



Cite this: *Mater. Horiz.*, 2018, 5, 868

Received 2nd May 2018,  
Accepted 21st June 2018

DOI: 10.1039/c8mh00511g

rsc.li/materials-horizons

**Efficient charge collection is critical in large area (quasi-) planar configuration perovskite solar cells (PSCs) as the cell operation relies on the diffusion of photo-generated charge carriers to charge collector layers. Many defects/traps in the polycrystalline perovskite absorber layer strongly affect the charge collection efficiency because the 2D-like top charge collection layer barely penetrates into the 3D grain boundaries in the perovskite layer to efficiently collect the charge carrier. Inspired by blood capillaries for efficient mass exchange, a charge-collection nano-network for efficient charge collection was incorporated into the perovskite absorber using low-cost, stable amino-functionalized graphene ( $\text{G}-\text{NH}_2$ ). The integration of such an unprecedented structure enables very efficient charge collection, leading to the significant enhancement of the power conversion efficiency of  $1 \times 1 \text{ cm}^2 \text{ MAPbI}_3$  PSCs from 14.4 to 18.7% with higher reproducibility, smaller hysteresis and enhanced stability. The physicochemical mechanisms underlying the role of this nano charge-collection nano-network in boosting the charge collection in PSCs are elucidated comprehensively, using a combined experimental and theoretical approach, pointing to a new direction towards up-scaling of high-efficiency PSCs.**

## Introduction

Perovskite solar cells (PSCs), with unprecedented progress in their power conversion efficiency (PCE), have enormous potential as next-generation photovoltaics (PVs) for the clean-energy future.<sup>1–3</sup> The certified record PCE of PSCs has quickly approached 23%, which is comparable to the PCEs of crystalline silicon solar cells.<sup>4</sup> In general, PSCs employ solution-deposited polycrystalline organic-inorganic halide perovskite thin films as the light absorber.<sup>5,6</sup>

<sup>a</sup> School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. E-mail: yixin.zhao@sjtu.edu.cn

<sup>b</sup> School of Engineering, Brown University, Providence, Rhode Island 02912, USA

<sup>c</sup> Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c8mh00511g

## Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells<sup>†</sup>

Yong Wang,  <sup>a</sup> Yuanyuan Zhou, <sup>b</sup> Taiyang Zhang, <sup>a</sup> Ming-Gang Ju, <sup>c</sup> Lin Zhang, <sup>b</sup> Miao Kan, <sup>a</sup> Yihui Li, <sup>a</sup> Xiao Cheng Zeng, <sup>c</sup> Nitin. P. Padture <sup>b</sup> and Yixin Zhao  <sup>a\*</sup>

### Conceptual insights

High charge collection efficiency in lead halide perovskite solar cells is most critical to their high efficiency for commercialization of this promising low-cost and high-efficiency photovoltaic technology. In (quasi-)planar configuration perovskite solar cells, charge collection occurs at the 2D interface between a perovskite absorber top surface layer and a planar charge collection layer. The large number of grain boundaries, likely distributed three dimensionally, in this polycrystalline perovskite absorber layer could hinder the charge collection efficiency. In this study, we demonstrated a quasi-3D charge collection nano-network configuration for the design of large-area planar perovskite solar cells with enhanced collection efficiency. The integration of an unprecedented functionalized graphene nano-network into the perovskite absorber layer leads to the formation of a quasi 3D charge collection layer combined with a typical 2D charge-collection layer. This quasi 3D charge collection configuration significantly enhances the power conversion efficiency of  $1 \times 1 \text{ cm}^2 \text{ MAPbI}_3$  PSCs from 14.4 to 18.7% with higher reproducibility, smaller hysteresis and enhanced stability. The concept of introducing a quasi-3D charge collection configuration into a perovskite absorber layer would be a promising strategy to pave the way for high-performance and large area perovskite solar cell devices.

Due to the high-density of grain boundaries (GBs), these polycrystalline perovskite thin films contain abundant defects/traps to deteriorate the charge collection efficiency.<sup>7,8</sup> Reducing defects/traps in the perovskite absorber layer, and thereby improving the charge-collection efficiency in PSCs, has become one of the most popular strategies for achieving maximum PCE, which is critical for the successful commercialization of this promising low-cost, high-efficiency PV technology.<sup>9</sup>

The state-of-the-art high-efficiency PSCs are invariably based on (quasi-) planar device configurations, where two charge collection layers (CCLs) sandwich a perovskite absorber layer to collect the charge carriers that are generated in the perovskite bulk and diffuse to the perovskite/CCL interfaces.<sup>10–13</sup> The charge collection process occurs mainly at the interface between the perovskite absorber layer and the CCLs. The carrier diffusion lengths in planar perovskite thin films are considered to be long, resulting in a high charge-collection efficiency in PSCs.<sup>14,15</sup> Nevertheless, there is still considerable charge-collection loss due to the defects/traps at GBs in the perovskite absorber layer.<sup>16–18</sup>

