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Biological samples are radiation-sensitive and require imaging under low-dose
conditions to minimize damage. As a result, images contain a high level of noise
and exhibit signal-to-noise ratios that are typically significantly smaller than 1.
Averaging techniques, either implicit or explicit, are used to overcome the
limitations imposed by the high level of noise. Averaging of 2D images showing
the same molecule in the same orientation results in highly significant
projections. A high-resolution structure can be obtained by combining the
information from many single-particle images to determine a 3D structure.
Similarly, averaging of multiple copies of macromolecular assembly subvolumes
extracted from tomographic reconstructions can lead to a virtually noise-free
high-resolution structure. Cross-correlation methods are often used in the
alignment and classification steps of averaging processes for both 2D images and
3D volumes. However, the high noise level can bias alignment and certain
classification results. While other approaches may be implicitly affected,
sensitivity to noise is most apparent in multireference alignments, 3D
reference-based projection alignments and projection-based volume alignments.
Here, the influence of the image signal-to-noise ratio on the value of the cross-
correlation coefficient is analyzed and a method for compensating for this effect
is provided.

1. Introduction

Cryo-electron microscopy of biological samples has made
large strides towards achieving close to atomic resolution
structure determination (Cheng et al., 2017; Nobel Founda-
tion, 2017). Since biological samples are radiation-sensitive,
micrographs are recorded under low-dose conditions, resulting
in images with signal-to-noise ratios (SNRs) substantially
lower than 1 (or negative decibels; dB). In contrast, the
detection of image details by the human eye requires SNRs
with values ranging between 4 and 5 (Rose, 1973). To over-
come this problem in biological electron microscopy, images of
single particles are aligned, classified and averaged to obtain
clear projection images. 3D reconstructions are calculated
from many images showing the molecule or macromolecular
assembly in multiple orientations, using a much larger number
than would be required by the sampling conditions. For 2D
averaging, images are aligned rotationally and translationally,
classified with multivariate statistical methods combined with
multireference alignments, and subsequently the images
corresponding to each class are averaged separately (Frank,
1975, 1978; Frank et al., 1978; van Heel & Frank, 1981; van
Heel & Stoffler-Meilicke, 1985). For 3D reconstructions a
number of methods are used, all of which include a variation
of a cross-correlation process. If tomographic reconstructions
are used as a starting point, they are often followed by 3D
alignments and averaging. Cross-correlations are also present
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when angular reconstitution or random conical tilt methods
are applied to obtain first references, or when random conical
tilt methods are applied for resolving multiple structures
representing different conformations of a highly hetero-
geneous sample (Radermacher et al., 1987; van Heel, 1987,
Radermacher, 1988; Bartesaghi & Subramaniam, 2009; Yu et
al., 2010, 2013; Schmid, 2011; Asano et al., 2016; Wan & Briggs,
2016). Most of these techniques are followed by 3D reference-
based projection alignments, in which the projection angles
and xy positions are refined using cross-correlation methods
between a 3D reference structure and single 2D projections, or
in which additional 2D projections are first aligned with a 3D
reference and subsequently added to the 3D reconstruction
(see, for example, Radermacher & Ruiz, 2006; Scheres et al.,
2007).

All of the above averaging approaches either explicitly or
implicitly use cross-correlation methods, and the very low
SNR of the data may adversely affect the image processing
and bias the results. The effect of noise on the cross-
correlation coefficient has been described previously for
correlations between two images with the same SNR (Bershad
& Rockmore, 1974; Frank & Al-Ali, 1975). Many steps in the
processing of single-particle data sets, however, include cross-
correlation procedures of images with different SNRs. These
include, but are not limited to, the correlation of a single 2D
image with a 2D average image, or the correlation of a 2D
projection with a 3D volume reconstructed from a 2D
projection set that is not evenly distributed, thus exhibiting
different SNRs in different directions, which are apparent
along the radial lines of the polar 3D Fourier transform or the
3D Radon transform. Since 3D projection alignments utilize
comparisons of the projection transform with the central
sections of the 3D transform of the structure, the varying SNR
may bias the alignment results.

In 2D and 3D multireference alignment procedures, cross-
correlation coefficients are explicitly used when deciding the
assignment of a test image or volume to a specific reference.
Here, we analyze the effect of noise on the value of the cross-
correlation coefficient in 2D and 3D applications.

