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Biological samples are radiation-sensitive and require imaging under low-dose

conditions to minimize damage. As a result, images contain a high level of noise

and exhibit signal-to-noise ratios that are typically significantly smaller than 1.

Averaging techniques, either implicit or explicit, are used to overcome the

limitations imposed by the high level of noise. Averaging of 2D images showing

the same molecule in the same orientation results in highly significant

projections. A high-resolution structure can be obtained by combining the

information from many single-particle images to determine a 3D structure.

Similarly, averaging of multiple copies of macromolecular assembly subvolumes

extracted from tomographic reconstructions can lead to a virtually noise-free

high-resolution structure. Cross-correlation methods are often used in the

alignment and classification steps of averaging processes for both 2D images and

3D volumes. However, the high noise level can bias alignment and certain

classification results. While other approaches may be implicitly affected,

sensitivity to noise is most apparent in multireference alignments, 3D

reference-based projection alignments and projection-based volume alignments.

Here, the influence of the image signal-to-noise ratio on the value of the cross-

correlation coefficient is analyzed and a method for compensating for this effect

is provided.

1. Introduction

Cryo-electron microscopy of biological samples has made

large strides towards achieving close to atomic resolution

structure determination (Cheng et al., 2017; Nobel Founda-

tion, 2017). Since biological samples are radiation-sensitive,

micrographs are recorded under low-dose conditions, resulting

in images with signal-to-noise ratios (SNRs) substantially

lower than 1 (or negative decibels; dB). In contrast, the

detection of image details by the human eye requires SNRs

with values ranging between 4 and 5 (Rose, 1973). To over-

come this problem in biological electron microscopy, images of

single particles are aligned, classified and averaged to obtain

clear projection images. 3D reconstructions are calculated

from many images showing the molecule or macromolecular

assembly in multiple orientations, using a much larger number

than would be required by the sampling conditions. For 2D

averaging, images are aligned rotationally and translationally,

classified with multivariate statistical methods combined with

multireference alignments, and subsequently the images

corresponding to each class are averaged separately (Frank,

1975, 1978; Frank et al., 1978; van Heel & Frank, 1981; van

Heel & Stöffler-Meilicke, 1985). For 3D reconstructions a

number of methods are used, all of which include a variation

of a cross-correlation process. If tomographic reconstructions

are used as a starting point, they are often followed by 3D

alignments and averaging. Cross-correlations are also present
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when angular reconstitution or random conical tilt methods

are applied to obtain first references, or when random conical

tilt methods are applied for resolving multiple structures

representing different conformations of a highly hetero-

geneous sample (Radermacher et al., 1987; van Heel, 1987;

Radermacher, 1988; Bartesaghi & Subramaniam, 2009; Yu et

al., 2010, 2013; Schmid, 2011; Asano et al., 2016; Wan & Briggs,

2016). Most of these techniques are followed by 3D reference-

based projection alignments, in which the projection angles

and xy positions are refined using cross-correlation methods

between a 3D reference structure and single 2D projections, or

in which additional 2D projections are first aligned with a 3D

reference and subsequently added to the 3D reconstruction

(see, for example, Radermacher & Ruiz, 2006; Scheres et al.,

2007).

All of the above averaging approaches either explicitly or

implicitly use cross-correlation methods, and the very low

SNR of the data may adversely affect the image processing

and bias the results. The effect of noise on the cross-

correlation coefficient has been described previously for

correlations between two images with the same SNR (Bershad

& Rockmore, 1974; Frank & Al-Ali, 1975). Many steps in the

processing of single-particle data sets, however, include cross-

correlation procedures of images with different SNRs. These

include, but are not limited to, the correlation of a single 2D

image with a 2D average image, or the correlation of a 2D

projection with a 3D volume reconstructed from a 2D

projection set that is not evenly distributed, thus exhibiting

different SNRs in different directions, which are apparent

along the radial lines of the polar 3D Fourier transform or the

3D Radon transform. Since 3D projection alignments utilize

comparisons of the projection transform with the central

sections of the 3D transform of the structure, the varying SNR

may bias the alignment results.