Such charge-collection loss can be even more severe in large-area PSC devices, which not only reduces their PCEs but also lowers the device reproducibility.<sup>19,20</sup> One straightforward strategy to increase the charge-collection efficiency is to enhance or modify the charge-collection interfaces.<sup>21,22</sup> In the literature, carbon-based materials with excellent charge transfer properties and high chemical stability have been employed as a new charge collection layer or as a modifier in the existing charge-collection layer in PSCs.<sup>23–25</sup>

Inspired by the effective mass exchange in blood capillaries, we demonstrate an unprecedented strategy to boost the charge collection in PSC devices *via* incorporating a carbon-based charge-collection nano-network into the  $\text{CH}_3\text{NH}_3\text{PbI}_3$  (MAPbI<sub>3</sub>) perovskite absorber layer. The construction of the carbon-based charge collection nano-network was realized *via* simply adding amino-functionalized graphene (G-NH<sub>2</sub>) into the MAPbI<sub>3</sub> precursor solution, followed by co-precipitation of G-NH<sub>2</sub> and MAPbI<sub>3</sub> perovskite. The integration of the functionalized graphene in the perovskite layer not only induces the formation of large grain size perovskite crystals but also helps the formation of the nano-network in the MAPbI<sub>3</sub> perovskite absorber layer. Consequently, the  $1 \times 1 \text{ cm}^2$  large area MAPbI<sub>3</sub> PSCs with the *in situ* integrated nano-network exhibits power conversion efficiencies of up to 18.7% with higher reproducibility, smaller hysteresis and enhanced stability than the 14.2% efficiency control ones.

## Results and discussion

Fig. 1a shows the topographic images of the as-prepared G-NH<sub>2</sub> taken using an atomic force microscope (AFM). The thickness of G-NH<sub>2</sub> is about 0.8 nm (Fig. S1, ESI<sup>†</sup>), and they possess submicron lateral size. The Fourier transform infrared spectroscopy (FTIR) spectrum in Fig. 1b confirms the amino group in these G-NH<sub>2</sub> samples. Also, TEM results indicate that the as-prepared G-NH<sub>2</sub> is composed of few-layer transparent graphene sheets with

homogeneous elemental distribution of C, N on the graphene sheets (Fig. S2, ESI<sup>†</sup>). G-NH<sub>2</sub> can be well-dispersed in the MAPbI<sub>3</sub> precursor solution in a mixed DMF/DMSO (v/v ratio, 4 : 1) solvent. As shown in Fig. S3 (ESI<sup>†</sup>), after the addition of G-NH<sub>2</sub>, the MAPbI<sub>3</sub> precursor solution appears darker. It is found that the introduction of G-NH<sub>2</sub> has some obvious effects on the microstructures of the as-deposited MAPbI<sub>3</sub> perovskite thin films. Fig. S3 (ESI<sup>†</sup>) reveals that the incorporation of G-NH<sub>2</sub> has a negligible effect on the UV-vis spectra of the MAPbI<sub>3</sub> perovskite films. The absorbance edges of both thin films are located at  $\sim 780$  nm, which is consistent with previous results.<sup>26</sup> Fig. 1c and d show that both MAPbI<sub>3</sub> and MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin films are compact, pinhole-free, and with full-coverage, which is typical of thin films prepared using the solvent-engineering method.<sup>5,6,27</sup> However, the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film has larger grains and smoother surface in comparison with the pure MAPbI<sub>3</sub> thin film. In the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film, the average grain size is  $> 500$  nm with the largest grains  $> 1 \mu\text{m}$ , whereas the pure MAPbI<sub>3</sub> thin film has an average grain size of  $\sim 300$  nm. The enlarged grains might be attributed to the high dispersion of G-NH<sub>2</sub> at the MAPbI<sub>3</sub> grain boundary which tailors the grain boundary migration process during the thermal annealing stage.<sup>28</sup> More detailed studies will be performed in the future to elucidate this effect. The 3D AFM images in Fig. S4 (ESI<sup>†</sup>) show that the root mean square (RMS) roughness of the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film top-surface is 6.6 nm, smaller than the 10.2 nm RMS roughness of the pure MAPbI<sub>3</sub> thin film.

