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ABSTRACT

It was recently demonstrated in bilayers of permalloy and platinum, that by combining spin torques arising from the

spin Hall effect with Oersted field-like torques, magnetization dynamics can be induced with a directional preference.1

This “unidirectional” magnetization dynamic effect is made possible by exploiting the different even and odd symmetry

that damping-like and field-like torques respectively have when magnetization is reversed. The experimental method

used to demonstrate this effect was the spin-torque ferromagnetic (ST-FMR) resonance technique; a popular tool used

in the phenomenological quantification of a myriad of damping-like and field-like torques. In this report, we review

the phenomenology which is used to describe and analyze the unidirectional magnetization dynamic effect in ST-FMR

measurements. We will focus on how the asymmetry in the dynamics also is present in the phase angle of the magnetization

precession. We conclude by demonstrating a utility of this directional effect; we will outline an improved experimental

method that can be used to distinguish a phase-shifted field-like torque in a ST-FMR experiment from a combination of

field-like and damping-like torques.

1. INTRODUCTION

The spin-torque ferromagnetic resonance (ST-FMR) experimental technique2 has risen in prominence because it has

great flexibility in characterizing the growing database of spin-torque materials. In this work, we discuss a common real-

ization of a ST-FMR measurement that is used to study spin-transfer torques (STT) in thin film heterostructures. Probably,

the most common heterostructure studied is a bilayer consisting of a normal metal (NM) layer on top or below a ferro-

magnetic metal (FM) layer. We will refer to these bilayers as NM/FM samples, but as already indicated, the NM layer

actually can be replaced by a wide range of materials. In earlier investigations, the NM layer was chosen to be a spin Hall

metal3 such as Pt,2, 4 Ta,5 and W;6, 7 ST-FMR was then used to quantify spin Hall angles for these materials. Since then,

a variety of other materials have been used in the place of spin Hall NM layers. Notable examples are antiferromagnetic

metals,8–10 topological insulators,11 Rashba interfaces,12 and two-dimensional materials;13–15 all of these materials have

been shown to produce significant damping-like STTs on an adjacent FM. Further proliferation of the ST-FMR method has

led to alterations of the FM layer. It was predicted that ST-FMR could be observed in low-damping magnetic insulators

with spin Hall metals,16, 17 and this effect has been observed.18–22 Additionally, in patterned and nanostructured FM layers,

a wide variety of resonant modes can be excited with ST-FMR.23

While ST-FMR has mainly thrived as an experimental technique to characterize damping-like (DL) and field-like (FL)

torques, we have demonstrated that ST-FMR can also be used as an experimental platform to study directional effects in

the response of high frequency magnetization dynamics.1 Often, in thin film heterostructures one thinks of unidirectional

effects as being germane to dc magnetoresistive properties. Indeed, FM/NM bilayers have been found to have intrinsic

unidirectional magnetoresistance effects24, 25 that are related to spin valve physics. Our work, however, was an example

of a new direction in the field of spintronics, where heterostructures are designed to promote a directional response in the

magnetization dynamics. There are other examples of this trend in the literature, for instance, in permalloy/platinum26, 27



and in magnetically-doped and non-magnetically-doped topological insulating bilayers,28 unidirectional resistance asym-

metries have been discovered when there is a dc current bias in the bilayer. In these situations, an asymmetry arises in the

magnetoresistance which corresponds to whether or not the current bias excites or dampens magnons in the magnetic layer.

Other examples of directional effects in magnetization dynamics can be found in system with the Dzyaloshinskii-Moriya

interaction, which contributes a linear term in spin wave (magnon) dispersion relationships.29, 30

Our specific contribution in this area of unidirectional magnetization dynamics, was to realize that the even and odd

symmetry of DL and FL torques, under magnetization reversal, can be combined to create an asymmetric response in how

magnetization precesses.1 We demonstrated this in the well studied NM/FM system of permalloy/platinum. We found that

in order for unidirectional dynamics to be excited, the magnetization of the system would have to be appreciably canted

out of the plane of the sample. For these oblique magnetization orientations, ST-FMR can more efficiently be excited in

one orientation with respect to a field-magnetization reversed counterpart.

