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ABSTRACT

As the primary toxic species in the etiology of Alzheimer disease (AD) are low molecular weight oligomers of A, it is crucial
to understand the structure of Ap oligomers for gaining molecular insights into AD pathology. We have earlier demonstrated
that in the presence of fatty acids, AB42 peptides assemble as 12-24mer oligomers. These Large Fatty Acid-derived Oligomers
(LFAOs) exist predominantly as 12mers at low and as 24mers at high concentrations. The 12mers are more neurotoxic than the
24mers and undergo self-replication, while the latter propagate to morphologically distinct fibrils with succinct pathological
consequences. In order to glean into their functional differences and similarities, we have determined their structures in greater
detail by combining molecular dynamic simulations with biophysical measurements. We conjecture that the LFAO are made of Af
units in an S-shaped conformation, with the 12mers forming a double-layered hexamer ring (6 x 2) while the structure of 24mers
is a double-layered dodecamer ring (12 x 2). A closer inspection of the (6 x 2) and (12 x 2) structures reveals a concentration and
pH dependent molecular reorganization in the assembly of 12 to 24mers, which seems to be the underlying mechanism for the
observed biophysical and cellular properties of LFAOs.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5082659

. INTRODUCTION

One of the hallmarks of Alzheimer disease (AD) pathol-
ogy is the deposition of amyloid-f (AB) peptide fibrillar aggre-
gates as plaques in brains of patients. The neuronal loss,
however, seems to be triggered primarily by low-molecular
weight (LMW) oligomers that are formed earlier than the
high-molecular weight fibrils during the aggregation pro-
cess.! Therefore, there is a growing interest in isolating LMW
oligomers and deriving their atomistic structures and dynam-
ics. However, the transient nature and heterogeneity of the
oligomers makes their isolation and characterization, either
from endogenous or exogenous sources, difficult. As a conse-
quence, deriving structural models, as needed for understand-
ing their toxicity mechanism and mode of propagation, poses
a challenge.

We have developed a method for generating distinct
Ap42 12-24mer assemblies, called large fatty acid-derived
oligomers (LFAOs),%7 as their generation is catalyzed by sat-
urated fatty acids that are toxic to neuroblastoma cells. At
higher concentrations, LFAOs convert from the 12mer species
to more disperse distribution of 12-24mer oligomers.? This
concentration-dependent transition is significant because the
12mers self-replicate in the presence of monomers and are
more apoptotic to neuroblastoma cells than the 24mers.?
On the other hand, the 24mers faithfully propagate towards
morphologically-unique fibrils and induce acute cerebral
amyloid angiopathy (CAA) in transgenic mice.> Therefore, it
is imperative to obtain atomistic insights into the differences
between the 12mer and 24mer LFAOs, as well as the transi-
tion from one form to the other, in order to better understand
their unique properties. Unfortunately, due to some of the
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aforementioned reasons, the structures of these LFAOs have
so far not been resolved.

Guided by computational investigations of the Hansmann
laboratory, we present in this paper structural models for
12mer and 24mer LFAOs and a mechanism for the transi-
tion from one to the other assembly. Derivation of these
models relies on the computational techniques developed in
the Hansmann lab. These methods have been already used
in previous work to study the various polymorphs seen in
amyloids®'! and to probe the factors that modulate con-
formational switching in amyloids."’ Combining computa-
tional investigations with novel biophysical experiments, we
conclude that the 12mers prefer to form two-layered rings,
each ring a hexamer (6 x 2), while 24mers transition to
another species of two-layered assemblies, here each ring
a dodecamer (12 x 2). We also eliminate the possibility of
a single dodecamer ring (12 x 1) structure for 12mers and
of four stacked hexamer rings (6 x 4) as the structure for
24mers. Our models allow us to explain the experimentally
observed conformational-dynamics of LFAOs to identify the
key residues involved in conformational switching, and pro-
vide hints at the structural basis for the different pathogenies
of LFAO 12mers and 24mers.

Il. METHODS
A. Materials

Lyophilized stocks of synthetic Ap 1-42 WT peptide were
procured from the Yale School of Medicine peptide synthe-
sis facility (New Haven, CT). C12:0 NEFA was purchased from
NuCheck Prep, Inc. (Elysian, MN), while ANS (1-anilino naph-
thalene sulfonate) was purchased from Sigma-Aldrich Corp.
(St. Louis, MO). All other buffers, reagents, and consumables
were procured from Thermo Fisher Scientific, Inc. (Waltham,
MA).

B. Molecular dynamics simulation

The oligomer models presented in this article are based
on previous work where we constructed a series of N-fold
ring-like AB42 oligomer models,® including six-fold and
twelve-fold models of AB(11-42), that are characterized by
S-shaped chain configurations forming three p-strands liked
by two turn regions. The chains in a ring are kept together by
hydrophobic contacts in the region of residues 20-28 and an
inter-chain salt bridge K16-D23. These models are the starting
point in our construction of the (6 x 2), (6 x 4), and (12 x 2)
models described later.