The XRD patterns of both the MAPbI<sub>3</sub>/G-NH<sub>2</sub> and pure MAPbI<sub>3</sub> perovskite thin films show strong diffraction peaks at  $14.1^\circ$ ,  $28.4^\circ$  and  $31.8^\circ$  (Fig. 1e), which are respectively assigned to the  $110$ ,  $220$  and  $310$  reflections in the typical tetragonal phase of MAPbI<sub>3</sub> perovskite.<sup>29</sup> The intensity of XRD peaks for the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film is stronger than that for the pure MAPbI<sub>3</sub> perovskite, suggesting that the G-NH<sub>2</sub> incorporation enhances the overall crystallinity of the thin film. In addition, we have found that the amount of G-NH<sub>2</sub> incorporated into the

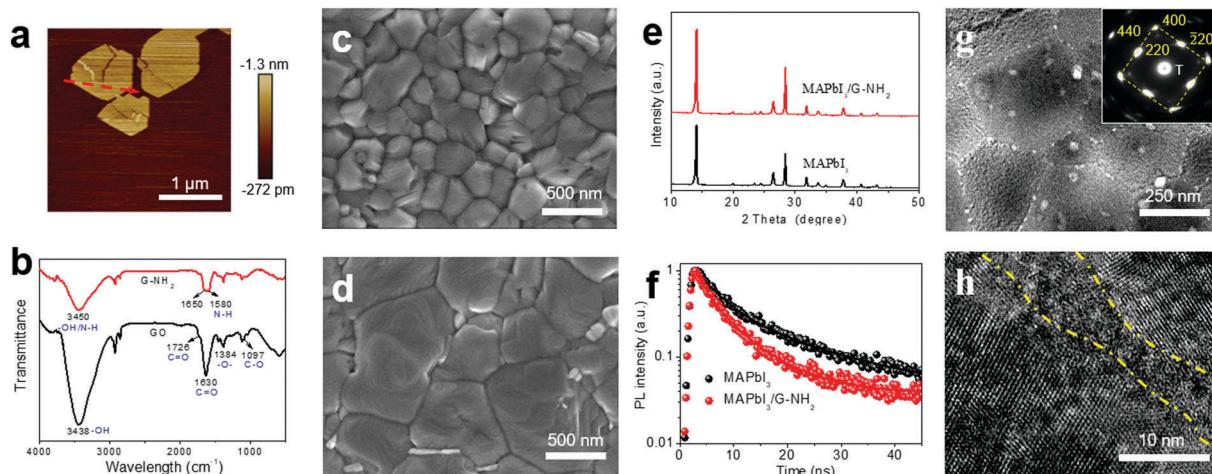
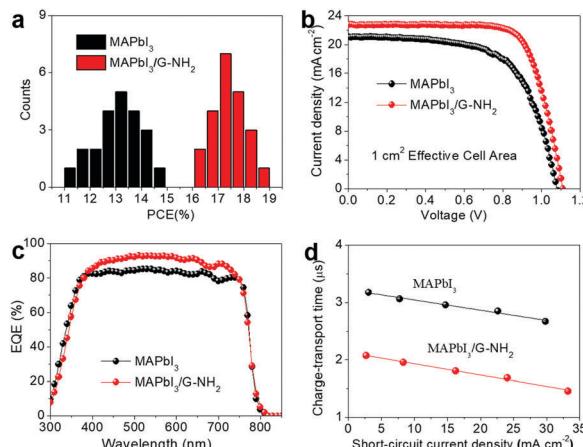



Fig. 1 G-NH<sub>2</sub>: (a) topographic AFM image, (b) FTIR spectra of G-NH<sub>2</sub>. SEM of thin films: (c) MAPbI<sub>3</sub> and (d) MAPbI<sub>3</sub>/G-NH<sub>2</sub>. (e) XRD patterns of the MAPbI<sub>3</sub> thin films with and without optimal G-NH<sub>2</sub> addition. (f) TRPL decay curves of MAPbI<sub>3</sub> and MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin films. The measurements were performed from the perovskite film side. (g) Bright-field TEM image of the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film, and (h) HRTEM image of the GB region (between dashed yellow lines).

MAPbI<sub>3</sub> thin films has only slight effects on the UV-vis absorption spectra, XRD patterns and grain size (Fig. S5 and S6, ESI<sup>†</sup>). These results indicate that the incorporation of G-NH<sub>2</sub> improves the crystallinity, enlarges the grain size, and smoothen the surface of the perovskite absorber film. This can be attributed to the relatively controlled nucleation and growth behavior induced by G-NH<sub>2</sub> as heterogeneous nucleation sites in the crystallization process.


Normally, enhanced crystallinity and larger grain size are expected to reduce defects/traps and then increase the photoluminescence (PL) lifetimes in perovskite thin films.<sup>30</sup> However, the time-resolved PL (TRPL) responses from MAPbI<sub>3</sub> and MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin films in Fig. 1f reveal that MAPbI<sub>3</sub> thin film's lifetime ( $\tau_{av} = 10.99$  ns) is almost twice longer than that of MAPbI<sub>3</sub>/G-NH<sub>2</sub> ( $\tau_{av} = 5.05$  ns). Such abnormal decrease of PL lifetime is actually similar to the case of perovskite films covered with charge transport (carrier-quencher) layers.<sup>31–33</sup> The TRPL results combined with the material-characterization results in Fig. 1 indicate efficient charge extraction and interface contact between G-NH<sub>2</sub> and MAPbI<sub>3</sub> perovskite crystals. Furthermore, we have also investigated the effect of reduced graphene oxide (rGO) on the MAPbI<sub>3</sub> perovskite film for comparison (Fig. S7, ESI<sup>†</sup>). Similar to G-NH<sub>2</sub>, rGO incorporation shows a similar effect of enhanced crystallinity and enlarged grain size. However, the  $\tau_{av} = 69.23$  ns for MAPbI<sub>3</sub>/rGO thin film is much longer than that for pure MAPbI<sub>3</sub> (Fig. S7, ESI<sup>†</sup>), suggesting the poor charge extraction by rGO.

