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ABSTRACT
In this paper, we study the problem of low-rank matrix re-
covery based on the information obtained by comparing ma-
trix entries (where each comparison is represented by one-bit)
and not the entries themselves. This is highly relevant in the
context of recommendation systems, due to the fact that users
(particularly those less familiar with the rating system) are
more comfortable with comparing products than giving ex-
act ratings. We investigate when and how a low-rank matrix
(such as a rating matrix in the recommendation system) can be
efficiently recovered using one-bit data, particularly by estab-
lishing the limitations of such a recovery. We devise a com-
putational approach based on matrix factorization to accom-
plish the reconstruction task. The numerical examples exhibit
the significant potential of the proposed approach in low-rank
matrix recovery from one-bit comparison information.

Index Terms— one-bit sampling, matrix completion,
low-rank matrix, matrix factorization, recommendation sys-
tem

1. INTRODUCTION

The important problem of reconstruction of a matrix from
an incomplete set of samples or measurements, particularly
known as matrix completion [1–3], arises in a large area of ap-
plications including recommendation schemes, system iden-
tification, sensor network localization, collaborative filtering,
quantum state tomography, and many others [4–8]. Owing to
the recent developments in the field of compressed sensing,
researchers now have a powerful theoretical base in matrix
completion [9–12]. In particular, we now have the necessary
tools to exactly and efficiently recover (with high probability)
a generic n × n matrix with rank r from O(nrpolylog(n))
randomly selected measurements even in cases of noisy ob-
servations. However, there exists a fundamental gap between
the problem statement of matrix completion theory and com-
mon practical applications. For example, in the “Netflix chal-
lenge”, researchers were asked to reconstruct a non-complete
low-rank matrix (i.e. the rating matrix) by predicting the
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missing elements [13]. In this challenge, while a subset of
users’ ratings is observed, the observations are highly quan-
tized to the set of integers between 1 and 5 whereas the the-
ory of matrix completion generally assumes that observations
are continuous-valued. Note that although existing techniques
can be utilized with discrete-valued observations by treating
them as continuous-valued, we need to account for the “quan-
tization noise” that may not be properly modeled as additive
noise in some settings. Also note that, the low-rank assump-
tion is not only key to the identifiability of the matrix and its
recovery, but also fits strongly to the real world problems.

New advances in signal recovery from extremely quan-
tized one-bit samples reveal a significant potential for one-
bit measurements in matrix recovery [9, 12, 14–17]. Recent
works in one-bit matrix completion literature have taken a
probabilistic model into consideration for the observation ma-
trix, where a subset of one-bit measurements of the rating ma-
trix itself is observed [17, 18]. By resorting to a maximum
likelihood (ML) formulation, several upper bounds for matrix
estimation error were derived under the assumption that the
matrix entries are drawn from a uniform distribution [17], or
a non-uniform distribution [18].

Note that matrix recovery based on comparisons between
ratings is a very natural approach in recommendation scenar-
ios including that of the Netflix challenge. Due to the fact that
users (particularly those less familiar with the rating system)
are more comfortable with comparing products than giving
exact ratings, such an approach is expected to make the user
interface of the rating system more friendly, and even in some
cases, make the ratings more precise. In this paper, we inves-
tigate the low-rank matrix recovery through the lens of such
recommendation systems. The goal is to devise a reconstruc-
tion algorithm that operates only by exploiting rating com-
parison information (where each comparison is represented
by one-bit) and not the actual ratings. A brief study of the
recovery limitations will be presented.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the problem formulations and the recovery ap-
proach. Section 3 discusses the limitations of low-rank matrix
recovery when only a small error is tolerated. Numerical re-
sults are presented in Section 4. Finally, Section 5 concludes
the paper.



Notation: We use bold lowercase letters for vectors and
uppercase letters for matrices. (·)T denotes the vector/matrix
transpose. (·)† denotes the Moore-Penrose pseudoinverse
of the matrix argument. ‖x‖n or the ln-norm of the vector
x is defined as {

∑
k |xk|n}

1
n where xk is the k-th entry of

x. ‖A‖F or the Frobenius norm of matrix A with entries

{ai,j}m,ni=1,j=1 is defined as
√∑m

i=1

∑n
j=1 |ai,j |2. Finally,

the symbol ⊗ stands for the Kronecker product of matrices.