Our simulations rely on the software package GROMACS
(GROningen MAchine for Chemical Simulations) 5.1.5'? and
employ the AMBER ff99SB-ildn'* force field for proteins and
TIP3P water'“ as solvent, a choice also employed by us in our
previous work."> The temperature of 300 K and a pressure of
1bar are controlled by v-rescale thermostat'® and Parrinello-
Rahman barostat.'” The bond-lengths are restrained by the
LINCE algorithm'® and the SETTLE algorithm'® allowing us to
use a time step of 2 fs for integration. The protein and solvent
are put into a box with the side length and periodic boundary
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conditions of 13.28 nm (for 6 x 2), 18.86 nm (for 12 x 2), and
13.31 nm (for 6 x 4), and electrostatic interactions are calcu-
lated by the particle mesh Ewald (PME) method.?° Stability of
our structures is probed by following our molecular dynam-
ics trajectories over 20 ns, with only the last 10 ns used for
analysis.

Most of our analysis is carried out within the tool set
provided by GROMACS, with snapshots of configurations visu-
alized by VMD (Visual Molecular Dynamics).?’ The distance
between residues are defined as the average distance between
heavy atoms in the side chains of each residue; for example,
the NZ atom on K16 and the OD1 atom on D23 are used to cal-
culate the inter-chain salt-bridge between residues K16 and
D23. We measure the solvent accessible surface area (SASA) by
both the g_sasa and POPS?? software tools, the later allowing
one to separate the hydrophobic and hydrophilic areas. Since
the two methods use different definitions of surface area, val-
ues may differ slightly. The binding energy are approximated
with MMPBSA.py in AmberTools,?*> with the setting igb = 8
for the GBSA (Generalized Born and Surface Area continuum
solvation) part.

C. Ap monomer and oligomer purification

Ap monomers and oligomers were purified as described
previously.” Briefly, 0.5-1 mg of the synthetic peptide was
weighed into a sterile microcentrifuge tube and resuspended
in 500 uL of 10 mM NaOH. After incubation at 25 °C for 30 min,
the sample was loaded onto a Superdex-75 HR 10/30 size
exclusion column pre-equilibrated in 20 mM Tris, pH 8.0 using
either an AKTA FPLC (GE Healthcare) or a BioLogic DuoFlow
(BioRad) purification system. Fractions of 500 uL were col-
lected at a constant flow rate of 0.5 mL/min. Ap concen-
trations were determined using intrinsic tyrosine absorbance
(e = 1450 cm™ M~ at 276 nm) on a Cary 50 Ultra violet-
Visible (UV-Vis) spectrometer (Agilent Technologies). To gen-
erate LFAOs, Ap monomers (50-60 M) were incubated with
5 mM C12:0 NEFA and 50 mM NaCl at 37 °C for 48 h. LFAOs
were then centrifuged at 20000 g for 20 min before being
purified via size exclusion chromatography (SEC) as described
above.

D. ANS binding assay

ANS binding experiments were done as described previ-
ously.? In a set of separate experiments, varying pH or ionic
concentration, LFAOs were exchanged into 20 mM Tris at the
appropriate pH using a 3.5 kDa molecular weight cut-off Slide-
A-Lyzer MINI Dialysis Device (Thermo Fisher Scientific) fol-
lowing the manufactures’ protocol. Upon the addition of 100
uM ANS followed by 1 min of equilibration, fluorescence mea-
surements of LFAOs (8, 6, 4, 2, 1, or 0.5 uM) were collected on
a Cary Eclipse instrument (Agilent Technologies) by scanning
the emission spectrum between 400 and 650 nm upon excita-
tion at 388 nm. The area under the curve for each respective
pH or NaCl titration experiment were then normalized and
plotted as shown. The data presented are representative of
three independent experiments for each specific pH or NaCl
concentration.
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E. Circular dichroism spectroscopy

Data were collected on a Jasco J-815 spectropolarimeter
attached with a Peltier temperature controller. To a solution of
LFAOs (1 or 8 uM), sodium dodecyl sulfate (SDS) was added to
a final concentration of 1% (wt/v), followed by heating from 10
to 90 °C (ramp rate = 0.5 °C/min) while monitoring the signal
at 206 nm every 1 min (hold time = 30 s, DIT = 32 s, bandwidth
= 5 nm). The data was processed by normalizing from 0 to 1
[as shown in Fig. 6(a)], followed by determining the apparent
standard free energy using the Gibbs-Helmbholtz equation [as
shown in Fig. 6(b)]. The data presented are representative of
three independent experiments.

F. Atomic force microscopy

Atomic force microscopy (AFM) samples were prepared
following a previously published procedure.® Freshly cleaved
mica substrates were first treated with 150 uL of APTES
(3-aminopropyltriethoxysilane) solution (500 wl in 50 ml of
1 mM acetic acid) for 20 min. The APTES solution was then
decanted and rinsed three times with 150 uL DI H,O. The sub-
strates were dried under a stream of N, and stored in the
desiccator for 1 hour. A 150 uL aliquot of the Ap solution (either
1or 5 uM in 20 mM Tris-HCI, pH 8.0) was deposited onto
the amine-treated mica substrates for 30 min to adsorb the
proteins. The AB solution was then decanted, and the samples
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were rinsed three times with 150 L. DI H,O. The samples were
dried under a stream of N, and stored in the desiccator until
imaging.