In 2D and 3D multireference alignment procedures, cross-

correlation coefficients are explicitly used when deciding the

assignment of a test image or volume to a specific reference.

Here, we analyze the effect of noise on the value of the cross-

correlation coefficient in 2D and 3D applications.

2. Theory

The value of the cross-correlation maximum, when two images

are cross-correlated, depends on the agreement between the

motifs in each image and on their SNR. In electron micro-

scopy image processing all 2D images and 3D structures

typically originate from projections with similar noise content.

This allows the calculation of the influence of noise on the

cross-correlation coefficient not only when correlating two

images with the same SNR, but also when correlating single

images to an average image from the same data set, or when

correlating two averages, again derived from the same data

set. The following calculations are estimates and use approx-

imations. They will aid, however, in judging the effect of

variations in the SNR on the outcome of a calculation. For

simplicity we use the following assumptions: (i) the noise is

white, additive and Gaussian-distributed with an average

equal to 0, (ii) the signal and the noise are uncorrelated and

(iii) the average of the signal is 0. The latter assumption is used

to simplify the calculations but does not affect the results.

From assumption (i) it follows that the expectation value of

the noise cross-correlation is 0 and

PM
i¼1

n1
i � n2

i ’ 0; ð1Þ

where ni
1 and ni

2 are two independent realizations of Gaussian-

distributed white noise and M is the number of pixels in an

image.

From assumption (ii), stating that the signal and noise are

uncorrelated, it follows that the cross-correlation between

signal and noise also vanishes,

PM
i¼1

si � nk
i ’ 0; ð2Þ

where si is the signal and ni
k is the kth realization of Gaussian-

distributed white noise.

In the following, the SNR � is defined as the ratio of the

variances:

� ¼
PM
i¼1

s2
i

PM
i¼1

n2
i

:¼ s2

n2

� �
: ð3Þ

Under these assumptions, the well known equation for the

value of the cross-correlation in the presence of noise can be

derived (Bershad & Rockmore, 1974; Frank & Al-Ali, 1975).

Let C be the normalized cross-correlation coefficient and

(si + ni
x) and (si + ni

y) two images with the same motif but

different noise. When no noise is present, the cross-correlation

coefficient C is 1.

C ¼
PM
i¼1

ðsi þ nx
i Þ � ðsi þ n

y
i Þ

PM
i¼1

ðsi þ nx
i Þ2 �

PM
i¼1

ðsi þ n
y
i Þ2

� �1=2
: ð4Þ

Developing this equation, we obtain

C ¼
PM
i¼1

ðs2
i þ nx

i � ny
i þ si � ny

i þ si � nx
i Þ

PM
i¼1

½s2
i þ ðnx

i Þ2 þ 2s1nx
i � �
PM
i¼1

½s2
i þ ðny

i Þ2 þ 2syn
y
i �

� �1=2
: ð5Þ

Using the approximations stated above, the mixed signal and

noise terms yield 0, the cross-correlation of noise terms yield 0,

and since ni
x and ni

y are two realizations of Gaussian distrib-

uted white noise

PM
i¼1

ðnx
i Þ2 ¼

PM
i¼1

ðny
i Þ2 :¼PM

i¼1

n2
i ;

thus, (5) simplifies to
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C ¼
PM
i¼1

s2
i

PM
i¼1

s2
i þ

PM
i¼1

n2
i

: ð6Þ

Defining

PM
i¼1

u2
i :¼ u2

and using the definition of the SNR in (3), � = (s2/n2), which

allows the substitution of s2 by s2 = � � n2, (6) yields

C ¼ � � n2

� � n2 þ n2
¼ �

�þ 1
: ð7Þ

The relation described in (7) can be used to determine the

SNR of a series of images by calculating their pairwise cross-

correlations (Frank & Al-Ali, 1975):

� ¼ C

1� C
: ð8Þ

(7) describes the cross-correlation coefficient of two images

with the same SNR. However, more often cross-correlations

are used for the alignment of noisy images with an average

reference with a larger SNR. If the reference represents an

average of images with the same signal and with the same

SNR, then the cross-correlation is also noise-dependent and

has a value smaller than 1. The cross-correlation coefficient

depends on the SNR of each single image and on the number

of images used to calculate the average image.