In order to confirm the detailed microstructure, transmission-electron-microscopy (TEM) characterization of the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film was performed. The TEM specimens were prepared using a methodology that has been successfully demonstrated for characterizing halide perovskite materials in previous reports.<sup>29,34</sup> This entails direct solution-deposition of the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film onto the TEM grid. Fig. 1g is a bright-field TEM image of the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film. The perovskite grains and GBs areas are immediately differentiated from the contrast, and are labelled in Fig. 1g. The typical selected-area electron diffraction pattern (SAEDP) of an individual grain is shown in the inset image in Fig. 1g, which confirms the single-crystalline nature of the grains. The indexed SAEDP is consistent with the tetragonal phase of MAPbI<sub>3</sub> perovskite.<sup>29</sup> High-resolution TEM images of the typical GB regions were also obtained, and the result is shown in Fig. 1h. It can be seen that the GB region appears relatively amorphous, which is clearly distinct from the high-crystalline state of the MAPbI<sub>3</sub> perovskite grain. It appears that the GB regions are decorated with the carbonaceous material (G-NH<sub>2</sub>), which is consistent with the AFM results.

These results taken together indicate that the G-NH<sub>2</sub> layer buried in the perovskite absorber layer forms a G-NH<sub>2</sub> nano-network, which has the potential to facilitate charge extraction and transport in planar PSCs. Here is another important thing that we have to note: the PSC devices integrated with the G-NH<sub>2</sub> nano-network show much less shorting than the control ones. This fact also suggests that the G-NH<sub>2</sub> layer is highly likely to be buried in the perovskite absorber layer. Further, a typical planar device configuration of FTO/c-TiO<sub>2</sub>/SnO<sub>2</sub>/perovskite/Spiro-OMeTAD/Ag (Fig. S8, ESI<sup>†</sup>) is adopted for

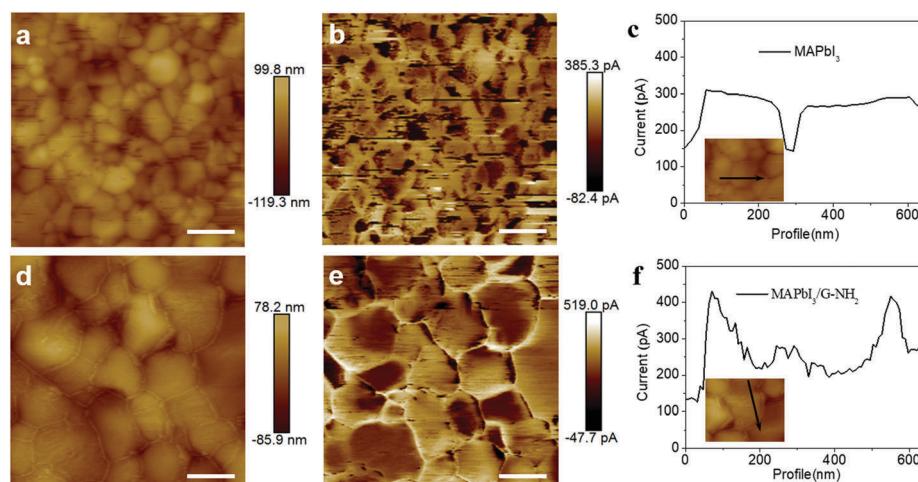
both MAPbI<sub>3</sub>/G-NH<sub>2</sub>- and MAPbI<sub>3</sub>-based PSCs. MAPbI<sub>3</sub>/G-NH<sub>2</sub> based devices with an area of 0.1 cm<sup>2</sup> and different G-NH<sub>2</sub> contents have been investigated firstly (Fig. S9 and S10, ESI<sup>†</sup>), and the optimized G-NH<sub>2</sub> content is found to be 0.05 mg mL<sup>−1</sup> (hereafter, MAPbI<sub>3</sub>/G-NH<sub>2</sub> refers to thin films with optimized 0.05G-NH<sub>2</sub> content.). The PV performance statistics in Fig. S10 (ESI<sup>†</sup>) show that all MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSCs exhibit higher PV performance than PSCs based on pure MAPbI<sub>3</sub>. Moreover, the MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSCs show an important advantage of both enhanced reproducibility with a narrow PCE distribution and small hysteresis in *J*-*V* curves (Fig. S11, ESI<sup>†</sup>). The champion of MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSC exhibits enhanced PV performance over the MAPbI<sub>3</sub> one (20.4% vs. 18.5%) (Table S1, ESI<sup>†</sup>).