AFM analysis of LFAOs was conducted using a Dimen-
sion Icon atomic force microscope (Bruker) in Peak-
Force Tapping mode. AFM scanning was performed using
NanoScope 8.15r3sr8 software and the images were analyzed
in NanoScope Analysis 1.50 software. Imaging was performed
using a sharp silicon nitride cantilever (SNL-C, nominal tip
radius of 2 nm; nominal resonance frequency of 56 kHz; nom-
inal spring constant of 0.24 N/m) in a standard probe holder
under ambient conditions with 512 x 512 data point resolution.
The AFM height image was deconvoluted and corrected for
diameter manually by calculating the dead space between the
base and the sample created by the curvature the cantilever

tip.
lll. RESULTS

A. LFAOs are two-layered rings

Detailed biophysical characteristics of LFAOs were
obtained previously.?>7 LFAOs display the presence of two
aggregate distributions corresponding to sedimentation coef-
ficients 5S and 7S [Fig. 1(a)], corresponding to 12mers and
more heavy assemblies of 12-24mers. The secondary structure
determined by far-UV circular dichroism (CD) shows a f3-sheet
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FIG. 1. Biophysical characteristics of LFAOs. (a) LFAOs, as analyzed previously by analytical ultracentrifugation. [Reproduced with permission from Kumar et al., J. Biol.
Chem. 287, 21253 (2012). Copyright 2012 American Society for Biochemistry and Molecular Biology.] The single and double arrows represent LFAO 12mer and 24mer,
respectively. (b) Circular dichroism spectra and immunoblotting analysis (inset) of LFAOs at 0.5 (dashed) and 8 (solid) .M, as previously described. [Reproduced with
permission from Dean et al., Biochemistry 55, 2238 (2016). Copyright 2016 American Chemical Society.] (c) AFM image shows a distribution of two punctate spheres (single
and double arrows), scale bar represents 200 nm. [Reproduced with permission from Dean et al., Sci. Rep. 7, 40787 (2017). Copyright 2017 Author(s), licensed under a
Creative Commons Attribution 4.0 License.] (d) DLS measurement shows a monodisperse species with diameter centered at 10 nm. (e) Concentration-dependent dynamics
of LFAO (e) 12mer to 12-24mer transition as shown previously [reproduced with permission from Dean et al., Biochemistry 55, 2238 (2016); Copyright 2016 American
Chemical Society] using ANS fluorescence along with A monomers (o) and fibril (A) controls.
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structure that remains unchanged in an order of magnitude
concentration difference [Fig. 1(b)]. However, two oligomer
distributions were observed within the same concentration
range on immunoblots [Fig. 1(b); inset]; a band correspond-
ing to 50-60 kDa (12mer) at 0.5 uM, and an additional band
at 80-110 kDa (24mer) at 8 uM.? Atomic force microscopy
(AFM) analyses indicate spherical punctate dot-like morphol-
ogy for LFAOs with largely two distinct sizes corresponding
to the sedimentation velocity analysis in panel (a) [arrows;
Fig. 1(c)]. The solvated diameter determined from dynamic
light scattering (DLS) ranged between 10 and 13 nm [Fig. 1(d)].
The concentration-dependent transition can be monitored
by the increase in solvent exposed hydrophobic surfaces, as
determined by 1-anilino naphthalene sulfonate (ANS) binding
[Fig. 1(e), ], and is consistent with an apparent dissociation
constant (K;) of 0.1 uM.? This transition between 12mer and
24mer LFAOs is absent in both monomer (O) and fibril (a)
control samples [Fig. 1(e)].

In a recent paper,® we have shown that unlike the more
common, but less toxic, AB40, AB42 polypeptide innately can
form pore-like trimers and larger oligomers. This is because
Ap42 chains are able to assume a S-shaped three-stranded
motif,?% while AB40 peptides are not stable in this form and
instead take U-shaped conformations in fibrils.'> Building on
our previously presented models® and guided by the exper-
imental size measurements, we conjecture that the 12mer
is organized as two ring-like hexamers stacked on top of
one another (6 x 2) [Fig. 2(2)].® In such an arrangement,
the hydrated diameter of the oligomer measures 14-15 nm
with a height of 3-4 nm, giving a flattened disc-like appear-
ance. Note that oligomers with a similar structure have also

R

12 nm
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been reported already earlier for Ap peptide-fragments of
various lengths.?>27 In order to model the heavier LFAO
24mers, two possible models were considered: a tetramer
of hexamers (6 x 4) or a dimer of dodecamers (12 x 2).
Both models are consistent with previous experimental results
in their dimensions and size as seen by AFM, which range
between 14 and 20 nm of the height observed?¢ [Figs. 2(b)
and 2(c)].

Our earlier AFM analysis on LFAOs showed a bimodal
distribution of oligomers [Fig. 1(c)], but we did not interro-
gate the morphology of individual aggregates. In this study,
we used 1 and 5-8 uM LFAO samples to generate 12 and
12-24mers, respectively, throughout this manuscript. For
detailed AFM analysis, we have employed a sharp silicon
nitride cantilever with a lower resonant frequency and smaller
spring constant to obtain higher resolution images. Height and
phase images were obtained over small scan areas contain-
ing LFAOs of different diameters (Fig. 3). Height images indi-
cate spherical particles with average diameters of 20 nm for
the 12mers and average diameters of 40 nm for the 24mers.
Average height for the 12mers is 2.5-3.5 nm and that of the
24mers is 5-8 nm. Phase images for both oligomers show a
characteristic “donut” shape, indicative of differences in mod-
ulus and /or adhesion from the outer to the inner edge of the
material, which we attribute to the existence of a cavity. Sim-
ilar height and phase images have been reported for hollow
nanoparticles.?®

To see the correspondence between the morphology
obtained from AFM and the simulated models, the height anal-
ysis and various structural models were overlaid (Fig. 4). A
comparison of the dimensions derived from the AFM data

FIG. 2. Models of LFAO 12 and 24mers.
(@) The backbone ribbon representation
of our (6 x 2) model for LFAO 12mers
built from two hexameric rings stacked
on top of one another. 3-sheets and turns
are indicated as {3 and t, respectively. (b)
and (c) Two possible models for LFAO
24mer assembly with (6 x 4) and (12
x 2), respectively. The structure of the
individual chains is derived from the ones
the chains take in the fibril model?“ as
adapted from Ref. 8.