In this report, we first summarize the unidirectional magnetization dynamic effect. We then examine an additional

aspect of this effect which is related to asymmetries in the phase angle of the magnetization precession when the system is

placed in a configuration which is promoting unidirectional dynamics. We will then discuss how the unidirectional effect

can solve an issue which is sometimes present in ST-FMR measurements. Specifically, unidirectional dynamics can be

used to rule out situations where phase shifts between the charge current passing through the device and the FL torques

are falsely identified as DL spin-transfer torques.31 This is a known experimental issue, but one which does not receive

enough attention throughout the literature. By performing a measurement which promotes unidirectional dynamics, one

can distinguish these two scenarios and, in principle, quantify the phase shift between the driving current and the FL torque.

2. THE ST-FMR EXPERIMENTAL METHOD AND UNIDIRECTIONAL MAGNETIZATION DYNAMICS

As illustrated in Figure 1 (a), a common ST-FMR measurement involves NM/FM bilayer samples directly integrated

into a shorted, co-planar waveguide (CPW) geometry. By employing a bias-tee, a rf current is directly passed through the

bilayer, and a dc voltage can be simultaneously measured across the sample when under resonance. The rf current passing

through the bilayer can generate an oscillating FL torque on the FM layer which is illustrated by the red arrows which

encircle the bilayer in Figure 1 (b). Additionally, a DL torque can be generated on the FM from a current passing through

the NM layer. For illustrative purposes, we shall assume that the NM layer is Pt, and the DL torque is then generated from a

bulk spin Hall effect. In our picture, the spin current generated by the spin Hall effect is illustrated with the yellow arrows;

the spin current flows normal to the plane from the NM to the FM, and it is polarized in-plane and perpendicular to the

charge current.

With the qualitative picture of the driving torques established, we now discuss the experimental method in more detail.

Typically, a high frequency signal generator is fixed at a frequency ω [as shown in the circuit of Figure 1 (a)] and an

external field is applied at some angle relative to the current and the field is swept. As indicated in Figure 1 (c), the external

field is described by an in-plane azimuthal angle φ and a polar angle θ. The FM layers used in experiments are usually low-

damping materials such as permalloy and YIG. For these materials, when in thin film form, the shape anisotropy dictates

that the magnetization lies in-plane. Therefore, for values of θ that are not equal to 90◦, the magnetization is not generally

co-linear to the applied field and is instead described by the polar angle ψ. For a given ω, sweeping the applied field at a

fixed θ yields a more general version of the Kittel equation which describes the field-frequency relationship for FMR:32

ω2
0 = γH

2 + 4πMe f f H(sin θ sinψ − 2 cos θ cosψ) + (4πMe f f )
2 cos 2ψ. (1)

Here, γ is the gyromagnetic ratio and Me f f is the effective saturation magnetization of the FM layer. We note that the above

expression reduces to the well-known expression for FMR in a thin film when θ = 90◦: ω0 = γ
√

H(H + 4πMe f f ).



It is common in ST-FMR experiments for the magnetization of the FM layer to be treated as a single large “macrospin”.

Under this macrospin approximation, the following equation of motion can be used to describe the macrospin under the

influence of FL and DL torques:1

dm̂
dt
= −γm̂ ×H + αm̂ × dm̂

dt
+ γτFm̂ × ŷ + γτDm̂ × (ŷ × m̂). (2)

Here, α is the magnetic damping parameter, τD is the DL driving torque, and τF is the FL driving torque. It is implied

in the equation of motion that τD and τF are torque amplitudes that oscillate at the frequency of the signal generator, ω.

The directions of the FL torque and the DL torque are determined by the device design, and for the example considered in

Figure 1 (a), the field generated by the rf current and the spin polarization of the spin Hall effect are both in the ŷ-direction.

