4C). At the metal−Cl bond
distance range of 2.76−2.80 Å determined experimentally
(Table S9), the calculated HOMO−LUMO gap fell within the
range of 1.71−2.11 eV, depending on the hybrid functional
employed (Figure 4C), which was in good agreement with the
peak position energy of the Cd-PL (∼2.03 eV). The DFT
calculation results strongly supported experimental evidence
that the Cd-PL originated from the electronic transition from
the first excited state to the ground state of the [CdCl6]

4− unit
in the perovskite NCs (Figure 4A).
To tailor the optical properties of Cd-doped CsPbCl3 NCs,

Cl-to-Br anion-exchange reactions were performed. After a
controlled amount of a Br-source (i.e., bromotrimethylsilane,
TMS-Br) was introduced into a Cd-doped CsPbCl3 NC
solution (9.28% of Cd2+), the BG-PL peak red-shifted from
392 to 471 nm (Figure 5A), indicating a successful Cl-to-Br
anion exchange.12,23,24 Meanwhile, the Cd-PL became weaker
and finally disappeared when the BG-PL reached 471 nm
(Figure 5). This optical profile evolution can be explained by
the continuous lowering of the conduction band energy of the
host perovskite NCs during the Br− ion-exchange reaction and
a stationary energy level for the excited state of the Cd2+ ions,
all of which make energy transfer from the host NCs to the Cd-
dopants thermodynamically less favorable. Similar dopant
emission quenching phenomena were also observed in Mn-
doped perovskite NC systems.40

In conclusion, we describe a new category of Cd-doped
perovskite NCs synthesized by decoupling the metal- and
halide-precursor sources. The resulting Cd-doped NCs show
dual-wavelength emission while preserving the crystal structure

and morphological uniformity of the host NCs. By changing
the stoichiometry of the Cd- and Pb-precursors, the CsPbCl3
NCs with different Cd-doping concentrations are synthesized.
We show that the new emission band originated from an
energy transfer process from the photoexcited host CsPbCl3
NCs to the first excited state of Cd-dopants. The subsequent
electronic transition from the 3Eg to the 1A1g state of the
[CdCl6]

4− unit is responsible for the new emission feature,
which is further supported by DFT calculations. Our findings
make Cd-doped CsPbCl3 perovskite NCs promising alter-
natives for doping chemistry studies in perovskites that may
impact various optoelectronic applications.
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