19.5nm
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FIG. 3. AFM morphology analysis of LFAO 12 and 24mers. [(a) and (b)] Height and phase images of 1 uM LFAO samples (scale bar = 50 nm). Cross sectional analysis
[XZ, shown in panel (b)] was conducted across the path indicated by the arrows. [(c) and (d)] Height and phase images of 5 uM LFAO samples (scale bar = 50 nm). Cross
sectional analysis [XZ, shown in panel (d)] was conducted across the path indicated by the arrows.

for the 1 uM samples and those from (6 x 2) model shows a
good agreement between the two [I'ig. 4(a)]. Due to the large
AFM tip diameter (2 nm) in relation to the size of the parti-
cles, the shape of the height plot was corrected to calculate
the actual diameter of the oligomer, which yielded 15 nm for
the 12mer as indicated in Fig. 4(a). The height and diameter
obtained agree with the (6 x 2) model, which were 3 and 14 nm,
respectively (Fig. 2). Similarly, the heights of the larger spheri-
cal particles (24mer) obtained at higher concentrations (5 uM)

d

12nm

(on
& ,

(@)

m
w
T A

o

were compared with the (12 x 2) model [Fig. 4(b)]. The cor-
rected diameter (20 nm) corresponds to the one obtained from
the model (19.5 nm). It is noteworthy that the slight increase
in AFM heights (5-8 nm) in comparison to the height of the
two layers in the 12 x 2 model (3-4 nm) can be accounted for
when the oligomer is layered at ~20° angle on the mica sur-
face [Fig. 4(b)]. On the other hand, the height measurements
exclude the possibility of either a single-layered dodecamer
ring (12 x 1) or a four-layered hexamer (6 x 4) structure. This

FIG. 4. Experimental and simulation cor-
relation for LFAO 12 and 24mers. (a)
The (6 x 2) structure is overlaid on
to the height of smaller punctate parti-
cles observed at low concentrations of
LFAOs shown in Figs. 3(a) and 3(b). The
height and diameter correlate with the
~3 and 12 nm, respectively, observed
for the (6 x 2) structure from simulations
(3.1 and 12.2 nm, respectively). (b) The
height of the larger spherical particles
of LFAOs observed at higher concentra-
tions in which a (12 x 2) structure is over-
laid. The height and diameter correlate
with the observed ~5 and 20 nm, respec-
tively for the (12 x 2) structural model.
The slightly elevated height of 5 nm can
be accounted for only when the oligomer
is adhered at a ~20° angle as shown.
The corrected diameter of the species is
also shown after accounting for the dead

o

space created by AFM cantilever tip (see
Sec. Il).
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observation parallels similar ones observed previously for AB42
oligomers.?” Note that our structural models are for residues
11-42 in the Ap42 chains as residues 1-10 are flexible in all
resolved fibril structures. To evaluate the effect of first 10
residues, we also constructed the full-length AB42 oligomers
for (6 x 2) and (12 x 2) models with the N-terminal segment in
the beginning in a random coil configuration that is allowed to
relax in a molecular dynamics simulation over 10 ns. The ori-
entation of the first ten residues stayed random, and their sole
effect was that the diameter of (6 x 2) oligomers changed from
10.5 to 14.6 nm.

In order to understand why the heavier LFAO 24mers
appear to form a dimer of dodecamers (12 x 2) instead of a
tetramer of hexamers (6 x 4), we have simulated all three Ap11-
42 oligomer models, the (6 x 2) 12mer and the two 24mer mod-
els (6 x 4) and (12 x 2), by atomistic molecular dynamics (MD).
As we are neither modeling the association into the 12mers
nor the transition between 12mers and 24mers, only relative
short simulations are needed to explore energetics and stabil-
ity of these models. Note that the experimental measurements
were obtained at a pH = 8, i.e., under neutral /alkaline con-
ditions, which were modeled in our simulations by changing
the H13 and H14 residues into a deprotonated state (named
by us the HIE state). Each system is followed in two inde-
pendent runs. In Table I, we list the solvent accessible sur-
face area (SASA) and the binding energy as approximated by
the Molecular Mechanics/Generalized Born and Surface Area
(MMGBSA) continuum solvation approach. This approximation
is justified because we are not interested in absolute values
for the binding energies of the three models but only in the
qualitative differences between them.

Comparing the SASA of the three models, we note that
the values for the (12 x 2) model of the 24mers is about
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double that of the (6 x 2) 12mer, while the corresponding SASA
of the (6 x 4) 24mer model is less than 1.5 times that of the
12mer. Hence, based on the ANS binding data, which showed
that the solvent accessible hydrophobic surface area doubles
from LFAO 12mers to 24mers [Fig. 1(e)]. We conclude that the
(12 x 2) model is the more likely structure for the 24mers. This
model has a diameter of 15.7 nm, which extends to 19.5 nm
for the full-sized model (including the first ten N-terminal
residues), also in agreement with the experimentally measured
dimensions.