2. Theory

The value of the cross-correlation maximum, when two images
are cross-correlated, depends on the agreement between the
motifs in each image and on their SNR. In electron micro-
scopy image processing all 2D images and 3D structures
typically originate from projections with similar noise content.
This allows the calculation of the influence of noise on the
cross-correlation coefficient not only when correlating two
images with the same SNR, but also when correlating single
images to an average image from the same data set, or when
correlating two averages, again derived from the same data
set. The following calculations are estimates and use approx-
imations. They will aid, however, in judging the effect of
variations in the SNR on the outcome of a calculation. For
simplicity we use the following assumptions: (i) the noise is
white, additive and Gaussian-distributed with an average

equal to 0, (ii) the signal and the noise are uncorrelated and
(iii) the average of the signal is 0. The latter assumption is used
to simplify the calculations but does not affect the results.

From assumption (i) it follows that the expectation value of
the noise cross-correlation is 0 and

Zn} -n? >~ 0, (1)

where n! and n? are two independent realizations of Gaussian-
distributed white noise and M is the number of pixels in an
image.

From assumption (ii), stating that the signal and noise are
uncorrelated, it follows that the cross-correlation between
signal and noise also vanishes,

M
Ss;-nk >0, 2
=1

where s; is the signal and n} is the kth realization of Gaussian-
distributed white noise.

In the following, the SNR « is defined as the ratio of the
variances:

M

Z s §2
o = =1 = <—2> (3)
A
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Under these assumptions, the well known equation for the
value of the cross-correlation in the presence of noise can be
derived (Bershad & Rockmore, 1974; Frank & Al-Ali, 1975).
Let C be the normalized cross-correlation coefficient and
(s; + n7) and (s; + n}) two images with the same motif but
different noise. When no noise is present, the cross-correlation
coefficient Cis 1.

S5, ) G5+ n)
C=— =l " 7 )
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Developing this equation, we obtain

M
S5 s )
i=1
C= M " 73 (5)
{;[S,-Z + (nf)? +2s,nf] - ;[s? + ()" + 2synf]}

Using the approximations stated above, the mixed signal and
noise terms yield 0, the cross-correlation of noise terms yield 0,
and since nj and n} are two realizations of Gaussian distrib-
uted white noise

Moo Mo M
2(”?‘) = ;(nf) = ;n?§
= = 1=

thus, (5) simplifies to
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C:M’L' (6)
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Defining

and using the definition of the SNR in (3), & = (s*/n*), which
allows the substitution of s> by s> = « - n%, (6) yields
a-n? a

C= (7)

_a‘n2+n2=a+1'

The relation described in (7) can be used to determine the
SNR of a series of images by calculating their pairwise cross-
correlations (Frank & Al-Ali, 1975):

C

=7 ¢ (8)
(7) describes the cross-correlation coefficient of two images
with the same SNR. However, more often cross-correlations
are used for the alignment of noisy images with an average
reference with a larger SNR. If the reference represents an
average of images with the same signal and with the same
SNR, then the cross-correlation is also noise-dependent and
has a value smaller than 1. The cross-correlation coefficient
depends on the SNR of each single image and on the number
of images used to calculate the average image.

It is well known that averaging improves the SNR. When
averaging N images the standard deviation of the noise is
reduced by N'2. Thus, if o is the SNR of a single image,
defined as above as the ratio of signal and noise variances, the
SNR of an average image containing N imagesis S =« - N. The
cross-correlation between a single image and the average
image can then be calculated.

From (3), the SNR of a single image is a = (s*/n”) and the
SNR of the averaged image results in

ﬂ:(s2~%>:cx-N.

Defining the superscript x in (4) to indicate the single image
and the superscript y to indicate the average, and using

M Y2 1M x\2
;(”z) = N;(nz) )
(5) becomes
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and substituting s by the SNR « using the formula
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in (9) yields
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The cross-correlation coefficient C in (10) represents the value
obtained when a single image is cross-correlated with an
average image containing N images of the same image set with
the same SNR.

Equation (10) can be used to determine the SNR from the
cross-correlation of single images to an average image
obtained fom the same data set:

1 1 47"?
C2<1 +N) + C|:C2(1 _ﬁ> +N:|
o= 20— . (11)

For N =1, (11) simplifies to (8) for determining the SNR from
cross-correlations of single images.

