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Abstract—Target parameter estimation from noisy and quan-
tized received signals is of paramount importance in radar
applications. In this paper, we propose a novel method to estimate
the unknown target parameters via one-bit sampling, where
the samples are produced by comparing the received signal
with a time-varying threshold. The proposed approach utilizes
a weighted least-squares criterion to establish a connection to
previous results in radar target estimation and signal processing.
Several numerical examples are provided to demonstrate the
effectiveness of the proposed approach.

Index Terms—One-bit quantization, parameter estimation,
radar, time-varying thresholds

I. INTRODUCTION

In signal processing applications, the sampled signal am-
plitudes are typically rounded or quantized to the nearest
predefined levels by employing analog-to-digital converters
(ADCs). In the most benign setting, a very large number
of quantization levels is required in order to represent the
original continuous signal. However, this makes the sampling
process impractical for modern use: In many applications such
as spectral sensing for cognitive radio [1], cognitive radars
[2], radio astronomy [3], automotive short-range radars [4],
and driver assistant systems [5] the signals of interest have
large bandwidths, and may pass through several RF chains
that require using many ADCs. Moreover, the overall power
consumption and the cost of ADCs increase exponentially with
the number of quantization bits [6]. This drawback vitalizes the
idea of using fewer bits for sampling in higher frequencies.
The most extreme case would be to reduce the number of
quantization bits to one, which makes the ADC behave as a
simple comparator. This allows for sampling at a very high
rate, with significantly lower cost and energy consumption
compared to conventional ADCs [6].

Note that the high sampling rates afforded by one-bit ADCs
may enable future sensing systems to recover the target scene
with a higher resolution. The problem of parameter estimation
using one-bit samples has been studied in recent years from
different perspectives by revisiting classical problems in statis-
tical signal processing [7]-[9], compressive sensing [10]-[19]
and radar processing [20]. The idea of one-bit compressive
sensing was first coined in [10] and further extended in [17]
and [18]. Until recently, many of the researchers approached
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the problem of estimating signal parameters by comparing the
signal with a fixed threshold, usually zero. This introduces
difficulties in the recovery of the signal amplitude. However, in
recent works, methods have been proven to efficiently estimate
the signal parameters using the one-bit sampled data with time-
varying thresholds [19], [21]-[24]. This idea has been further
studied in different applications such as in massive MIMO
scenarios [25], [26] and low-rank matrix recovery with partial
information [27].

In this paper, we study the problem of target parameter
estimation using the one-bit sampled data generated at the
radar receiver. We develop an approach to estimate the target
parameters from one-bit sampled data when the time-varying
thresholds at the ADCs can be tuned based on a priori
information on the transmit signal, and noise/clutter statistics.
The proposed approach relies on the weighted least-squares
criterion to form an optimization problem, which can then
be efficiently solved to estimate the received signal as well as
the target scattering coefficient. In particular, we show that the
approach can successfully recover the parameters of interest
for stationary targets.

Notation: We use bold lowercase letters for vec-
tors/sequences and bold uppercase letters for matrices. (-)7
denotes the vector/matrix Hermitian transpose. R{x} and
S{x} denote the real and imaginary parts of x. The symbol ®
stands for the Hadamard (element-wise) product of matrices.

II. DATA MODEL AND PROBLEM FORMULATION
Let s denote the radar transmit sequence of length IV,
T
sn|T (1)

that is used to modulate the train of pulses. The received
baseband signal will satisfy the following equation [28], [29]:
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in which the parameter o is the scattering coefficient of
the current range cell, {ay }r20 are the scattering coefficients
of adjacent range cells contributing to clutter, and € is the
interference term that accounts for noise. By using one-bit
ADCs at the receiver, the sampled baseband signal can be
written as:

v, =sgn (R{AFa + e — A}),

v; =sgn (S{Afa+e—A}), (5)

v = (v + i)

where A is the complex-valued threshold level at the sampler
which can be modified. In addition, we assume that

E{ee’} =T,

E{|ak’} =B, k#0.
where the interference covariance matrix I', and the average
clutter power 3 are known. Moreover, we assume that the
clutter coefficients and interference term, €, have zero mean
and {«y, }r0 are independent of each other and of e. When the
received signal y is available, the estimation of the scattering
coefficient of the current range cell oy can be done via a
matched filter (MF). Nevertheless, a better estimate of o in
terms of the mean square error (MSE) can be achieved by
applying a mismatched filter (MMF) to the received signal.
The MMF estimate of o is given by

(6)

H
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where w € C¥ is the MMF vector. With all the aforemen-
tioned assumptions, the MSE of (7) can be derived as
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and {J;} are the shift matrices defined by
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Note that (8) does not directly depend on y, but only on the
transmit sequence, the MMF vector and other a priori known
clutter/interference statistics. Particularly, for a given transmit
sequence s, the minimizer w of the MSE critetion in (8) is
given in closed form as [28], [29]

w=R""'s.