The (12 x 2) model for the 24mer is also favored by the
binding energies shown in Table 1. The (12 x 2) structure has
binding energies more favorable than the binding energies of
two (6 x 2) models [see the difference A(A) = E_(12 x 2) — 2
x E_(6 x 2) in Table I], while the binding energy of the 6 x 4
model is substantially higher than that of two isolated 6 x 2
models [see the difference A(B)=E_(6 x4) -2 x E_(6 x 2) in
Table 1], disadvantaging formation of this assembly. In order
to show why the 12 x 2 model is more favorable than the (6 x
4) model, we neglect entropic contributions and approximate
the binding energy of a 12mer by

Ex2) = (2"6)"A+6"B+(2°6)"C,

where A is interaction between chains within a ring, B
the interaction between chains of neighboring rings, and C
the interaction of chains with surrounding water (i.e., pro-
portional to exposed surface). With the same definitions,
one finds that the binding energy of a (12 x 2) would
be

Exz) = (2°12)°A+12°B + (2'12)*C,

ie., A(A)=E_(12 x 2) - 2 x E_(6 x 2) = 0. On the other hand,
the binding energy of (6 x 4) would be

TABLE I. The solvent accessible surface area (SASA) and the binding energy of the three considered oligomer models under
neutral pH conditions. Shown are for all quantities the averages (Avg) as obtained from two runs of 20 ns and their standard
deviations (StD). The binding energy was calculated in a MMGBSA approximation and is composed by four terms: the van
der Waals energy E,qw, the electrostatic energy Eeject, @ generalized Born approximation of the solvation energy Egg, and
solvent surface tension interaction term Eg,+. The SASA values are calculated by two different tools: g_sasa and POPS. In
POPS, the SASA values can be further separated into hydrophobic and hydrophilic contributions. The binding energy are
defined as follows: A(A)=E_(12x2) —2x E_(6 x 2), A(B)=E_(6 x 4) — 2 x E_(6 x 2)).

6x2) (6 x 4) (12 x 2)
Avg, StD Avg.  StD  Avg  StD
Evow 6904 22 9531 02 14459 1.0
L Eeect 2133 40 4780 468 4293 573
fklgfll}‘r% glr)lergy Fap 371.9 15  -2593 516 7575 527
Equrt 895 01 1136 05 18638 13
Total 6213 04 8480 44 13045 69
g_sasa 250.4 13 3391 03 4952 3.0
SASA (A2 POPS: All 258.4 13 4007 06 5240 32
&) Hydrophobic  163.9 0.4 2552 04 3322 2.8
Hydrophilic 94.5 0.4 1454 02 1918 03
Delta of binding energy Avg. StD
(kcal /mol)
A(A) ~58.04 3.9
A(B) 392.80 18
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Ee-4) = (4°6)"A +(3"6)'B + (2'6)'C,

i.e, A(B)=E_(6 x4) -2 x E_(6 x 2)) = 6*B — (2*6)*C. This dif-
ference describes in the first approximation how much more
unfavorable the (6 x 4) model is over the (12 x 2) model and the
results from repulsive interactions between the (6 x 2) 12mers.
The histidine side chains at positions 13 and 14 orient them-
selves towards one side of the hexamer ring in the upper layer,
while similar histidines on the congruent Ap42 unit on the
lower layer hexamer ring do so on the opposite side. Hence,
the positioning of the histidine chains hinders further associ-
ation of hexamer rings (leading to steric clashes), which would
make a (6 x 4) structure thermodynamically expensive.

The above results suggest that the transition between
12mers and 24mers is not a simple stacking of two 12mers.
As the repulsive interaction between (6 x 2) 12mer prohibits
stacking and leads to a large unfavorable binding energy, a
reorganization of chains is needed, leading to a (12 x 2) struc-
ture where the histidines (H13 and H14) are moved ~95° per-
pendicular to the axis of the oligomer, thus preventing poten-
tial charge repulsion due to protonation. Furthermore, this
transition also results in the exposure of hydrophobic residues
along either side of oligomer face, see Table I, evident from the
increase in ANS binding [Fig. 1(e)].

This scenario is also consistent with the observation that
the transition between 12mer and 24mer depends on con-
centration, see [Figs. 1(b) and 1(e)],? and can be understood
from the energetics of our (6 x 2) 12mer and (12 x 2) 24mer
models. At low concentrations, the 12mers are separated and

b
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experience little repulsive forces. At the same time, the gain in
energy from forming a 24mer is negligible, and therefore the
equilibrium between the two forms shifts towards the 12mer.
On the other hand, above a critical threshold, the distance
between (6 x 2) 12mer rings becomes so close that the repul-
sive interaction between them becomes noticeable. At that
point, it becomes energetically more favorable to rearrange
and form (12 x 2) assemblies, i.e., the equilibrium is shifted
toward the 24mers.