The application of large area PSC devices has been impeded by the significant reduction of PCEs and the poor device reproducibility once the cell area increases. One main reason is that the large area PSC devices are sensitive to defects/traps and charge transfer properties.<sup>19,20,35</sup> Interestingly, the incorporation of a G-NH<sub>2</sub> nano-network into the perovskite absorber layer could significantly improve both the PCE and reproducibility of large-area devices. The PV performance parameter statistics in Fig. 2a and Table S2 (ESI<sup>†</sup>) are obtained from 2.5 × 2.5 cm<sup>2</sup> substrates with an effective cell area of 1 cm<sup>2</sup>, and the MAPbI<sub>3</sub>/G-NH<sub>2</sub> based PSCs are based on the optimum G-NH<sub>2</sub> content as the aforementioned small area ones. Excitingly, the large-area MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSCs exhibit an average efficiency as high as 17.4%, while the MAPbI<sub>3</sub>-based PSCs only have a value of 13.2%. The efficiency distribution of MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSCs is narrower than the pure MAPbI<sub>3</sub> based PSCs, suggesting an enhanced reproducibility. Fig. 2b compares the *J*-*V* curves of the champion large-area MAPbI<sub>3</sub>/G-NH<sub>2</sub> and MAPbI<sub>3</sub> based PSCs. The MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based device shows a PCE of 18.7% with a  $J_{SC}$  of 22.8 mA cm<sup>−2</sup>,  $V_{OC}$  of 1.11 V and FF of 0.739. In contrast, the champion large-area cell with the MAPbI<sub>3</sub> thin film without the G-NH<sub>2</sub> has a PCE of only 14.4% due to the lower  $J_{SC}$  of 21.1 mA cm<sup>−2</sup>, lower  $V_{OC}$  of 1.08 V, and a significantly lower FF of 0.632. The large-area MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSCs also exhibit smaller hysteresis (Fig. S12 and Table S3, ESI<sup>†</sup>), and finally result in a stable 18.0% PCE output (Fig. S13, ESI<sup>†</sup>). The external quantum efficiency (EQE) of the MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSC in Fig. 2c can be as high as 92% in the wavelength range of 500–600 nm, which is much higher than that of the corresponding pure MAPbI<sub>3</sub>. Since there is no difference in the absorbance between MAPbI<sub>3</sub> and MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin films (Fig. S3, ESI<sup>†</sup>), the enhanced  $J_{SC}$  is attributed to the improved charge-collection efficiency in MAPbI<sub>3</sub>/G-NH<sub>2</sub> with the help of the charge collection nano-network. The integrated  $J_{SC}$  calculated from the EQE is 22.6 mA cm<sup>−2</sup>, whereas the pure MAPbI<sub>3</sub> device shows an integrated  $J_{SC}$  value of 21.0 mA cm<sup>−2</sup> (Fig. 2c). These EQE results are consistent with the *J*-*V* measurements, and confirm the enhanced charge-collection efficiency in the MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSC. Moreover, the lower electronic resistance ( $\sim 13$  Ω) of the MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSC revealed by impedance spectroscopy (EIS) characteristics under illumination in Fig. S14 (ESI<sup>†</sup>) also confirms the better charge transfer compared to the MAPbI<sub>3</sub>-based PSC ( $\sim 33$  Ω). In addition, the significant enhancement of FF in the former case could be due to the efficient charge extraction and transport by the nano-network.



**Fig. 2** (a) PCE distributions of PSCs based on MAPbI<sub>3</sub> with and without G-NH<sub>2</sub> (average of 22 devices), (b) J-V characteristics for PSCs of  $1 \times 1 \text{ cm}^2$  based on MAPbI<sub>3</sub> with and without G-NH<sub>2</sub> under simulated AM 1.5G solar illumination of  $100 \text{ mW cm}^{-2}$  in reverse scan, and (c) corresponding EQE spectrum together with the integrated  $J_{SC}$ . (d) Charge-transport time dependence on the  $J_{SC}$  of PSCs based on MAPbI<sub>3</sub> with and without G-NH<sub>2</sub> measured using the IMPS technique.

as PSC FF is closely related to additional charge transport losses originating from inefficient charge extraction of the cells, or current leakage through shunts.<sup>36</sup>