It is well known that averaging improves the SNR. When

averaging N images the standard deviation of the noise is

reduced by N1/2. Thus, if � is the SNR of a single image,

defined as above as the ratio of signal and noise variances, the

SNR of an average image containing N images is � = � �N. The

cross-correlation between a single image and the average

image can then be calculated.

From (3), the SNR of a single image is � = (s2/n2) and the

SNR of the averaged image results in

� ¼ s2 � N
n2

� �
¼ � � N:

Defining the superscript x in (4) to indicate the single image

and the superscript y to indicate the average, and using

PM
i¼1

ðny
i Þ2 :¼ 1

N

PM
i¼1

ðnx
i Þ2;

(5) becomes

C ¼
PM
i¼1

ðs2
i Þ

PM
i¼1

½s2
i þ ðnx

i Þ2� �
PM
i¼1

s2
i þ
ðnx

i Þ2
N

� �� �1=2
; ð9Þ

and substituting s by the SNR � using the formula

PM
i¼1

ðs2
i Þ ¼ � �

PM
i¼1

ðn2
i Þ

in (9) yields

C ¼
� �PM

i¼1

ðn2
i Þ

PM
i¼1

ð�n2
i þ n2

i Þ �
PM
i¼1

�n2
i þ

n2
i

N

� �� �1=2

¼
� �PM

i¼1

ðn2
i Þ

PM
i¼1

ð�þ 1Þ � n2
i �
PM
i¼1

�þ 1

N

� �
� n2

i

� �1=2

¼
� �PM

i¼1

ðn2
i Þ

ð�þ 1Þ �PM
i¼1

n2
i � �þ 1

N

� �
�PM

i¼1

n2
i

� �1=2

¼
� �PM

i¼1

ðn2
i Þ

PM
i¼1

n2
i � ð�þ 1Þ � �þ 1

N

� �� �1=2

¼ �

ð�þ 1Þ � �þ 1

N

� �� �1=2
¼ �

�2 þ �þ �
N
þ 1

N

� �1=2
: ð10Þ

The cross-correlation coefficient C in (10) represents the value

obtained when a single image is cross-correlated with an

average image containing N images of the same image set with

the same SNR.

Equation (10) can be used to determine the SNR from the

cross-correlation of single images to an average image

obtained fom the same data set:

� ¼
C2 1þ 1

N

� �
þ C C2 1� 1

N2

� �
þ 4

N

� �1=2

2ð1� C2Þ : ð11Þ

For N = 1, (11) simplifies to (8) for determining the SNR from

cross-correlations of single images.

The calculations can easily be extended to the cross-

correlation between two average images calculated from

different numbers of images. We can assume that both images

are average images of the single images with noise nx, the first

average image contains L single images and the second

average image contains N single images. (5) can then be

rewritten as

C ¼
PM
i¼1

ðs2
i Þ

PM
i¼1

s2
i þ
ðnx

i Þ2
L

� �
�PM

i¼1

s2
i þ
ðnx

i Þ2
N

� �� �1=2
: ð12Þ

Performing the same calculations as above and substituting s

by the SNR � using the equation

PM
i¼1

ðs2
i Þ ¼ � �

PM
i¼1

ðn2
i Þ

yields
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C ¼ �

�þ 1

L

� �
� �þ 1

N

� �� �1=2
¼ �

�2 þ �
L
þ �

N
þ 1

L � N
� �1=2

:

ð13Þ

The cross-correlation coefficient C in (13) represents the value

obtained when an average image containing L single images is

cross-correlated with an average image containing N single

images of the same image set with the same SNR per image.