B. Dynamics based on stability

While the above reasoning is plausible, more evidence
is needed to support our models for 12mer and 24mer and
for the implied mechanism of the concentration-dependent
transition between the two forms. Since the transition from
12 to 24mer involves in our model exposure of charged his-
tidines, we reason that the transition is caused by elec-
trostatic interactions, and that it should be modulated by
pH and ion concentration in a way that can be understood
from our proposed models. In an effort to obtain molecu-
lar details on such a possibility, we investigated the effect
of buffer pH and salinity on 12 to 24mer transition using the
ANS binding assay. This transition was previously established
at pH 8.0 in low ionic strength conditions (absence of salt)
[m; Figs. 5(a) and 5(b)]. Upon decreasing the pH from 8.0 to
5.0, the 12 to 24mer transition was less pronounced with a
decrease in binding affinity [Fig. 5(a)]. Similarly, systemati-
cally increasing the ionic strength also resulted in a diminished
ability of 12mers to convert to 24mers [Fig. 5(b)]. The decrease
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FIG. 6. Thermal stability analysis of LFAO 12mer and 12-24mers. (a) Normalized circular dichroism spectra, collected at 206 nm, of 1 (m; for 12mers) and 8 (o; for 24mers) uM
LFAOs upon the addition of SDS (1%) followed by heating to 90 °C. (b) The equilibrium constant (K, [folded]/[unfolded]) from panel (a) was used to determine the apparent
standard free energy change (AGpp) for both 1 (m) and 8 (o) M LFAOs, which was extrapolated to be —0.879 and —0.489 kcal/mol at 37°C (y-intercept), respectively. The

data were process as described in Sec. II.

in pH near the isoelectric point (pI) of Af (5.5) resulted in a
reduction in propensity of 12- to 24mer conversion. This indi-
cates the direct involvement of favorable electrostatic inter-
actions, as the abrogation of charges (near the pl) diminishes
the 12 to 24mer conversion [Fig. 5(a)]. To further ascertain the
role of the protonated of H13 and H14 residues in dimeriza-
tion, we generated H13A/H14A double mutant of Ab42 and
generated oligomers in similar conditions as that of LFAOs
(data not shown). The dimerization of isolated oligomers was
then monitored by ANS binding at pH 5, where LFAOs showed
weakest 12 to 24mer transition. Upon titration, we observed

that the double mutant specifically rescued the dimeriza-
tion of the oligomers at pH 5.0 where the histidines would
be protonated [Fig. 5(c)]. Specifically, this consolidates the
idea derived from the structures regarding the involvement
of protonation/deprotonation events in such a transition. To
further investigate differences in 12mers and 24mers,
thermodynamic stability analysis was performed in the pres-
ence of a denaturant (sodium dodecyl sulfate, SDS). In these
experiments, the conversion of -sheet structure adopted by
LFAOs to an a-helix in the presence of SDS was monitored by
far-UV CD at 206 nm as a function of temperature [Fig. 6(a)].

TABLE Il. The solvent accessible surface area (SASA) and the binding energy of the three considered oligomer models under
neutral pH conditions. Shown are for all quantities the averages (Avg) as obtained from two runs of 20 ns and their standard
deviations (StD). The binding energy was calculated in a MMGBSA approximation and is composed by four terms: the van
der Waals energy E,qw, the electrostatic energy Eeject, @ generalized Born approximation of the solvation energy Egg, and
solvent surface tension interaction term Eg,+. The SASA values are calculated by two different tools: g_sasa and POPS. In
POPS, the SASA values can be further separated into hydrophobic and hydrophilic contributions. The binding energy are as
follows: A(A)=E_(12x2) —2xE_(6x2), AB)=E_(6 x4) —2x E_(6 x 2)).

(6 x2) (6 x4) (12 x 2)
Avg, StD Avg. Stb  Avg.  StD
Evow —696.1 5.2 -903.6 63 14934 207
L Eetect 154 817 9729 958  130.3 652
?k‘gfl‘}‘r% glr)lergy Fap 1671 73.0 _7609 870 2126 488
Egurf 910 01 1083 05 1976 17
Total 6353 34 800 156 13480 61
g_sasa 249.4 16 331.9 11 513 23
SASA (A2 POPS: All 257.6 18 389.2 09 5424 29
&) Hydrophobic  163.6 0.6 2495 06 3469 22
Hydrophilic 94.0 05 1397 04 1955 07
Difference in binding energy Average StD
(kcal /mol)
A(A) 710 6.4
A(B) 466.2 44
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The equilibrium data were processed (as described in the
experimental) to obtain the apparent Gibbs free energy at
37 °C, which were found to be —0.879 and -0.489 kcal /mol for
LFAO 12mer (1 uM) and 24mer (8 uM), respectively [Fig. 6(b)].
This difference of 0.4 kcal/mol is minimal and insignificant,
revealing that both isoforms have similar thermodynamic
stability.

In our simulations, we model the switch from neutral to
acidic conditions by repeating our simulations of the three
systems (the (6 x 2) for the 12mers, and the (6 x 4) and (12
x 2) model for the 24mers), with protonated histidine 13 and
14, i.e., setting the charge state to positive (called HIP in this
paper). All other parameters in the two sets of simulations
are identical. Data for the pH < 7 simulations are summa-
rized in Table II. Comparing binding energies between charged
(pH < 7) and neutral forms, it appears that the energy dif-
ferences between 24mer (12 x 2) and 12mer (6 x 2) favor the
24mers in the charged state more than in the neutral state
[(AAG) = ~13 kcal /mol]. This is unexpected as the experimen-
tal data shows a faster transition toward 24 mer at pH > 7.
Hence, the sharper transition between 12mer and 24mer is not
because at pH > 7 the 24mer is energetically more favored
over the 12mer than in acidic conditions. Instead, the sharper
transition at pH > 7 is because the repulsion between 6 x 2
dodecamers is much higher for the charged forms than the
neutral forms (Tables I and II). In other words, the repulsion
between the 12 mers is larger at low pH values than in the neu-
tral range where a faster 12 to 24mer transition was observed.
Hence, we conjecture that the less pronounced transition at
low pH is because larger concentrations are needed to over-
come the stronger repulsion between the 12mer than at neu-
tral or higher pH. Note also that while the solvent accessible
surface area does not differ between the charged and neutral
forms in the (6 x 2) model, a difference in SASA is observed
for the (12 x 2) structure. For neutral conditions (HIE), the (12
x 2) structure of a 24mer exposes roughly two times (332 A%;
Table 1) the hydrophobic surfaces of the (6 x 2) 12mer (164 A2;
Table ), an observation that the experimental results concur
with Fig. 1(e). On the other hand, under acidic conditions (HIP),
the 24mer exposes with 347 A2 (Table 11) more than double the
hydrophobic surface of two 12mers (164 A%; Table 11), making
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formation of 24mer less favorable), which further agrees with
the experimentalZ observations.