(1)

However, a filtering approach as described in (7) to produce
an estimate of aq requires a knowledge of y, which is not
available in a one-bit sampling scenario. In the following, we
discuss estimation approaches for recovery of y and g using
the one-bit data, namely ~,. and ~,.

III. BUSSGANG THEOREM-AIDED ESTIMATION

This section briefly describes some statistical properties of
one-bit quantization and then introduces a target paramter
estimation method based on these properties. The introduced
statistical approach will be later used for comparison with the
proposed method in Section IV.

The autocorrelation of one-bit sampled signals has been
studied in [32]. Let Y (¢) be a real-valued, scalar and stationary
Gaussian process that goes through the one-bit sampling
process Z(t) = sgn(Y (t)). The autocorrelation function of
Z(t), denoted by Rz(7) is given by

Cu(7) = E{Z(t + 7)2(t)} = %siIfl Cy(r) (12
with Cy (1) = Cy(7)/Cy(0) being the normalized autocor-
relation function of Y'(¢). The Bussgang theorem [33] further
shows that the cross-correlation of Y'(t) and Z(t) is propor-
tional to the autocorrelation of Y (t), i.e. Czy (1) = puCy (7).
The proportion factor 1 depends solely on the power of V().
This can be very helpful as it makes the output, Z(t), a linear
function of Y (¢) in terms of the second order statistics.

A complex-valued vectorized alternative to the above result
was presented in [34]. For a complex vector y, the one-bit
measurement vector is obtained as

e % sen(y) 2 % [sen(R(y)) + jsen(S(y)]  (13)

where the multiplicative factor 1/ V/2 is used to normalize the
power in ~. The normalized autocorrelation matrix of y is
given by

Cy =N(Cy) & W 2C, W12 (14)

with W = C,, ©T containing only the diagonal entries of C,,.
In this case, the following covariance equality holds:

_ . s
C, =sin (5 Cv) .
To use the above result in our application with time-varying
thresholds, we can simply derive the covariance matrix of the

sampled signal when the threshold is already deducted from
it, viz.

Cy_r= |0z0|2ssH + M7 LR - 2R {o s)\H}.

5)

(16)

Consequently, one can recover the unknown ayy by minimizing
the non-convex criterion,

H(_jy,)‘ -N (|a0|QSsH + AT+ R - 28‘%{a0 SAH}) HF

\yith respect to o, in which the normalized covariance matrix
Cy_x is estimated based on (15) and only one obervation or
snapshot of ~ in (5).

IV. THE PROPOSED METHOD

In this section, we discuss our proposed approach to recover
both y and g using the one-bit sampled radar signal. The
steps of the proposed approach is summarized in Algorithm 1
for reader’s convenience.



A. Estimation of Radar Parameters

We begin our discussion by considering the weighted least-
squares objective:

Q(y,a0) = (y — aos) "R (y — aps).

Note that the above objective has the following properties:

A7)

1) In contrast to the mismatched filter, it does not assume
a knowledge of y. Indeed, (17) maintains its dependence
on y which will enable us to recover y as well.

2) It is easy to verify that the optimal o of (17) for any
given y is exactly the same as the mismatched filter
output presented in (7).

3) It can facilitate a joint estimation of y and «g as it en-
forces the structure in (2) and (5). Note that (17) penalizes
the model mismatch depending on the mismatch statistics
as

y —aps = Afa + e, (18)

where A and & are generated from A and o with
their first column and first entry removed, respectively.
Particularly, it can be shown that the covariance matrix
of the mismatch A7 & + € is equal to R:

E{(AHd+e) (AHd+e)H}
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4) By utilizing the proposed criterion, one can estimate
the received signal y, along with the desired scattering
coefficient. This lays the ground for classical processing
methods that rely on the knowledge of y to be used for
various radar information processing applications.

Observe that by substituting the optimal value of o (de-
noted by &) for a fixed y, (17) may be rewritten as

Qly) = Qy do)

HN\ H H
" SW 1 SW
=y (IWHS) R (IWHS) y.

As a result, the joint estimation problem of finding ay and y
reduces to

o\ H H
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s.t. Q. (yr—A) >0,
Qi (yi - }\z) > O’

(20)

where (y,,yi) and (A, ;) denote the real and imaginary
parts of y and A, respectively, and we have 2, = Diag(~,.),
Q; = Diag(~;), with Diag(.) being a diagonal matrix with
diagonal entries equal to those of its vector argument. The
above optimization problem is a convex linearly-constrained

Algorithm 1 One-Bit Radar Processing and Estimation

Step 0: Initialize s, and set A arbitrarily or according to (22)-(23).

