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organic—inorganic halide perovskites have now achieved = 4): (a) schematic crystal structure; (b) experimental XRD pattern

. . (powder) with Rietveld refinement (Bragg positions and residual),
0,
a record power conversion efficiency (PCE) of 23.3% showing a possible crystal structure with space group Ia and lattice

P erovskite solar cells (PSCs) based on Pb-containing Figure 1. DJ Sn-based halide perovskite (4AMP)(FA),_,Sn,1,,,, (n

within a relatively short period of time."”” However, the toxicity parameters a = 8.978 A, b = 8.966 A, ¢ = 59.656 A, a = Y'= 90°, and
of Pb is likely to be a serious hurdle in the path toward future = 91.109% (c) absorption and steady-state PL spectra (powder);
commercialization of PSCs.”* Several elements such as Sn(II),’ and (d) time-resolved PL spectrum (powder).
Bi(I11),° Sb(II1),” and Ti(IV)* with relatively lower toxicity are
being considered for replacing Pb(II) in PSCs. To date, Sn- divalent (+2) interlayer organic spacers, instead of the staggered
based PSCs have shown the most promising PCE.” However, it interlayer monovalent (+1) organic spacers in the more popular
has been argued that Sn-vacancies form easily in Sn(1I)-based Ruddlesden—Popper (RP) phases.'” Bulk crystalline powders of
perovskites, which results in metallic conductivity.'® Further- (4AMP)(FA),_,Sn,L;,,; (n = 1—4) perovskites were prepared
more, Sn(II) readily oxidizes to Sn(IV), leading to poor air by the simple solution-casting method, using the experimental
stability, inadequate optoelectronic properties, and, thus, lower procedure described in the Supporting Information. Rietveld
device PCE."" In order to overcome these issues, we report the refinement of the XRD pattern of the most representative
synthesis of a new type of Dion—Jacobson (DJ) Sn(II)-based (4AMP)(FA);Sn,l,5 (n = 4) sample is presented in Figure 1b,
low-dimensional perovskite, (4AMP)(FA),_,Sn,l;,,;, and confirming the expected DJ perovskite crystal structure. The
demonstrate its first use in PSCs with a promising PCE of direct comparison between the experimental and simulated
over 4%. Here FA is formamidinium (HC(NH,),"), 4AMP is 4- XRD patterns is shown in Figure S1, where there is good match
(aminomethyl)piperidinium, and # is the number of octahedra of the Bragg positions. The observed background in the
layers in the perovskite-like stack. The discovery of this new experimental XRD pattern can be attributed to the presence of
lead-free perovskite is inspired by the previous first report of
lead-based DJ halide perovskites by Mao et al.'” Received: October 25, 2018
The DJ Sn(II)-based halide perovskite structure of (4AMP)- Accepted: December 13, 2018

(FA),_Sn,l5,,, is illustrated in Figure la. It features aligned Published: December 13, 2018
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some amorphous material. (More comprehensive analyses of the
crystal structures of all other DJ phases will be performed in the
future.) The (4AMP)(FA),Sn,l,; perovskite shows reasonable
absorption characteristics, with edge at 860 nm, as shown in
Figure lc. The calculated band structure using density
functional theory (DFT) shows a consistent value, similar to
the RP phase case,'” and reveals a slight indirect character of the
bandgap (Figure S2). This material also shows a strong, well-
resolved steady-state photoluminescence (PL) peak at 840 nm.
Surprisingly, the PL lifetime is as long as 18.56 ns, which is
significantly longer than those observed in other Sn(II)-based
perovskite materials (hundreds of picoseconds to a couple of
nanoseconds).” The PL peak (Figure 1c) suggests an optical
bandgap of 1.47 eV. We have further investigated the effect of n
on the optical absorption of these DJ perovskites, results from
which are shown in Figures S3 and 1c. An increase of n, from 1 to
4, results in a systematic red-shift of the absorption edge and the
PL peak. This is because of the change of the dimensionality of
the perovskite crystal structure from 2D to “quasi-2D”, similar to
the case of RP phases in the (PEA),(FA),_;Sn,L;,,; system.”
PSCs based on (4AMP)(FA);Sn,l;; were then fabricated to
evaluate their potential in PV applications. The printable hole-
transporting layer (HTL)-free triple-mesoscopic PSC architec-
ture is adopted.'* The corresponding energy-level diagram is
schematically shown in Figure 2a. Figure 2b presents the current
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Figure 2. (a) Energy-level diagram for DJ Sn(II)-based HTL-free
PSCs. (b) Typical J-V curves for a (4AMP)(FA);Sn,1;; (n = 4)
HTL-free PSCs. (c) PCE stability of a (4AMP)(FA);Sn,I,;-based
HTL-free PSC as a function of storage duration (in N, atmosphere,
at 45 °C, under 1-sun illumination).

density—voltage (J—V) curves of a PSC. A promising PCE of
4.22% is obtained, with Jsc of 14.90 mA-cm™, Vo of 0.64 V, and
FF of 0.443. The V¢ can be improved by tailoring the # value.
For example, Figure S4 shows that V¢ is increased to 0.80 V
when n = 1. Therefore, there is room for further improvement in
the PCE of these PSCs based on DJ Sn(II)-based perovskites.
The PCE of the unencapsulated (4AMP)(FA),Sn,l;; PSC was
also tracked periodically, with the device exposed to 1 sun
illumination in N, atmosphere at 45 °C for 100 h. Only 9%
decay of the initial PCE is observed, demonstrating the
promising device stability.

In closing, the synthesis and use of DJ Sn(II)-based halide
perovskites for stable, lead-free PVs have been demonstrated

here for the first time. We envision DJ Sn(II)-based perovskites
having the following potential advantages: (i) possible reduced
propensity for the formation of Sn-vacancies; (ii) enhanced
stability due to the stronger interlayer bonding by divalent
organic spacers, compared to the relatively weaker van der Waals
bonding in the case of monovalent organic spacers in RP phases;
and (iii) possible improvement in photocarriers transport due to
the divalent organic spacers that reduce the overall organic
content.'”
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