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ABSTRACT: Ion migration in a three-dimensional (3D) perovskite is the source of many 5 8 § § S S §
unique phenomena such as photocurrent hysteresis and a giant switchable photovoltaic

effect and can also accelerate the degradation of perovskite-based electronic devices. Here = X A

we report the observation of suppressed ion migration along the in-plane direction of . . . .. .

layered perovskites by studying the conductivity of layered single-crystal perovskites at

varied temperatures. Large-area layered perovskite thin single crystals are synthesized by

the space-confined method. The absence of ion migration in these layered perovskites can i : i : § : § : § : § : §
be explained by an increase in the energy required to form an ion vacancy, compared to

3D perovskites. The suppressed ion migration in layered perovskites indicates that they

have intrinsically better stability under an electric field and may contribute to the *: I :MA :Pb
improved perovskite stability in devices made of layered perovskite through the reduction
of ion diffusion-induced perovskite degradation or corrosion of charge transport layers § :BA iV =1V

and electrodes.

rganic—inorganic hybrid perovskite (OIHP) materials illumination for a few months while even reaching 1 year with
O have aroused tremendous interest as one of the most some perovskite materials by adding quasi-two-dimensional
promising candidates for the next generation of solar (quasi-2D) perovskite."”~*' This raises one fundamental
cells due to their auspicious optoelectronic properties, such as question as to why quasi-2D perovskites are intrinsically
large light absorption coeflicient, long carrier diffusion lengths,1 more stable than conventional three-dimensional (3D) perov-
and high carrier mobility.”* These properties have led to the skites like MAPbI,.'”***® Several mechanisms have been
power conversion efficiency (PCE) of OIHP solar cells quickly proposed to explain the enhanced moisture and thermal
reaching the parity of silicon solar cells after only a few years of stability of quasi-2D perovskites or materials with quasi-2D
development.s’é However, one major hindrance to the perovskites. It is intuitive that the hydrophobic organic side
commercialization of OIHP solar cells is the relatively low chain in quasi-2D perovskites could prevent direct exposure to
stability compared to their silicon counterparts. In particular, moisture.'”> The improved structural stability has been
OIHP is found to be sensitive to moisture, oxygen, heat, as well attributed to stronger van der Waals interactions between the
as ultraviolet light.7_9 Apart from these environmental factors, long organic side chain and the [Pbls] units. Improving these
ion diffusion-induced corrosion of the charge transport layer or interactions means that more energy is needed to decompose
metal electrode is also capable of causing device failure.'”"" the quasi-2D structure by removing the organic molecules,
Many studies have been done to enhance the stability of compared to methylammonium cations (MA*) or formamidi-
OIHP solar cells by addressing the various external nium cations (FA*) in 3D perovskite.”””* In addition, ion
stimuli.”'>"* The application of encapsulation method has migration has been shown to be one main origin of the intrinsic
been used to protect the OIHP active layer from moisture’ and instability of 3D halide perovskites. ¥ Our recent study shows
oxygen.' "> In order to address the corrosion of transport that the long-chain organic ligands could form a barrier
layers by ion diffusion, corrosion-stopping layers have also been preventing ion migration along the out-of-plane direction.”*’
developed to maintain separation between the OIHP layers and However, ions in OIHPs may also migrate along the in-plane
the metal electrodes.'®'” Now that the external stimuli can be direction, ie., along the layer in quasi-2D perovskite, where
largely negated by sophisticated device encapsulation techni-
ques, the intrinsic stability of OIHP needs more attention to Received: January 11, 2018
even further enhance the stability of perovskite solar cells.'® Accepted: February 14, 2018
Recent studies show very promising device stability under Published: February 14, 2018
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Figure 1. (a,b) Schematic illustration of the space-confined method for the growth of BA,MA,Pb.],, single crystals; schematic illustration of
ion transportation in the confined space on (c) wetting and (d) nonwetting surfaces, (e) XRD of a quasi-2D single crystal (n = 3); the inset is
a photograph of the quasi-2D single crystal; (f) absorption of an exfoliated quasi-2D BA,MA,Pb.I,, (n = 3) single crystal.

organic ligands would not be capable of blocking transportation
pathways.”> Because the current conduction in quasi-2D
perovskites is along the in-plane direction, due to the large
resistance of the long organic ligands, the ion migration along
these layers needs to be understood to determine how their
intrinsic stability is limited by ion migration.”®

Here, we investigate the intrinsic ion migration stability in
the layers of quasi-2D perovskites. By using temperature-
dependent conductivity measurements, it was found that the
ion migration along the in-plane direction is suppressed. The
origin of suppressed ion migration in the layered perovskites is
determined to be a lower density of point defects such as iodide
vacancies (V) and methylammonium vacancy (V). The
calculated formation energies of V; and Vy, in Ruddlesden—
Popper-type layered perovskite BA,MA,Pb;l;, (n = 3) are
larger than that in MAPDI;, resulting in the suppression of
point defect formation.