3. Test calculations and a cryo-EM data example

The theory was initially tested with model data for both

pairwise correlations and correlations towards an average. We

created model images with an SNR of 0.5 (Fig. 1). The motif

was generated by first creating a random noise image, low-pass

filtering and thresholding it to reintroduce higher frequencies;

it was then rotated and masked. To introduce noise, a large

image containing Gaussian-distributed white noise was first

created. Subsequently, rows of non-overlapping images with

the same size as the motif were boxed out of the large noise

image and the motif was added to obtain the final images. Both

the motif and the noise image were scaled such that the

variances of signal to noise had a ratio of 0.5. A total of 400

images were created. In a first experiment, all 400 images were

cross-correlated in unique pairs, excluding auto-correlations.

The average cross-correlation coefficient was determined to

be 0.334, with a standard deviation of 0.0084. The SNR for

each cross-correlation coefficient, calculated using (8), yielded

an average SNR of 0.501 with a standard deviation of 0.011. In

a second experiment 50 images were averaged. Each of the

400 single images was cross-correlated with the average and

yielded normalized cross-correlation coefficients with an

average of 0.557 and a standard deviation of 0.007. The

resulting SNR calculated as an average of individual SNRs

using (11) was 0.508 with a standard deviation of 0.016, which

is in good agreement with the SNR determined by pairwise

correlation. All calculations were carried out using the

Environment for Modular Image Reconstruction Algorithms

(EMIRA; Radermacher, 2013).

The theory was subsequently applied to a set of experi-

mental images for both pairwise correlations and correlations

with an average. The data set used contained images of

mitochondrial complex I purified from the yeast Yarrowia

lipolytica (Radermacher et al., 2006) and prepared for

microscopy in vitreous ice (Fig. 2a). Images were recorded on

an FEI Tecnai 12 electron microscope equipped with an LaB6

filament operated in point mode at 100 kV (Ruiz et al., 2003;

Ruiz & Radermacher, 2006). The typical defocus was

approximately 1.8 mm and the nominal magnification was

52 000�. The micrographs were digitized on an SCAI flatbed

scanner with a pixel size of 7 mm and subsequently binned

down by a factor of three, resulting in a calibrated pixel size of

4 Å. A total of 1750 images of single particles were boxed out

and subjected to multiple rounds of alignment, correspon-

dence analysis and classification using Diday’s method of

moving centers (Diday, 1971), and ten final classes were

obtained. Calculations to test the theory presented in this

paper were carried out using the class with the largest number

of particles, class 8, which contained 462 images (Figs. 2b and

2c). The original images had dimensions of 160 � 160;

however, for this cross-correlation experiment the images

were boxed down to 80 � 80 to exclude most of the image

background areas. No additional mask was applied, since the

cross-correlation program used normalizes over the whole

image and does not allow normalization restricted to a

specified mask. All images were low-pass filtered to 33 Å, the

resolution of the average image determined by Fourier ring

correlation with a cutoff of 0.5.

SNRs were determined using the same approach as for the

model data for both pairwise correlations and correlations to

an average. First all 462 images were cross-correlated pairwise

(using only unique pairs and excluding autocorrelations) and

SNR values were calculated from each cross-correlation

coefficient. For pairwise cross-correlation the average
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Figure 1
Test data. (a) Motif, (b) one of the 400 images with added noise with
SNR = 0.5.

Figure 2
Cryo-electron microscopy data for complex I from Y. lipolytica. (a) Area
of micrograph. (b) Selection of boxed-out images and average image. (c)
The same images as in (b), low-pass filtered. The scale bar is 100 Å in
length.



cross-correlation value was 0.279 with a standard deviation of

0.053 and the averaged SNR was 0.394 with a standard

deviation of 0.104. When the average of all 462 images was

used as a reference, the average cross-correlation coefficient

was 0.530 with a standard deviation of 0.047 and the resulting

averaged SNR was 0.404 with a standard deviation of 0.099.