The calculations can easily be extended to the cross-
correlation between two average images calculated from
different numbers of images. We can assume that both images
are average images of the single images with noise n”, the first
average image contains L single images and the second
average image contains N single images. (5) can then be
rewritten as

5()
C= =l (12)
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Performing the same calculations as above and substituting s
by the SNR « using the equation

M M
;(8?) =a- ;(n?)

yields
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The cross-correlation coefficient C in (13) represents the value
obtained when an average image containing L single images is
cross-correlated with an average image containing N single
images of the same image set with the same SNR per image.

3. Test calculations and a cryo-EM data example

The theory was initially tested with model data for both
pairwise correlations and correlations towards an average. We
created model images with an SNR of 0.5 (Fig. 1). The motif
was generated by first creating a random noise image, low-pass
filtering and thresholding it to reintroduce higher frequencies;
it was then rotated and masked. To introduce noise, a large
image containing Gaussian-distributed white noise was first
created. Subsequently, rows of non-overlapping images with
the same size as the motif were boxed out of the large noise
image and the motif was added to obtain the final images. Both
the motif and the noise image were scaled such that the
variances of signal to noise had a ratio of 0.5. A total of 400
images were created. In a first experiment, all 400 images were
cross-correlated in unique pairs, excluding auto-correlations.
The average cross-correlation coefficient was determined to
be 0.334, with a standard deviation of 0.0084. The SNR for
each cross-correlation coefficient, calculated using (8), yielded
an average SNR of 0.501 with a standard deviation of 0.011. In
a second experiment 50 images were averaged. Each of the
400 single images was cross-correlated with the average and
yielded normalized cross-correlation coefficients with an
average of 0.557 and a standard deviation of 0.007. The
resulting SNR calculated as an average of individual SNRs
using (11) was 0.508 with a standard deviation of 0.016, which
is in good agreement with the SNR determined by pairwise
correlation. All calculations were carried out using the
Environment for Modular Image Reconstruction Algorithms
(EMIRA; Radermacher, 2013).

The theory was subsequently applied to a set of experi-
mental images for both pairwise correlations and correlations

Figure 1
Test data. (a) Motif, (b) one of the 400 images with added noise with
SNR = 0.5.

with an average. The data set used contained images of
mitochondrial complex I purified from the yeast Yarrowia
lipolytica (Radermacher et al., 2006) and prepared for
microscopy in vitreous ice (Fig. 2a). Images were recorded on
an FEI Tecnai 12 electron microscope equipped with an LaBg
filament operated in point mode at 100 kV (Ruiz et al., 2003;
Ruiz & Radermacher, 2006). The typical defocus was
approximately 1.8 um and the nominal magnification was
52 000x. The micrographs were digitized on an SCAI flatbed
scanner with a pixel size of 7 pm and subsequently binned
down by a factor of three, resulting in a calibrated pixel size of
4 A. A total of 1750 images of single particles were boxed out
and subjected to multiple rounds of alignment, correspon-
dence analysis and classification using Diday’s method of
moving centers (Diday, 1971), and ten final classes were
obtained. Calculations to test the theory presented in this
paper were carried out using the class with the largest number
of particles, class 8, which contained 462 images (Figs. 2b and
2¢). The original images had dimensions of 160 x 160;
however, for this cross-correlation experiment the images
were boxed down to 80 x 80 to exclude most of the image
background areas. No additional mask was applied, since the
cross-correlation program used normalizes over the whole
image and does not allow normalization restricted to a
specified mask. All images were low-pass filtered to 33 A, the
resolution of the average image determined by Fourier ring
correlation with a cutoff of 0.5.

SNRs were determined using the same approach as for the
model data for both pairwise correlations and correlations to
an average. First all 462 images were cross-correlated pairwise
(using only unique pairs and excluding autocorrelations) and
SNR values were calculated from each cross-correlation
coefficient. For pairwise cross-correlation the average

Figure 2

Cryo-electron microscopy data for complex I from Y. lipolytica. (a) Area
of micrograph. (b) Selection of boxed-out images and average image. (c)
The same images as in (b), low-pass filtered. The scale bar is 100 A in
length.
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Table 1
Assignments resulting from a multireference correlation process without
and with compensation for the SNR.