2. THE RECOVERY APPROACH

Consider a c × p rating matrix M with [M ]i,j = mi,j , rank
r, and c and p denoting the number of users and number of
products, respectively. Note that mi,j (bounded in the inter-
val [0, η]) defines how much the user i likes a product j. Let
vec(M) denote the matrix M in its vectorized form. Com-
parisons are formulated as they are, in effect, observing M
through an observation or a measurement matrix. We form
the one-bit observation matrix A ∈ {−1, 0, 1}d×cp with each
row representing a comparison (thus d denotes the number of
comparisons made). As a result of comparisons, the vector
sgn(A · vec(M)) will be acquired. We can thus form a matrix
Ω as follows, that contains the comparison information:

Ω = Diag(sgn(A · vec(M))). (1)

Consequently, the problem of recovering the rating matrix M
can be formulated as

recover M
subject to Ω ·A · vec(M) ≥ 0,

rank(M) ≤ r,
0 ≤ vec(M) ≤ η.

(2)

Therefore, given the highly incomplete comparison informa-
tion (namely the comparison matrix A and comparison out-
come Ω), we aim to identify the matrix M with small error
provided that the rank of M is relatively small.

2.1. The Proposed Algorithm

Inspired by the classical approaches to low-rank matrix esti-
mation, we start with the optimization problem:

minM0
‖M −M0‖2F

subject to rank(M0) ≤ r,
Ω ·A · vec(M) ≥ 0,
0 < vec(M) < η.

(3)

From an algorithmic point of view, one can reconstruct a low-
rank matrix via alternating projections on matrix spaces with
dimensions significantly reduced due to low-rank characteris-
tic of the original matrix (note that storage becomes an issue
when the rating matrix is large). Since we expect the rating
matrix to have a small rank, we can always formulate M as

M = XY T and perform the optimization over the two tall
matrices X and Y of size c× r and p× r respectively, rather
than the c × p matrix M , where usually r � min(c, p). The
matrix recovery problem can thus be rewritten as

minM,X,Y ‖M −XY T ‖F
subject to Ω ·A · vec(M) ≥ 0,

0 < vec(M) < η.
(4)

The optimization problem stated above can be efficiently
tackled by resorting to a cyclic minimization algorithm op-
erating over its three optimization variables. In particular,
the optimization problem with respect to the variable M is
essentially a convex linearly-constrained quadratic program
(QP), leading to a low-cost solution. On the other hand, the
minimizers X and Y of (4) can be obtained analytically. One
can easily verify that∥∥M −XY T∥∥

F
=

∥∥vec(M)− vec(XY T )
∥∥
F

(5)
= ‖vec(M)− (Y ⊗ I) vec(X)‖F ,

which yields the optimal X of (4) as

vec(X) = (Y ⊗ I)† vec(M). (6)

Since
∥∥M −XY T∥∥

F
=
∥∥MT − Y XT

∥∥
F

, one can con-
clude by symmetry that

vec(Y ) = (X ⊗ I)† vec(MT ) (7)

is the minimizer Y of (4). Note that such an approach guar-
antees a convergence in the objective of (4) as (i) each step
of the cyclic process decreases the objective, and that (ii) the
objective is bounded from below.

3. IDENTIFIABILITY AND RANK
DETERMINATION

Herein, we briefly investigate the fundamental limits of one-
bit low-rank matrix recovery when the one-bit data are ac-
quired by comparison. Such limitations clearly exist. For ex-
ample, a scaling of the matrix does not change the comparison
information, and as a result, the matrix can be obtained only
up to a scalar. This issue, however, can be mitigated by having
at least one rating value available. In the following, we derive
a rank-quantization bottleneck from an information-theoretic
viewpoint.