As indicated in Figure 1 (a), a dc voltage is measured across the sample using a bias-tee at the FMR condition. The dc

voltage arises from a rectification mechanism where oscillating anisotropic magnetoresistance33 (AMR) of the FM layer

mixes with the rf current passing through the FM layer.2 The amplitude of the voltage is proportional to the amplitude of

the AMR change from magnetization precession, δR, which can be defined as:

δR =
∂R
∂φ
δφ +

∂R
∂ψ
δψ. (3)

The magnetization oscillates about a static equilibrium position32 that is described by (φ, ψ) with angular amplitudes, δφ
and δψ. In ST-FMR experiments these amplitudes are further related to the amplitudes of magnetization precession from

solving the equation of motion such that δφ = mx′ and δψ = mz′ .
1 In Figure 1 (d) we illustrate the dynamic amplitudes,

mx′ and mz′ , that are obtained from solving the linearized equation of motion in a rotated coordinate system where the

magnetization lies along the y′ direction. We also denote a phase angle, β, which is related to phase difference between

the rf current passing through the sample, and the magnetization precession. Assuming that the rf signal passing through

the NM/FM bilayer is a cosine function, β is the phase of the precession at t = 0. The dc voltage that develops across the

sample near and on resonance is then given as Vdc =
1
2
Ir f δR, where Ir f is the rf current amplitude through the FM layer.

By solving the equation of motion, it can be shown that the lineshape of the dc voltage is described by the following

function:1

Vdc =
SΔ + A(ω2 − ω2

0)

(ω2 − ω2
0
)2 + Δ2

. (4)

The lineshape is a superposition of a symmetric term, with amplitude S , and an antisymmetric term, with amplitude A. A

linewidth parameter, Δ, is usually a fitting parameter. The amplitudes S and A have a non-trivial angular dependence that

depend on the FL and DL torques:

S =
1

2
Ir f [
∂R
∂φ
ωγ(τD cos φ − τF cosψ sin φ) − sinψ

∂R
∂ψ
ωγ(τD cosψ sin φ + τF cos φ)] (5)

A =
1

2
Ir f [
∂R
∂φ
γ2(τD cosψ sin φ + τF cos φ) × (H0 cos (θ − ψ) − 4πMe f f cos 2ψ) − sinψ

∂R
∂ψ
γ2(τD cos φ−

τF sin φ cosψ)(H0 cos (θ − ψ) − 4πMe f f cosψ2)] (6)

For any value of θ and ψ not equal to 90◦, the amplitudes S and A are not invariant under field/magnetization reversal. We

define magnetization and field reversal by θ → 180◦ − θ, ψ→ 180◦ −ψ and φ→ φ+180◦. The field/magnetization reversal

asymmetries in the amplitudes of S and A are a direct consequence of the unidirectional dynamic effect, and originate from

asymmetries in the amplitudes mx′ , mz′ , and β found from solving the equation of motion. In other words, the lineshape

asymmetry arises because the magnetization precession amplitudes and phase are not invariant under field/magnetization

reversal.



Perhaps the most intriguing aspect of the unidirectional dynamics is that when the magnetization is tipped out of the

sample’s plane, the dynamic amplitudes can be more efficiently exited in one orientation as compared to the field-reversed

counterpart. Before beginning an extended illustration of this effect we state that for the duration of the manuscript we

will be utilizing the phenomenological model described above under the assumption that the material is permalloy and

that the ST-FMR is driven at a fixed frequency of 5.5 GHz. We will be describing how, under these assumptions, the

unidirectional dynamics manifest, and what the implications on the measured ST-FMR signal are. In Figure 2 (a) and (b)

we plot trajectories which represent the magnitude of the dynamic amplitudes, mx′ and mz′ , as the field is rotated out-of-

plane. Every point along the trajectory represents the FMR configuration for a driving frequency of 5.5 GHz for differing

polar angle configurations. In (a), we examine the ‘+’ configuration where φ = 45◦ and 0◦ < (θ, ψ) < 90◦. Every trajectory

starts on the dashed line, which represents the in-plane orientation, and ends at the point which represents the out-of-plane