A previous report has revealed that the lower charge extraction and transport limited the photocurrent observed in the MAPbI<sub>3</sub> PSCs.<sup>37</sup> Intensity modulated photocurrent spectroscopy (IMPS) measurements were performed on the MAPbI<sub>3</sub>- and MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSCs to explore the impact of the nano-network on the charge-transport properties. The charge transport in the MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSC is faster than that in the MAPbI<sub>3</sub>-based PSC (Fig. 2d). This confirms that the incorporation of the G-NH<sub>2</sub> nano-network in the perovskite absorber layer facilitates charge extraction and transport for a higher charge-collection efficiency. Other than the higher charge-collection efficiency and higher

performance, the MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSCs exhibit better stability than PSCs based on pure MAPbI<sub>3</sub> perovskite in a dark box with 20–30% relative humidity (RH) and at a temperature of 25–30 °C. The MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSC without any encapsulation still maintains ~17% PCE after 2 months of storage, whereas the PCE of the MAPbI<sub>3</sub>-based device drops to ~8% (Fig. S15, ESI<sup>†</sup>).

Conducting atomic force microscopy (c-AFM) in contact mode was performed to investigate the effect of the nano-networks on charge transport. Fig. 3 shows that the average currents through MAPbI<sub>3</sub> and MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin films are 198 pA and 301 pA, respectively, under 1 V direct-current (DC) bias. The current in the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film is more unevenly distributed over the surface in comparison with the pure MAPbI<sub>3</sub> thin film. Interestingly, the current is most prominent in the GB region (G-NH<sub>2</sub>) in the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film as shown in Fig. 3e and f. These results indicate that the G-NH<sub>2</sub> present at the GBs exhibits excellent charge transport capability.

The aforementioned results suggest that the observed improvement in the  $J_{SC}$  and FF of MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSCs could be attributed to the efficient charge collection by the G-NH<sub>2</sub>-based nano-networks incorporated within the perovskite absorber layer. Usually, the defects/traps in the perovskite layer can result in recombination of charge carriers (the left image in Fig. 4a), and cause a decrease in  $J_{SC}$ ,  $V_{OC}$ , and, especially, FF, causing further reduction in the PCE. In fact, the defects/traps induce even more serious issues in large-area PSCs.<sup>38,39</sup> In our study, the plausible working mechanism behind this high current collection efficiency could be attributed to bypassing defect sites *via* the nano-network as shown in the right image in Fig. 4a.

We further calculate the charge density at the interface of MAPbI<sub>3</sub> with G-NH<sub>2</sub>, using the density-functional theory (DFT) method, as shown in Fig. 4b. It can be seen that there is a significant charge rearrangement at the interface of G-NH<sub>2</sub> with MAPbI<sub>3</sub>, forming an internal electrical field near the interface. Specifically, the negative charges gather near the G-NH<sub>2</sub> while the positive charges gather near the surface in MAPbI<sub>3</sub> perovskite,



**Fig. 3** MAPbI<sub>3</sub> thin film: (a) topographic image film and (b) corresponding current image (1 V applied DC voltage), (c) c-AFM current line profiles for MAPbI<sub>3</sub>. Inset: Corresponding topographic AFM images. MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film: (d) topographic image and (e) corresponding current image (1 V applied DC voltage), (f) c-AFM current line profiles for the MAPbI<sub>3</sub>/G-NH<sub>2</sub> thin film. Inset: Corresponding topographic AFM images. Scale bars = 400 nm.

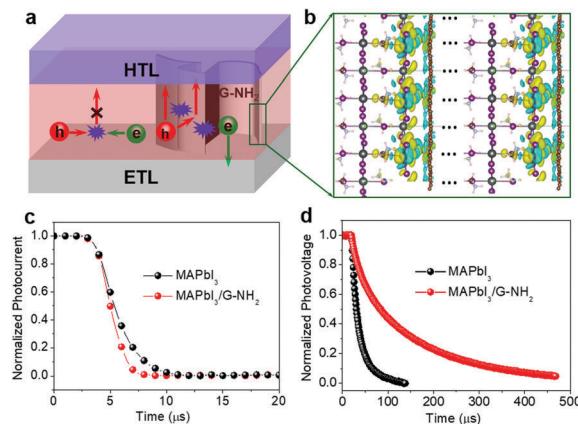



Fig. 4 (a) Schematic illustrations of charge transport in a PSC based on MAPbI<sub>3</sub> without and with G-NH<sub>2</sub>. (b) Calculated charge density at the interface between MAPbI<sub>3</sub> and G-NH<sub>2</sub> (yellow = positive, cyan = negative). Large-area (1 cm<sup>2</sup>) PSCs based on MAPbI<sub>3</sub> with and without G-NH<sub>2</sub>: (c) TPC and (d) TPV.

resulting in dipoles pointing from MAPbI<sub>3</sub> to G-NH<sub>2</sub>. This newly produced dipole field facilitates the hole transfer into G-NH<sub>2</sub> from MAPbI<sub>3</sub> perovskite. For comparison, we also present the charge density at the interface of MAPbI<sub>3</sub> perovskite and rGO without a functionalized amino group in Fig. S16 (ESI<sup>†</sup>), where it shows a much weaker internal electrical field at the interface. This theoretical result supports the notion that the nano-network based on G-NH<sub>2</sub> can significantly promote charge transfer, and it also confirms that the chemisorbed amino functional group is likely responsible for these observed enhancements.