3.1. The Rank-Quantization Bottleneck

Let M be a rank-r matrix, represented as

M = x1y
T
1 + x2y

T
2 + · · ·+ xry

T
r (8)

where xk ∈ Rc and yk ∈ Rp. We assume that the entries of
{xk} and {yk} are stored via a q-bit quantization system with



a predefined set of elements and a cardinality of 2q . Note that
the number of bits required to store M is given by cpq, while
storing {xk} and {yk} will require r(c+p)q bits. Storing the
latter is beneficial if r � cp

c+ p
which is easily satisfied in

large-scale scenarios.
Moreover, as r(c+p)q bits are required to store a large rat-

ing matrix in general, one will need at least the same number
of bits from an alternative representation scheme such as the
proposed method of comparisons. In other words, we need
at least r(c + p)q meaningful comparisons to recover M . A
comparison is meaningful if it provides new information; for
example, given α > β and β > γ, the comparison α > γ can-
not be considered meaningful for our recovery goal. On the
other hand, in the most efficient comparison scheme (which
leads to a directed tree of comparisons, formed on the entries
of M ), we have exactly cp − 1 meaningful comparisons —
the most one can wish for. Therefore, r(c + p)q ≤ cp− 1 or
equivalently,

rq ≤ cp− 1

c+ p
. (9)

The above inequality represents a rank-quantization bottle-
neck on the recovery of M , i.e. the product of rank and quan-
tization depth is upper bounded in a recovery that is done
solely by using comparisons. Interestingly, this should not
be a strong bottleneck for large-scale rating matrices. On the
other hand, smaller rating matrices can be used to verify if
a developed matrix recovery algorithm can approach such a
fundamental limit, which can possibly be a good sign for the
large-scale applications as well.

Further, the quantization-depth q gives a lower bound of
error for representing M in worst-case scenarios. Let

εq , max
M

0≤mij≤η

min
xk∈Sc

q

yk∈Sp
q

∥∥∥∥∥
r∑

k=1

xky
T
k −M

∥∥∥∥∥
F

(10)

where Sq is the set of predefined elements in the quantiza-
tion system. Particularly, one can observe that εq denotes the
worst-case error in recovery of the rating matrices inherent to
the quantization system. As a result, using (10) one can di-
rectly translate a limit on q to a limit on the guarantee we can
provide on error-bound in the recovery of M .

Note that the number of meaningful comparisons cm must
satisfy the inequality cm ≥ r(c + p)q, which might alterna-
tively imply that in an effective system of low-rank matrix
recovery based on comparisons, for any new additional row
or column in the matrix, we will need at least rq new compar-
isons, to fully update it. However, having only a few rating
levels (e.g. 0, 1, · · · , 7 for q = 3) can help us significantly
to reduce the number of required comparisons. Interesting
enough, this is a very common approach (e.g., it is widely
practiced in recommendation systems).

3.2. The Rank Determination Bound

In general, the low-rank matrix recovery algorithms will be
much more effective if an initial good estimate of the matrix
rank is available. Fortunately, an educated guess of the matrix
rank might be obtainable by further research using the follow-
ing road map: Assume the rating matrix M is of rank r. As a
result, any generic row m of M is given as a linear combina-
tion of at most r vectors {mk}:

m =

r∑
k=1

αkmk. (11)

The data provide comparisons of different entries of m which
can finally (or at the best performance of the system) lead
to an ordering of the elements in m. Now, the fundamental
question which naturally arises is that how many possible or-
derings can appear in m if it is a product of (11), i.e. with M
being rank r. Note that the ordering of entries in m depends
mainly on the orderings that are available in {mk}.