To characterize the intrinsic ion migration properties of
layered perovskites, single crystals of Ruddlesden—Popper-type
BA,MA,Pb,l, (n = 3) were synthesized using a space-confined
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method to produce large-area perovskite single crystals with
controlled thickness, as shown in Figure lab.” Typically, two
nonwetting substrates were used to construct the confined
space, and the saturated perovskite solution was inserted into
the space, as shown in Figure la. The single crystals were
grown by cooling-induced supersaturation. As illustrated in
Figure Ilc,d, the introduction of a nonwetting surface could
enhance the long-range ion transport along the confined space
due to the reduced dragging-force of the solvent molecules with
which perovskite ions have formed a complex’”*" As the
solution was gradually cooled, BA,MA,Pb;l;, (n = 3) single
crystals grew between the nonwetting substrates, as illustrated
in Figure 1b. In the perovskite precursor solution, perovskite
ions would form complexes with solvent, which meant that the
diffusion rate of perovskite ions was determined by the
diffusion speed of solvent. The nonwetting surface weakened
the solvent—substrate interaction, accelerating the trans-
portation of solvent.” As a result, the long-range ion diffusion
along the confined space could be achieved, allowing for the
growth of large quasi-2D (BA,;MA,Pb;l,,) single crystals. This
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Figure 2. (a) Scheme for the in-plane temperature-dependent conductivity of a quasi-2D BA,MA,Pb.I,, perovskite; (b,c) results of
temperature-dependent conductivity measurement of 3D and quasi-2D perovskite single crystals, respectively. The inset in (b) is a photo of a

MAPDI; single crystal.

is also the first time that large-area quasi-2D perovskite thin
single crystals are reported to be synthesized using a space-
confined method. The photograph of the single crystal is shown
in the inset of Figure le. The single crystals grown using this
technique have a typical lateral size of 4 mm and a thickness of
20 pm. The observed absorption edge at approximately 650 nm
and excitation peak at ~610 nm, seen in Figure 1f, are
indicative that the grown single crystal is, in fact, a
BA,MA,Pb,l;, (n = 3) quasi-2D perovskite. X-ray diffraction
(XRD) was used to analyze the phase structure and orientation
of the BA,MA,Pbsl}, single crystal. As shown in Figure le, all
diffraction peaks in the XRD pattern are indexed to be (0 k 0)
planes of BA;MA,Pbsl;;, confirming the orientation of the
quasi-2D single crystal and indicating that the perovskite layers
are parallel to the substrate."”

To understand the intrinsic ion migration stability of these
layered perovskites, we studied the ion migration activation
energy in perovskite layers, determined by measuring the in-
plane electric conductivity of the quasi-2D BA,MA,Pb,l,, (n =
3) single crystals at varied temperatures. To complete the
measurements, electrodes were deposited at the edges of the
quasi-2D single crystal to make lateral electrical contact for a
lateral device structure, as shown in Figure 2a. The lateral
device structure is introduced to suppress the electronic
conduction and highlight the ionic conduction contribution
to the total conductivity by the geometry effect. Within the low-
temperature region, the ion concentration is very small and the
contribution of ion migration to conductivity is negligible, and
thus, electronic conductivity dominates the material con-
ductivity. However, in the high-temperature region, the number
of ions that are capable of migration increases dramatically,
meaning that the ionic conductivity would dominate the
conductivity in the high-temperature region. By measuring the
temperature-dependent electrical conductivity, we could derive
the ion activation energy (E,) from the electric conductivity in
the hig,lzl—temperature region using the Nernst—Einstein

relation”
o E
T ks T

The activation energy could be derived from the slope of the
In(6T) —1/kT relation. In the measurement, a constant
electrical field was set to be 0.2 V/um, which was small to
reduce the poling effect. Figure 2b shows the total electrical
conductivity of single-crystal MAPbI; with a lateral size of 3
mm and thickness of ~14 ym, as shown in the inset of Figure