IV. DISCUSSION

What is the cause for the above described changes in the
way the 12mer and 24mer differ at low pH and neutral pH,
changes that in turn modulate the concentration-dependent
transition between 12mer and 24mer? These changes have
to be connected with differences in the two geometries and
with the way these differences are modulated by pH. One
possibility is the way residues are exposed to the solvent.
Figure 7 shows the per-residue differences in the solvent
exposed surface area between HIE and HIP states for (6 x 2)
and (12 x 2) structures. While on average the SASA does not
differ between charged and neutral forms in (6 x 2) 12mer, the
turn region t1 between p1 and 2 (see Fig. 2) is more exposed
under neutral conditions (HIE) than under acidic conditions
(HIP), while most other residues are more exposed in the HIP
state than in the HIE state. A similar picture is seen for the
(12 x 2) 24mer, only that here the difference in exposure of
residues in the turn region is much smaller than for the 12mer;
while the overall exposure of surface to the solvent is larger
under acidic conditions (HIP) than under neutral conditions
(HIE). Hence, our solvent accessible surface differences indi-
cate that the pH-modulation of the transition between 12mer
and 24mer involves this turn region.

This observation is confirmed by Iig. 8, where the per-
residue contributions to the binding energy are shown. The
contribution of binding energy for each residue was calculated
in three different ways: first, the difference between HIE and
HIP states for (6 x 2) and (12 x 2) models [Fig. 8(a)], second,
the difference in binding energies between two times that of
a (6 x 2) model and a (12 x 2) model [Fig. 8(b)]. In both cases,
no apparent signal is seen in the figures. However, when look-
ing into the difference in binding energy of two isolated (6 x
2) models minus the binding energy of the (6 x 4) model [Fig.
8(c)], which is a measure for the maximal repulsion between
two (6 x 2) models, a clear signal is observed. The only segment
where there is a difference between HIE and HIP are residues
20 to 28, which include the turn region between f1 and (2,
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FIG. 7. Difference in the solvent acces-
sible surface area (SASA) contributions

of single residues between acidic condi-
tions (HIP) and neutral conditions (HIE)
for the two AP42 oligomer models: (a)
the (6 x 2) 12mer and (b) the (12 x 2)
24mer.
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FIG. 8. Differences in the binding energy contributions of each residue in the various models. (a) Difference between the values measured under acidic conditions (HIP) and
neutral conditions (HIE) for both (6 x 2) 12mer and (12 x 2) 24mer; (b) difference between two times the value measured for the (6 x 2) 12mer and the value measured for
the (12 x 2) 24mer, data are for both acidic conditions (HIP) and neutral conditions (HIE); (c) difference between two times the value measured for the (6 x 2) 12mer and the
value measured for the alternative (6 x 4) model for a 24mer, data are for both acidic conditions (HIP) and neutral conditions (HIE).

and other residues located on the packing surface that directly
interact with residues on the neighboring fold. For this seg-
ment, the binding energy contribution is for neutral pH similar
between two isolated (6 x 2) rings and when fully associated as
a (6 x 4) assembly, while under acidic conditions the binding
energy contribution from these segments favor isolated (6 x 2)
assemblies. This is consistent with Fig. 5(a) which shows that
under acidic conditions, the residues in this segment are less
exposed to solvent than under neutral conditions.

Visual inspection of this segment in the (6 x 2) model for
both HIE and HIP systems shows that this region is slightly
more distorted in HIP than in HIE (Fig. 9). This distortion is
related with (and can be quantified by) a weakening of the salt-
bridge between K16 and E22 or D23 (mainly the K16-D23, see
Ref. 29) that is formed between neighboring chains (Fig. 9). In
order to demonstrate this point, we have calculated the aver-
age distance of all corresponding salt-bridge pairs between
the 0% /0% atoms on D23 and N® atom on K16, and the dis-
tributions of such distances for the HIP and HIE models are
shown in Fig. 10.