The above observations pave the way to establish that, the
number of feasible orderings for m is, in fact, upper bounded
by a function of r, that is considerably smaller than n! (i.e.
the number of all orderings). Particularly, one can show that
the number of such orderings is bounded asO(n2r). A sketch
of the proof is as follows: (i) We assume without loss of gen-
erality that αk ≥ 0, turning the linear combination to a conic
combination. The assumption αk ≥ 0 is natural from a prac-
tical standpoint for rating matrices. However, the equivalence
with the general case can be established by concatenating the
set {mk}with {−mk}, which brings the number of vectors in
the combination to 2r. (ii) Note that scaling does not change
the ordering of entries in a vector. With this observation, we
can limit the discussion to the set of convex combinations of
{mk}, i.e. with

∑r
k=1 αk = 1. (iii) For the case of r = 2,

one can easily show that the number of feasible orderings is
upper bounded by 1 +

(
n
2

)
. To see how, note that any change

of ordering in the vector m = (1 − α)m1 + αm2 occurs
when two entries of the vector become identical, which also
can occur only once. As a result, by starting from m1 with
α = 0 and then increasing α, the number of new orderings
is upper bounded by the number of pairs that are available
in the entries of the vector, namely

(
n
2

)
, which concludes the

analysis. (iv) We further use this result to show that in the
linear space produced by (11), any line between two points
(shown as a convex combination of the associated vectors)
can pass through at most 1 +

(
n
2

)
, or O(n2), orderings. (v)

We have now achieved a Steiner-type [19, 20] partitioning
of space that allows for counting the orderings. The upper
bound on the number of orderings thus grows exponentially
with dimension—leading to the bound O(n2r).

Note that such a bound will help with determining a lower
bound for r. In the next section, we will show that the rating
matrix can be efficiently recovered using the computational
approach proposed in the paper.



Fig. 1. An example of low-rank matrix recovery based on one-bit comparison measurements with (c, p, r) = (15, 20, 3).

Fig. 2. Frobenius error of the low-rank matrix recovery (vs.
iteration number) for different random initializations with
(c, p, r) = (15, 20, 3).

4. NUMERICAL EXAMPLES

In this section, we report the simulation results for low-rank
matrix recovery based on one-bit comparison measurements.
We tackle the recovery problem (2) by using the cyclic algo-
rithm and the matrix factorization formulation in (4).

To show that matrix recovery from comparison informa-
tion is an achievable goal, we first consider the reconstruction
of a rank-3 target rating matrix M with c = 20 and p = 30.
More specifically, the rating matrix M is constructed at ran-

dom by generating M = RST , where R and S are of size
20× 3 and 30× 3 with i.i.d entries drawn uniformly from the
interval [0,1]. The matrix is then scaled such that its largest
entry becomes equal to one. The matricesA and Ω are formed
as described in Section 2, assuming that all comparison data
are available. We continue the iterations of the cyclic algo-
rithm until convergence. Fig. 1 depicts the gradual recovery
of the rating matrix after various iterations along with the true
matrix M . It can be observed that the final matrix is essen-
tially recovered from the given one-bit comparison measure-
ments.

Next, we conduct the same experiment using different
random initializations to examine the behavior of the op-
timization objective in (4). Fig. 2 illustrates the (relative)
Frobenius error, defined as ‖M − M̂‖2F /‖M‖2F , where M̂
is the current estimate of M . The monotonically decreasing
behavior of the objective is repeated for various initializa-
tions. Moreover, even with different starting points, the error
appears to converge to relatively small values.

5. CONCLUSION

The problem of low-rank matrix recovery using comparison
information was studied, and several results concerning the
identifiability of such matrices were presented. A cyclic al-
gorithm was devised to facilitate the recovery in such set-
tings. Moreover, the proposed algorithm was successfully
employed in our numerical investigations. The numerical ex-
amples show that the original rating matrix can be efficiently
recovered even with different starting points.



6. REFERENCES

[1] J. F. Cai, E. J. Candès, and Z. Shen, “A Singular Value
Thresholding Algorithm for Matrix Completion,” SIAM
Journal on Optimization, vol. 20, no. 4, pp. 1956–1982,
Mar. 2010.

[2] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer, vol.
42, no. 8, pp. 30–37, Aug. 2009.

[3] S. Bhojanapalli and P. Jain, “Universal matrix comple-
tion,” in Proceedings of the 31st International Confer-
ence on International Conference on Machine Learning
- Volume 32, 2014, ICML’14, pp. II–1881–II–1889.