The SNR value found relative to the average is slightly higher,

since in the cross-correlation of individual images variations in

the motif are expected to lower the average cross-correlation

coefficients.

The negative effect of the SNR on the cross-correlation can

be compensated for. We generated a data set containing 1000

images with an SNR of 0.5. The signal image was a pattern of

99 squares, and for each of the ten motifs created a different

square was missing (Fig. 3a). The final data set contained 100

copies of each motif with noise added as before (Fig. 3b). Ten

references for cross-correlation were calculated, the first one

by averaging ten images containing the first motif, the second

by averaging 20 images containing the second motif etc., until

the tenth containing the tenth motif was calculated by aver-

aging 100 images (Fig. 3c). The 1000 images were recreated

using a different noise image to avoid any noise correlation

between the averages and single images. The images were

correlated in a multireference (translational) alignment using

a normalized cross-correlation. During this test no filters or

masks were applied since this would have changed the SNR of

the data. In a conventional multireference correlation, no

images were assigned to averages 1–3 and the plurality of

images were assigned to reference 10 (Fig. 3d). The multi-

reference alignment process was repeated using the inverse of

(10) to correct the cross-correlation values. After applying the

correction the procedure assigned each image to its correct

reference (Fig. 3e, Table 1).

4. Discussion

The calculations show the strong dependence of cross-

correlation coefficients on the image noise.

Equation (10) describes the value of the cross-correlation

coefficient when a single image with SNR = � is correlated

with an average image calculated from N single images with

the same SNR. In cross-correlation alignment processes the

cross-correlation coefficient corresponds to the maximum of

the correctly normalized cross-correlation function. While the

specific value of the cross-correlation is of minor importance

during rotational and translational alignments against a single
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Figure 3
Compensation for the negative effect of the SNR on the cross-correlation. (a) The ten motifs used in model calculation. (b) Example images of the ten
motifs with added noise, SNR = 0.5. (c) Averages used as references calculated from 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 images (from left to right). (d)
Result of a classification using conventional multireference correlation without correction. (e) Result of a classification using multireference correlation
with the correction described in (10) implemented.

Table 1
Assignments resulting from a multireference correlation process without
and with compensation for the SNR.

Without correction, most images were assigned to the average reference
calculated from the larger number of images. With correction using (10) all
images were assigned to the correct reference, independent of the number of
images used in the average.

Reference 1 2 3 4 5 6 7 8 9 10

No. of images assigned
Without correction 0 0 0 9 82 99 112 140 247 311
With correction 100 100 100 100 100 100 100 100 100 100



reference, it can bias the results in multireference alignments

when the references are averages of only a few and different

numbers of images (van Heel & Stöffler-Meilicke, 1985). In

this situation the cross-correlation with the reference with the

highest number of images averaged will show a higher valued

cross-correlation, and if used in an iterative procedure, images

may tend to be assigned to the reference that starts with the

highest number of images averaged. Fig. 4 illustrates the

influence of the number of images used to calculate the

reference on the cross-correlation coefficient. While for an

SNR of >0.5 the change in the cross-correlation is minimal

when more than 40 images are averaged, for lower values of

the SNR the dependence on the number of images averaged

to calculate the reference is still strong.

The specific value of the cross-correlation coefficient is also

affected when images exhibiting a low SNR are correlated

with an almost noise-free reference. Under these conditions,

the correlation coefficient manifests an asymptotic behavior

(Fig. 5). For this particular calculation the value N in (10) was

set to 1000. The abscissa shows the SNR and the ordinate the

cross-correlation coefficient. Its value is always smaller than 1.

Multireference alignments are often used as classification

tools. The extent of signal differences between the images

determines whether the bias introduced by differences in the

SNR of the references will have a significant effect on the

outcome. If there are large differences among the signals in

the images, the signal differences will dominate the selection

process. However, if the differences are small then the bias

can be significant. The effect is dominated by an asymptotic

behavior, as shown in the curves in Figs. 4 and 5. The possible

bias diminishes when either the SNR of the images increases

or the SNR of the references increases. The effect is obvious in

our model calculations, where in one single round of corre-

lations a plurality of images were assigned to the average

calculated from the most images, while none of the images

were assigned to the averages calculated from 30 or fewer

images.