Without correction, most images were assigned to the average reference
calculated from the larger number of images. With correction using (10) all
images were assigned to the correct reference, independent of the number of
images used in the average.

Reference 1 2 3 4 5 6 7 8 9 10

No. of images assigned
Without correction 0 0 0 9 82 99 112 140 247 311
With correction 100 100 100 100 100 100 100 100 100 100

cross-correlation value was 0.279 with a standard deviation of
0.053 and the averaged SNR was 0.394 with a standard
deviation of 0.104. When the average of all 462 images was
used as a reference, the average cross-correlation coefficient
was 0.530 with a standard deviation of 0.047 and the resulting
averaged SNR was 0.404 with a standard deviation of 0.099.
The SNR value found relative to the average is slightly higher,
since in the cross-correlation of individual images variations in
the motif are expected to lower the average cross-correlation
coefficients.

The negative effect of the SNR on the cross-correlation can
be compensated for. We generated a data set containing 1000
images with an SNR of 0.5. The signal image was a pattern of
99 squares, and for each of the ten motifs created a different
square was missing (Fig. 3a). The final data set contained 100
copies of each motif with noise added as before (Fig. 3b). Ten
references for cross-correlation were calculated, the first one

Figure 3
Compensation for the negative effect of the SNR on the cross-correlation. (a) The ten motifs used in model calculation. (b) Example images of the ten
motifs with added noise, SNR = 0.5. (¢) Averages used as references calculated from 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 images (from left to right). (d)
Result of a classification using conventional multireference correlation without correction. (e) Result of a classification using multireference correlation
with the correction described in (10) implemented.

by averaging ten images containing the first motif, the second
by averaging 20 images containing the second motif etc., until
the tenth containing the tenth motif was calculated by aver-
aging 100 images (Fig. 3c¢). The 1000 images were recreated
using a different noise image to avoid any noise correlation
between the averages and single images. The images were
correlated in a multireference (translational) alignment using
a normalized cross-correlation. During this test no filters or
masks were applied since this would have changed the SNR of
the data. In a conventional multireference correlation, no
images were assigned to averages 1-3 and the plurality of
images were assigned to reference 10 (Fig. 3d). The multi-
reference alignment process was repeated using the inverse of
(10) to correct the cross-correlation values. After applying the
correction the procedure assigned each image to its correct
reference (Fig. 3e, Table 1).

4. Discussion

The calculations show the strong dependence of cross-
correlation coefficients on the image noise.

Equation (10) describes the value of the cross-correlation
coefficient when a single image with SNR = « is correlated
with an average image calculated from N single images with
the same SNR. In cross-correlation alignment processes the
cross-correlation coefficient corresponds to the maximum of
the correctly normalized cross-correlation function. While the
specific value of the cross-correlation is of minor importance
during rotational and translational alignments against a single
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reference, it can bias the results in multireference alignments
when the references are averages of only a few and different
numbers of images (van Heel & Stoffler-Meilicke, 1985). In
this situation the cross-correlation with the reference with the
highest number of images averaged will show a higher valued
cross-correlation, and if used in an iterative procedure, images
may tend to be assigned to the reference that starts with the
highest number of images averaged. Fig. 4 illustrates the
influence of the number of images used to calculate the
reference on the cross-correlation coefficient. While for an
SNR of >0.5 the change in the cross-correlation is minimal
when more than 40 images are averaged, for lower values of
the SNR the dependence on the number of images averaged
to calculate the reference is still strong.

The specific value of the cross-correlation coefficient is also
affected when images exhibiting a low SNR are correlated
with an almost noise-free reference. Under these conditions,
the correlation coefficient manifests an asymptotic behavior
(Fig. 5). For this particular calculation the value N in (10) was
set to 1000. The abscissa shows the SNR and the ordinate the
cross-correlation coefficient. Its value is always smaller than 1.

Multireference alignments are often used as classification
tools. The extent of signal differences between the images
determines whether the bias introduced by differences in the
SNR of the references will have a significant effect on the
outcome. If there are large differences among the signals in
the images, the signal differences will dominate the selection
process. However, if the differences are small then the bias
can be significant. The effect is dominated by an asymptotic
behavior, as shown in the curves in Figs. 4 and 5. The possible
bias diminishes when either the SNR of the images increases
or the SNR of the references increases. The effect is obvious in
our model calculations, where in one single round of corre-
lations a plurality of images were assigned to the average
calculated from the most images, while none of the images
were assigned to the averages calculated from 30 or fewer
images.