[4] A. Anandkumar, R. Ge, and M. Janzamin, “Guaranteed
Non-Orthogonal Tensor Decomposition via Alternating
Rank-1 Updates,” ArXiv e-prints, Feb. 2014.

[5] H. Sedghi and A. Anandkumar, “Provable Methods for
Training Neural Networks with Sparse Connectivity,”
ArXiv e-prints, Dec. 2014.

[6] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and
M. Telgarsky, “Tensor decompositions for learning la-
tent variable models,” Journal of Machine Learning Re-
search, vol. 15, pp. 2773–2832, 2014.

[7] N. Srebro, J. Rennie, and T. S. Jaakkola, “Maximum-
margin matrix factorization,” in Advances in Neural In-
formation Processing Systems 17, L. K. Saul, Y. Weiss,
and L. Bottou, Eds., pp. 1329–1336. MIT Press, 2005.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Item-based collaborative filtering recommendation al-
gorithms,” in Proceedings of the 10th International
Conference on World Wide Web, New York, NY, USA,
2001, WWW ’01, pp. 285–295, ACM.

[9] A. Ai, A. Lapanowski, Y. Plan, and R. Vershynin,
“One-bit compressed sensing with non-gaussian mea-
surements,” Linear Algebra and its Applications, vol.
441, pp. 222 – 239, 2014, Special Issue on Sparse Ap-
proximate Solution of Linear Systems.

[10] P. T. Boufounos and R. G. Baraniuk, “1-bit compressive
sensing,” in 2008 42nd Annual Conference on Informa-
tion Sciences and Systems, Mar 2008, pp. 16–21.

[11] A. Zymnis, S. Boyd, and E. Candes, “Compressed sens-
ing with quantized measurements,” IEEE Signal Pro-
cessing Letters, vol. 17, no. 2, pp. 149–152, Feb 2010.

[12] Y. Plan and R. Vershynin, “Robust 1-bit compressed
sensing and sparse logistic regression: A convex pro-
gramming approach,” IEEE Transactions on Informa-
tion Theory, vol. 59, no. 1, pp. 482–494, Jan 2013.

[13] J. Bennett and S. Lanning, “The Netflix Prize,” in Pro-
ceedings of KDD Cup and Workshop 2007, San Jose,
CA, USA, Aug 2007.

[14] C. Gianelli, L. Xu, J. Li, and P. Stoica, “One-bit com-
pressive sampling with time-varying thresholds: Max-
imum likelihood and the Cramér-Rao bound,” in 50th
Asilomar Conference on Signals, Systems and Comput-
ers, ACSSC 2016, Pacific Grove, CA, USA, November
6-9, 2016, 2016, pp. 399–403.

[15] C. Gianelli, L. Xu, J. Li, and P. Stoica, “One-bit
compressive sampling with time-varying thresholds for
sparse parameter estimation,” in 2016 IEEE Sensor
Array and Multichannel Signal Processing Workshop
(SAM), Rio de Janerio, Brazil, July 10-13, 2016, 2016,
pp. 1–5.

[16] S. A. Bhaskar and A. Javanmard, “1-bit matrix comple-
tion under exact low-rank constraint,” in 2015 49th An-
nual Conference on Information Sciences and Systems
(CISS), Mar 2015, pp. 1–6.

[17] M. A. Davenport, Y. Plan, and M. V. D. Berg,
E.and Wootters, “1-bit matrix completion,” Informa-
tion and Inference: A Journal of the IMA, vol. 3, no. 3,
pp. 189–223, 2014.

[18] T. Cai and W. X. Zhou, “A max-norm constrained mini-
mization approach to 1-bit matrix completion,” J. Mach.
Learn. Res., vol. 14, no. 1, pp. 3619–3647, Dec. 2013.

[19] E. J. Cockayne, “On the Steiner problem,” Cana-
dian Mathematical Bulletin, vol. 10, no. 3, pp. 431–450,
1967.

[20] J. E. Wetzel, “On the division of the plane by lines,”
The American Mathematical Monthly, vol. 85, no. 8, pp.
647–656, 1978.