The cross-correlation value can be corrected by multi-

plication by the inverse of either (10) or (13) and will result in

a cross-correlation coefficient of close to 1 if identical motifs

exist in the reference and in the image (Fig. 3e). The correction

defined in (10) is implemented in our 3D reference-based

projection alignment (Radermacher, 1994), where the angular

distribution of the projections used in the calculation of the

3D reference is often uneven. In this alignment procedure 2D

Radon transforms of the projections are cross-correlated with

the reference 3D Radon transform. The 3D Radon transform

is created by an algorithm that averages the 2D Radon

transforms of the projections into a 3D Radon transform.

Accordingly, each radial line is an average of multiple radial

lines from each of the projections. A counter is maintained

indicating how many projection lines contribute to the average

in each radial line at any specific angle (’i, �j). The cross-

correlations are carried out by cross-correlation of each radial

line in the 2D transform of the projection with each radial line

in the 3D transform of the reference. The algorithm as

implemented allows the (optional) normalization of each line

correlation with the inverse of (10), using the counter of each

line for N. The Radon inversion of the line-by-line cross-

correlations at every angle provides the cross-correlation

function. For normalization, the SNR of either the projection

or the 2D Radon transform of the projection needs to be

known. If the SNR of the image is not known a priori, it can be

estimated by performing the cross-correlation between a

single image and an average image. The best results are

obtained when the calculation is carried out in the asymptotic

range of (10).

One of the main sources of noise in low-dose electron

micrographs is shot noise, which is approximately constant

throughout the whole spectrum. Thus, the SNR strongly

depends on the image resolution. The signal energy typically

weakens towards higher frequencies or better resolutions.

Therefore, besides using masks to exclude background noise,

low-pass filters are extensively applied in alignment proce-

dures by cross-correlation. Above a certain radius low-pass
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Figure 4
Value of the cross-correlation coefficient between an image with SNR = �
and an average image, depending on the number of images averaged in
the reference image. Curves are shown for four different SNR values.
Abscissa, number of images used to calculate the reference average
image. Ordinate, cross-correlation coefficient C.

Figure 5
Asymptotic value of the cross-correlation coefficient in cross-correlations
of an image with SNR = � with a virtually noise-free average. Abscissa,
SNR of a single image. Ordinate, cross-correlation coefficient C.



filters remove more noise energy than signal, thus increasing

the SNR. Any SNR value used for correction of the influence

of noise on the cross-correlation must be estimated taking into

account any mask and band-pass filter applied in the cross-

correlation process. One should be careful not to over-

compensate for the SNR; the cross-correlation coefficient

must not exceed a value of 1. The statistics of the cross-

correlation coefficients in the alignment process can be used as

a safeguard against overcompensation.

The recently introduced method of projection-based volume

alignment (Yu et al., 2013) for aligning 3D volumes of

macromolecular structures could easily take advantage of the

theoretical principles described here. In this method, a set of

projections with known orientations calculated from a refer-

ence volume are aligned with the volumes whose orientations

are to be determined. If the reference volume is calculated by

averaging the 2D Radon transforms of the projections into a

3D Radon transform, the extracted projections can also

provide an index for each radial line that specifies how many

projections contributed to each line. A correction for the

influence of noise can now be implemented in this algorithm

using (13) by making use of the occupancy counters of both

the reference 3D Radon transform and the 3D Radon trans-

form of the volumes being aligned.

5. Conclusion

Early literature has described the value of the cross-

correlation coefficient when two images with the same noise

level are correlated. Here, we extended this equation to

include cross-correlations between images and their averages,

and between image averages, all obtained from the same

original noisy data. The results provide a method to correct for

the major influence of noise, and we hope that they will help to

increase the awareness of possible bias in multireference

alignments and classification.
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