o(T) =
(1)
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2b in the dark and under illumination. For the 3D MAPbI,
single crystal, conductivity in the low-temperature region (T <
280 K) was ascribed to the electronic conduction, while it was
dominated by ionic conductivity in the high-temperature region
(T > 280 K). The activation energy at high temperature (T >
280 K) was fitted to be 0.83 eV in dark conditions, which is
consistent with our previous results.”> The activation energy
was reduced to 0.33 eV under 0.25 sun illumination,
quantitatively showing ion migration in MAPbI; to be much
easier under illumination.”” In the low-temperature region (T <
280 K), the activation energy was fitted to be 22 + 2 meV,
which was within the shallow charge trap depth range for
electronic conduction. For the 3D perovskite single crystals, a
clear transition from electronic to ionic conduction is observed
in Figure 2b, both in the dark and under illumination. However,
for quasi-2D BA,MA,Pb;l;, perovskite samples, we did not
observe such a transition, regardless of whether the samples
were in the dark or under illumination (Figure 2c). A constant
slope with an activation energy of 25 + 3 meV was observed,
representative of the electronic conduction while also indicating
that the carrier trap depth is similar to that of 3D perovskites.
The absence of transition from electronic conduction to ionic
transition in this measurement indicates that ion migration-
induced current along the in-plane direction is also negligible
up to 350 K in the quasi-2D BA,MA,Pb,l,, single crystals.
To elucidate the origin of suppressed ion migration along the
layers in the quasi-2D BA,MA,Pb;l;, single crystals, we
examined the defect formation as the presence of defects
should be necessary to mediate ion migration. Because grain
boundaries are not available in quasi-2D single crystals, ions
have to migrate with the help of vacancies in the quasi-2D
layers. Density functional theory (DFT) calculation, as
implemented in the VASP program, was conducted to calculate
the formation energies of V} and V.. These vacancies prove to
be most important to consider as they are the two main types
of ions that may migrate in halide perovskites.”> The
generalized gradient approximation in the form of Perdew—
Burke—Ernzerhof (PBE) was used for the exchange—
correlation functional. The ijon—electron interaction was
treated with the projector-augmented wave (PAW) method.
Grimme’s DFT-D3 correction was adopted to describe the
long-range van der Waals interactions. The vacancy defects
were modeled by removing an I (or MA*) ion from a 2 X 2 X
2 MAPDI; supercell or 2 X 2 quasi-2D BA,MA,Pb;I,, supercell.
The defect formation energy was calculated as E; = E(A) +
E(B) — E(AB), where A stands for MAPbI; or quasi-2D
BA,MA,Pb;l;, with a vacancy, B represents a single vacancy,
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and AB is pristine MAPDbI; or quasi-2D BA,MA,Pb;I;,. The
calculated formation energies of Vy, are 5.72 and 6.94 eV in
MAPDI; and quasi-2D BA,MA,Pbsl;, respectively, while the
calculated formation energies of V| are 3.44 and 5.46 eV in
MAPDI; and quasi-2D BA,MA,Pb,l,,, respectively. The
significantly increased formation energies of V; and Vy, in
quasi-2D perovskites result in a much lower vacancy density
relative to that of 3D perovskite. The reduced bulk point defect
density has been frequently reported in low-dimensional
nanomaterials, which is also favored in thermodynamics.**
The quasi-2D perovskites have strong analogies to quantum
dots, as evidenced by the excitonic peaks in absorption
spectra.34 As illustrated in Figure 3a, vacancies are one major
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Figure 3. Schemes of the vacancy path for ion migration in 3D (a)
and quasi-2D (b) perovskites and (c) formation energy of vacancy
defects (Vys, Vi) in 3D and quasi-2D perovskites.

trigger of ion migration in 3D perovskite as vacancy sites allow
for a pathway along which ions could effectively migrate.”
According to the substitution diffusion model, ion diffusion can
only occur if there is a vacancy at an adjacent lattice point for
the ion to jump to. The diffusion of ions occurring depends on
(1) whether the atoms have sufficient thermal energy to
overcome the activation energy barrier to migrate (AG,,) and
(2) the probability that there is an adjacent vacancy, which is
given by zXy, (where z is the number of nearest neighbors, and
Xy is the probably that one site is vacant). The increase of Vy,
and V| formation energies, resulting in a lower density of
vacancies, would subsequently form a larger energy barrier for
ions to migrate and thus enhance the intrinsic ion migration
stability as well as structural stability.

The absence of ion migration and reduction of vacancy
defects along the sheets of quasi-2D perovskite should impact
the efficiency and stability of perovskite-based electronic
devices, including solar cells, photodetectors, as well as light
emitting  diodes (LEDs).'**>*® For instance, photocurrent
hysteresis as well as light-induced phase separation in OIHP
solar cells could be suppressed in quasi-2D perovskite due to
the supfression of ion migration and higher structural
stability.”*® For photodetectors, decreasing the number of
defects would largely solve 1/f noise, which comes from the
trapping and detrapping process, and thus, a low noise detector
could be achieved.”” In addition, because LED devices are
working with bias on, the suppression of ion migration would
efficiently stabilize the structure under external electric field,
thus improving the working lifetime of OIHP LED devices.”’
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In conclusion, vacancy defects including Vy, and V| were
found to be far more difficult to form in quasi-2D perovskites,
which reduced the vacancy sites for ions to migrate. Thus, ion
migration along the electric channel in quasi-2D perovskites
was suppressed. The absence of ion migration in quasi-2D
perovskites should provide a promising opportunity for
improved device efficiencies and device stability. The
implementation of qausi-2D perovskites would effectively
suppress the ion migration-induced decomposition of perov-
skite, degradation of charge transport layers, and corrosion of
metal electrodes.
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