Step 1: Compute the optimal MMF vector w according to (11).

Step 3: Compute the vector y by solving (21).

Step 4: Estimate the target scattering coefficient cg using (7).

Step 5: In case of tracking, set A according to (22)-(23) and goto Step 1.

quadratic program and can be solved efficiently, e.g., by
interior point methods. Once the optimal y is found, the
optimal o can be found using the mismatched filter in (7).
Remark 1 (Transition to NNLS): Note that we can easily
transition from (21) to a non-negative least-squares (NNLS)
optimization problem. This only requires a slight change of
variables; namely ¥, = Q, (y, — A) and y; = Q; (y; — A;)
adding up to y =y, + j¥;. Therefore, fast NNLS approaches
can be used to speed up the recovery; see [35] for details.

B. Determination of Time-Varying Thresholds

— Sampling with a Single One-Bit ADC: From an in-
formation theoretic viewpoint, in order to collect the most
information on y, one could expect A to be set in such a way
that by considering the a priori information, observing any
of the two outcomes in the set {—1,+1} at the output of the
one-bit sampler for a single sample has the same likelihood.
In a general case, A is expected to partition the set of likely
events into subsets with similar cardinality. When the pdf of
the received signal follows a Gaussian distribution, this goal
is achieved by setting A as close as possible to the expected
value of y. More precisely, we choose:

A=E{a}s. (22)

In other words, the choice of A will be governed by our future
expectation of the value of «g. This is particularly pertinent
to target tracking scenarios.

— Sampling with Multiple One-Bit ADCs: Assuming that
K ADCs are used in parallel and the thresholds are set a
priori, in the single sample case, the thresholds are optimal
if they partition the set of likely events into K + 1 subsets
with similar cardinality. The determination of the thresholds
will be even more difficult when the number of samples or the
number of ADCs grow large. However, a close approximation
of the optimal threshold vectors {A;}5_, can be obtained
by assuming {Ag}5_, to be random variables. In particular,
a good set of random sampling threshold vectors {Ag}5_,
should still mimic the behavior of y; i.e., we generate {Ag }<
as a (i) set of random vectors similar to y (ii) that have the
same (Gaussian) distribution:

E {ao} S,
E {|ao*} ss” + R.

E{A} =
Cov(A)

(23)

V. NUMERICAL RESULTS

In this section, we examine the performance of the proposed
approach by providing comparisons with the Bussgang-aided
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Fig. 1: Performance comparison of the proposed algorithm, Bussgang-aided approach, and the oo — precision case when
estimating the target scattering coefficient o for various lengths of the transmit/receive sequence N € {50,100,1000}. The
upper and lower plots show the results in complex Cartesian and polar planes, respectively. The proposed one-bit estimation
approach presents a satisfactory performance, closing its gap with the co — precision case as N grows large.
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Fig. 2: Average normalized error of the estimated o vs. V.

estimation method discussed in Section III, as well as the
case in which the received signal y is available with virtually
infinite precision (denoted by co — precision). We assume the
noise to be additive and white with variance 0.1. The average
clutter power S is set to 0.1. Moreover, the transmit sequence s
is assumed to have a peak-to-average power ratio (PAR) of
unity and is optimized using the approach proposed in [29].
For the sake of comparison, we run each of the afore-

mentioned algorithms 50 times. The results of the proposed
algorithm and the other methods when estimating o are
depicted in Fig 1 for N = 50,100, and 1000. The upper plots
show the results along with the true value of ¢ in the complex
plane, while the lower plots show the same data in polar format
for further examination. Additionally, Fig. 2 shows the average
normalized error of &g for various N, defined by the ratio
|aig — Go|/|cwo|. From both figures, it can be observed that the
proposed algorithm presents a better performance compared
with the Bussgang-aided approach. Moreover, as N grows
large, the estimation performance of the proposed method
approaches that of the co — precision case. As expected, all
methods show improvement in estimation performance with
increasing V.
VI. CONCLUSION

Conventional sampling using many quantization levels can
be very power-consuming and costly as modern high fre-
quency applications demand even higher sampling rates. To
circumvent such issues, we turned our attention to limiting the
quantization bits to only one. An estimation approach based
on one-bit samples was formulated. It was shown that one-bit
sampling can effectively be used in radars for target parameter
estimation. Numerical examples were provided to exhibit the
effectiveness of the proposed method.
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