The incorporation of rGO into the MAPbI<sub>3</sub> perovskite absorber layer does not lead to significant improvements in PV performance (Fig. S17, ESI<sup>†</sup>). Furthermore, the longer PL lifetime indicates that the rGO may work mainly as a passivation layer in the MAPbI<sub>3</sub>/rGO thin film.<sup>30,40</sup> These experimental results on rGO are consistent with the theoretical calculations (Fig. S16, ESI<sup>†</sup>).

The charge transport in the large-area devices was further investigated by transient photocurrent decay and photovoltage decay (TPC/TPV). The faster photocurrent decay response of the MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSC illustrates faster charge transport than in the MAPbI<sub>3</sub>-based PSC (Fig. 4c). Meanwhile, the TPV decay curve of the MAPbI<sub>3</sub>/G-NH<sub>2</sub>-based PSC shows a longer lifetime than that of the MAPbI<sub>3</sub>-based PSC, indicating a significant decrease in charge-carrier recombination (Fig. 4d). We attribute the reduced recombination to the improvement of extraction and transport of charge carriers by the G-NH<sub>2</sub> nano-network. The improvements in the extraction and transport of charge-carriers in the perovskite layer is beneficial for improving the  $J_{SC}$ ,  $V_{OC}$ , and, especially, FF.

## Conclusions

In summary, we have successfully demonstrated the construction of a charge-collection nano-network in PSCs by incorporating graphene with functionalized amino groups into the MAPbI<sub>3</sub> perovskite absorber layer. This nano-network induces dramatically

higher charge-extraction efficiency, facilitates charge transport, and finally leads to significantly enhanced PCE of large area PSCs. Planar large-area (1 cm<sup>2</sup>) PSCs incorporating this nano-network have PCEs close to 19%, with excellent reproducibility. The approach and strategy of incorporating the charge-collection nano-network could be applied to other perovskite compositions, and even to other types of solar cells, and it represents a promising new concept for achieving high-performance PVs in the future.

## Author contributions

Y. Zhao conceived the idea, directed and supervised the project. Y. W. fabricated devices. Y. W, Y. Zhou, T. Z., M. J., L. Z., M. K., Y. L., X. Z. were involved in experimental and theoretical data analysis. All authors contributed to the discussions. Y. Zhao, Y. W., Y. Zhou, and N. P. P co-wrote the manuscript.

## Conflicts of interest

There are no conflicts to declare.

## Acknowledgements

Y. Zhao acknowledges the support of the NSFC (Grant 21777096) and Huoyingdong Grant (151046). The work performed at Brown University and UNL was supported by the U.S. National Science Foundation (No. OIA-1538893).

## References

- 1 H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Grätzel and L. Han, *Nature*, 2017, **550**, 92–95.
- 2 Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, Q. Dong, M. Hu, C. Bi and J. Huang, *Mater. Sci. Eng., R*, 2016, **101**, 1–38.
- 3 A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel and H. Han, *Science*, 2014, **345**, 295–298.
- 4 NREL, <https://www.nrel.gov/pv/assets/images/efficiency-chart.png>.
- 5 N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, *Nat. Mater.*, 2014, **13**, 897–903.
- 6 Y. Zhao and K. Zhu, *J. Phys. Chem. Lett.*, 2014, **5**, 4175–4186.
- 7 N. G. Park, M. Grätzel, T. Miyasaka, K. Zhu and K. Emery, *Nat. Energy*, 2016, **1**, 16152.
- 8 D. W. Dequilette, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith and D. S. Ginger, *Science*, 2015, **348**, 683–686.
- 9 D. Y. Son, J. W. Lee, Y. J. Choi, I. H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim and N. G. Park, *Nat. Energy*, 2016, **1**, 16081.
- 10 L. Meng, J. You, T. F. Guo and Y. Yang, *Acc. Chem. Res.*, 2016, **49**, 155–165.
- 11 M. Liu, M. B. Johnston and H. J. Snaith, *Nature*, 2013, **501**, 395–398.