1.0 T T T T T T
a=2.0 ]
a=1.0
a=0.5
02F e a=0.1
0 1 1 1 1 1 1
1 5 10 15 20 25 30 35 40

No. of images in reference
Figure 4
Value of the cross-correlation coefficient between an image with SNR = «
and an average image, depending on the number of images averaged in
the reference image. Curves are shown for four different SNR values.
Abscissa, number of images used to calculate the reference average
image. Ordinate, cross-correlation coefficient C.

The cross-correlation value can be corrected by multi-
plication by the inverse of either (10) or (13) and will result in
a cross-correlation coefficient of close to 1 if identical motifs
exist in the reference and in the image (Fig. 3e). The correction
defined in (10) is implemented in our 3D reference-based
projection alignment (Radermacher, 1994), where the angular
distribution of the projections used in the calculation of the
3D reference is often uneven. In this alignment procedure 2D
Radon transforms of the projections are cross-correlated with
the reference 3D Radon transform. The 3D Radon transform
is created by an algorithm that averages the 2D Radon
transforms of the projections into a 3D Radon transform.
Accordingly, each radial line is an average of multiple radial
lines from each of the projections. A counter is maintained
indicating how many projection lines contribute to the average
in each radial line at any specific angle (¢;, 6;). The cross-
correlations are carried out by cross-correlation of each radial
line in the 2D transform of the projection with each radial line
in the 3D transform of the reference. The algorithm as
implemented allows the (optional) normalization of each line
correlation with the inverse of (10), using the counter of each
line for N. The Radon inversion of the line-by-line cross-
correlations at every angle provides the cross-correlation
function. For normalization, the SNR of either the projection
or the 2D Radon transform of the projection needs to be
known. If the SNR of the image is not known a priori, it can be
estimated by performing the cross-correlation between a
single image and an average image. The best results are
obtained when the calculation is carried out in the asymptotic
range of (10).

One of the main sources of noise in low-dose electron
micrographs is shot noise, which is approximately constant
throughout the whole spectrum. Thus, the SNR strongly
depends on the image resolution. The signal energy typically
weakens towards higher frequencies or better resolutions.
Therefore, besides using masks to exclude background noise,
low-pass filters are extensively applied in alignment proce-
dures by cross-correlation. Above a certain radius low-pass

1.0 T T

0.8 F /

0.6 F .

04F 3

0.2F 3

0 0.5 1 1.5 2
SNR

Figure 5

Asymptotic value of the cross-correlation coefficient in cross-correlations
of an image with SNR = « with a virtually noise-free average. Abscissa,
SNR of a single image. Ordinate, cross-correlation coefficient C.
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filters remove more noise energy than signal, thus increasing
the SNR. Any SNR value used for correction of the influence
of noise on the cross-correlation must be estimated taking into
account any mask and band-pass filter applied in the cross-
correlation process. One should be careful not to over-
compensate for the SNR; the cross-correlation coefficient
must not exceed a value of 1. The statistics of the cross-
correlation coefficients in the alignment process can be used as
a safeguard against overcompensation.

The recently introduced method of projection-based volume
alignment (Yu et al., 2013) for aligning 3D volumes of
macromolecular structures could easily take advantage of the
theoretical principles described here. In this method, a set of
projections with known orientations calculated from a refer-
ence volume are aligned with the volumes whose orientations
are to be determined. If the reference volume is calculated by
averaging the 2D Radon transforms of the projections into a
3D Radon transform, the extracted projections can also
provide an index for each radial line that specifies how many
projections contributed to each line. A correction for the
influence of noise can now be implemented in this algorithm
using (13) by making use of the occupancy counters of both
the reference 3D Radon transform and the 3D Radon trans-
form of the volumes being aligned.

5. Conclusion

Early literature has described the value of the cross-
correlation coefficient when two images with the same noise
level are correlated. Here, we extended this equation to
include cross-correlations between images and their averages,
and between image averages, all obtained from the same
original noisy data. The results provide a method to correct for
the major influence of noise, and we hope that they will help to
increase the awareness of possible bias in multireference
alignments and classification.
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