Compared with the neutral state (HIE), the acid state
decreases the stability of the inter-chain salt-bridge in the
(6 x 2) model. How do the different charge states of the his-
tidine lead to this effect? In HIP, residues 13 and 16 are both
positively charged and the repulsive interaction between them
distorts the geometry of the salt-bridge between residue K16
and either D23 or E22. In order to quantify the repulsive inter-
action between the two positively charged H13 and K16, we
have calculated the average distance between the mass cen-
ter of imidazole on H13 and N® atoms on K16 on the same
chain and drawn the distribution of distances between H13
and K16 in Fig. 10. The geometry in the 24mer (a two-layer
dodecamer ring) is such that the different charge states of
H13 do not change the average distance between H13 and K16
and therefore also does not weaken the salt bridge K16-D23
(E22), see Fig. 9. On the other hand, for the 12mer (a two-layer

FIG. 9. Detailed structure of LFAO 12mers. (a) Final structures of the (6 x 2)
model for neutral pH (HIE, blue) and acidic conditions (HIP, red) states after a
20 ns molecular dynamics trajectory. The side chains of residues 20 to 28, where
the contributions to binding energy differed mostly with pH, are shown in bond
representation. The histidine residues H13/H14 are colored in green (HIE) and
mauve (HIP). (b) a close-up view of the stabilizing salt bridge interactions between
D23 and K16 the interface of two Af units are shown along with the histidines 13
and 14.
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hexamer ring), the distribution of distances between residues
H13 and K16 is shifted towards larger values for acidic con-
ditions reflecting the repulsive interaction between the two
residues under these conditions. This is not seen for the 24mer
because for a (12 x 2) structure, the same histidines (H13 and
H14) are moved ~95° perpendicular to the axis of oligomer, and
thus preventing potential charge repulsion due to protona-
tion. The net-effect of this repulsive interaction between the
charged histidine and the lysine K16 is a weakening of the salt
bridge K16-D23 (E22) (Fig. 10), which in turn reduces the sta-
bility of the turn region between the p1and 2 strands and the
hydrophobic core region for the peptides in the 12mer under
acidic conditions. The binding energies [Fig. 8(c)] indicate that
this distortion leads to a larger repulsive interaction between
the (6 x 2) structure, shifting the equilibrium toward the
12mer.

V. CONCLUSIONS

Combining a variety of biophysical measurements and
molecular dynamics simulations, we put forward models for
the fatty acid catalyzed Ap42 assemblies called LFAOs. The
experimentally observed existence of 12 and 24mer LFAOs in
a concentration-dependent manner agrees with the models
generated by simulations. First, ring-like two-layered assem-
blies were derived for both 12 and 24mers (two stacked hex-
amer rings in the case of the 12mer, and two stacked dode-
camer rings in the case of the 24mer). The diameter and

Distance (nm)

height of the two oligomers agree well with their morphol-
ogy in AFM images that appear as punctate spherical par-
ticles. More importantly, the most noticeable feature of the
oligomer structure, the ring structure with a cavity in the mid-
dle, is also in agreement with the phase changes observed
in AFM images. Furthermore, the determination that proto-
nation of histidine side chains (H13 and H14) are the key in
determining the structural conversion of (6 x 2) to (12 x 2)
is also supported by the experiments on both wild-type and
double alanine mutant of the histidines. Finally, the energetic
contributions calculated from the models are also in agree-
ment with the free energy changes observed experimentally.
Together, both simulations and experiments point out to
the proposed models for the LFAO structure and dynam-
ics that remained elusive thus far. It is noteworthy that the
disc-like oligomers of LFAOs observed here have also been
observed for AB by other groups.?°-27 Based on AFM imaging,
ring-like, spherical low molecular oligomers are observed to
be transiently formed before the formation of high molecu-
lar weight oligomers, which then laterally associate to form
protofibrils.?> Economou and colleagues observed that even
at low concentrations, Ap42 but not AB40, form ring-like
hexamers that convert to dodecamers, which consequently
seed protofibril formation.?6 Our observations on the LFAO
structure and propagation support our previous reports and
add much needed detail. The studies undertaken in our labs
have confirmed that LFAOs are ring-like dodecamers at low
concentrations.®® Investigations on the mechanism of LFAO
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propagation suggested that LFAO 24mers are formed at higher
concentrations, which grow larger to form a key intermediate
on route to fibril formation in a three-step mechanism.” The
(12 x 2) structure observed for 24mers explains the fact that
24mers, and not (6 x 2) 12mers, are able to faithfully propa-
gate by associating with one another mediated by increased
hydrophobic surface interactions with 24mer units of LFAOs
as observed previously.?>27 Overall, these observations are in
agreement with those described previously.

Perhaps the intriguing and enigmatic properties of LFAOs
are (i) the ability of 12mers to self-replicate in the presence
of monomers, (ii) to convert to 24mers in a concentration
dependent manner, and (iii) the striking differences in the
pathogenicity of 12 and 24mers. While both oligomeric forms
are pathogenic, LFAO 12mers are more apoptotic to neu-
roblastoma cells than the 24mers.? LFAOs also induce acute
CAA in transgenic mice brains selectively, although it remains
unclear which form of LFAO is responsible for this pheno-
type.® The results presented here bring out the molecular sig-
natures that are responsible for the structural and functional
differences between LFAO 12 and 24mers and provide insights
into the structure and mechanism by which LFAOs behave and
become neurotoxic. At elevated concentrations, (6 x 2) LFAOs
form 24mers by adopting a (12 x 2) structure accompanied by
reorganization in the assembly, which exposes the hydropho-
bic residues along either side of oligomer face, an observation
also supported by an increase in ANS binding. Such a reor-
ganization increases the susceptibility of 24mers for further
oligomer associations mediated largely by hydrophobic inter-
actions. This is indeed supported by the fact that LFAO 24mers
are able to propagate morphologically distinct fibrils made by
repeats of LFAO units.*

Insights into the molecular underpinnings of oligomer
behavior is much needed to understand AD pathology and for
future therapeutic interventions. This work is a step toward
advancing our knowledge into this critical area, providing
insights into the structure and mechanism by which LFAOs
behave and become neurotoxic.
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