- 12 F. Wang, W. Geng, Y. Zhou, H. H. Fang, C. J. Tong, M. A. Loi, L. M. Liu and N. Zhao, *Adv. Mater.*, 2016, **28**, 9986–9992.
- 13 H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland and E. H. Sargent, *Science*, 2017, **355**, 722–726.
- 14 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, *Science*, 2013, **342**, 341–344.
- 15 G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar and T. C. Sum, *Science*, 2013, **342**, 344–347.
- 16 C. H. Chiang and C. G. Wu, *Nat. Photonics*, 2016, **10**, 196–200.
- 17 L. Zuo, H. Guo, D. W. Dequilettes, S. Jariwala, N. D. Marco, S. Dong, R. Deblock, D. S. Ginger, B. Dunn, M. Wang and Y. Yang, *Sci. Adv.*, 2017, **3**, e1700106.
- 18 J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanabaoos, J. P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych and E. H. Sargent, *Nat. Commun.*, 2015, **6**, 7081.
- 19 I. J. Park, G. Kang, M. A. Park, J. S. Kim, S. W. Seo, D. H. Kim, K. Zhu, T. Park and J. Y. Kim, *ChemSusChem*, 2017, **10**, 2660–2667.
- 20 M. Yang, Y. Zhou, Y. Zeng, C. S. Jiang, N. P. Padture and K. Zhu, *Adv. Mater.*, 2015, **27**, 6363–6370.
- 21 X. Fang, J. Ding, N. Yuan, P. Sun, M. Lv, G. Ding and C. Zhu, *Phys. Chem. Chem. Phys.*, 2017, **19**, 6057–6063.
- 22 C. Park, H. Ko, D. H. Sin, K. C. Song and K. Cho, *Adv. Funct. Mater.*, 2017, **27**, 1703546.
- 23 J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith and R. J. Nicholas, *Nano Lett.*, 2014, **14**, 724–730.
- 24 P. You, Z. Liu, Q. Tai, S. Liu and F. Yan, *Adv. Mater.*, 2015, **27**, 3632–3638.
- 25 Z. Liu, P. You, C. Xie, G. Tang and F. Yan, *Nano Energy*, 2016, **28**, 151–157.
- 26 J. H. Im, I. H. Jang, N. Pellet, M. Gratzel and N. G. Park, *Nat. Nanotechnol.*, 2014, **9**, 927–932.
- 27 Y. Rong, Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A. M. Guloy and Y. Yao, *Nanoscale*, 2015, **7**, 10595–10599.
- 28 Y. Zhou, O. S. Game, S. Pang and N. P. Padture, *J. Phys. Chem. Lett.*, 2015, **6**, 4827–4839.
- 29 F. Ji, S. Pang, L. Zhang, Y. Zong, G. Cui, N. P. Padture and Y. Zhou, *ACS Energy Lett.*, 2017, **2**, 2727–2733.
- 30 M. Hadadian, J. P. Correa-Baena, E. K. Goharshadi, A. Ummadisingu, J. Y. Seo, J. Luo, S. Gholipour, S. M. Zakeeruddin, M. Saliba, A. Abate, M. Gratzel and A. Hagfeldt, *Adv. Mater.*, 2016, **28**, 8681–8686.
- 31 N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin and M. Grätzel, *Science*, 2017, **358**, 768.
- 32 S. Song, G. Kang, L. Pyeon, C. Lim, G.-Y. Lee, T. Park and J. Choi, *ACS Energy Lett.*, 2017, **2**, 2667–2673.
- 33 W. Chen, F.-Z. Liu, X.-Y. Feng, A. B. Djurišić, W. K. Chan and Z.-B. He, *Adv. Energy Mater.*, 2017, **7**, 1700722.
- 34 Y. Zhou, A. L. Vasiliev, W. Wu, M. Yang, S. Pang, K. Zhu and N. P. Padture, *J. Phys. Chem. Lett.*, 2015, **6**, 2292–2297.
- 35 H.-C. Liao, P. Guo, C.-P. Hsu, M. Lin, B. Wang, L. Zeng, W. Huang, C. M. M. Soe, W.-F. Su, M. J. Bedzyk, M. R. Wasielewski, A. Facchetti, R. P. H. Chang, M. G. Kanatzidis and T. J. Marks, *Adv. Energy Mater.*, 2017, **7**, 1601660.
- 36 M. Stolterfoht, C. M. Wolff, Y. Amir, A. Paulke, L. PerdigónToro, P. Caprioglio and D. Neher, *Energy Environ. Sci.*, 2017, **10**, 1530–1539.
- 37 A. Pockett, G. E. Eperon, T. Peltola, H. J. Snaith, A. Walker, L. M. Peter and P. J. Cameron, *J. Phys. Chem. C*, 2015, **119**, 3456–3465.
- 38 R. Long, J. Liu and O. V. Prezhdo, *J. Am. Chem. Soc.*, 2016, **138**, 3884–3890.
- 39 D. Zhao, M. Sexton, H. Y. Park, G. Baure, J. C. Nino and F. So, *Adv. Energy Mater.*, 2015, **5**, 1401855.
- 40 J. S. Yeo, R. Kang, S. Lee, Y. J. Jeon, N. Myoung, C. L. Lee, D. Y. Kim, J. M. Yun, Y. H. Seo, S. S. Kim and S. I. Na, *Nano Energy*, 2015, **12**, 96–104.