orientation (where all trajectories meet). The heavy red trajectory represents a pure FL torque driving the dynamics, and

the heavy blue trajectory represents a pure DL torque. As the color bar indicates, colors on the spectrum between red and

blue represent different torque mixtures. It is clear that by adding a DL component to a pure FL torque or adding a FL

component to a pure DL torque, the magnitudes of mx′ and mz′ tend to increase. In other words, for the ‘+’ configuration

the dynamics are enhanced. In (b) we examine the field reversed, ‘-’ configuration where φ = 225◦ and 90◦ < (θ, ψ) < 180◦.
The color scale is the same in (a) and (b), and it is also clear that the heavy red and heavy blue lines, representing the pure

FL and DL torque cases, are identical between (a) and (b). This is a reflection of the fact that there is no unidirectional

effect for pure FL and DL torques.1 However, in (b), we see that in the ‘-’ configuration, adding a DL component to a FL

torque (or vice versa) actually suppresses the dynamic amplitudes; this is in contrast to (a) where dynamics are enhanced.

In Figure 2 (c), we further illustrate the unidirectional dynamics by plotting the elliptical precession of the magnetiza-

tion dynamics driven by a pure FL torque, a pure DL torque, and an equal combination of FL and DL torques. Although the

torque composition varies, we keep the magnitude of the combination of τF andτD normalized. These orbits are calculated

at the FMR field, assuming a signal of 5.5 GHz, and are obtained at angular coordinates of (φ, θ, ψ) = (45◦, 8◦, 75◦) which

we call the ‘+’ orientation. The trajectories are also calculated for the field-reversed orientation where (φ, θ, ψ) = (225◦,
172◦, 105◦), which we call the ‘-’ orientation. If the magnetization is driven by a pure FL torque (red trajectory) or a pure

DL torque (blue trajectory), the trajectory is found to be invariant under field/magnetization reversal. If the magnetization is

driven by an equal combination of FL and DL torques, as indicated by the purple trajectories, the trajectories are no longer

invariant. The filled purple circles represent the ‘+’ orientation, which is driven more efficiently than the ‘-’ orientation

represented by open purple circles.

In addition to the dynamic amplitudes, mz′ and mx′ , we have illustrated a phase angle, β, in Figure 1 (d) that describes

the phase of precession relative to the oscillating current which passes through the device. Generally speaking, this angle

is important in determining the shape of the ST-FMR lineshape which is experimentally measured. For the simple in-plane

magnetized situation, if β = 90◦, the lineshape is completely antisymmetric (when driven by just a FL torque), and if β =
0◦ the lineshape is completely symmetric (when driven by just a DL torque). When the magnetization is driven by a linear

combination of a FL and DL torque, β can be set to any arbitrary angle depending on the relative strength between the FL

and DL torque. In the context of unidirectional dynamics, as the magnetization is tipped out-of-plane, when both a FL and

DL torque drives the dynamics, β has an asymmetric response under field/magnetization reversal. In Figure 2 (d) we plot

β as a function of the out-of-plane field angle, θ, where ST-FMR occurs if ω is set to 5.5 GHz. The inset in (b) shows the

simple case of a pure FL torque (open and closed blue squares), a pure DL torque (open and closed red squares). Note that

the evolution of the phase angle β is mirror symmetric about β = 0◦ as θ is varied when only a pure FL or pure DL is driving

the dynamics. When there is a combination of a FL and DL torque driving the dynamics no such symmetry exists. We plot

the evolution of β for the case where an equal strength, FL and DL torques are driving the dynamics. Closed purple circles

represent the ‘+’ configuration while open purple circles represent the ‘-’ configuration. It is clear that the phase evolution

of β is highly asymmetric under field/magnetization reversal as the field/magnetization is tipped out of the sample’s plane.



3. DISCRIMINATING PHASE SHIFTS FROM DAMPING-LIKE TORQUES

We are now poised to outline how one can exploit unidirectional magnetization dynamics to help resolve an issue

previously identified by Harder et al., where for some samples and device geometries, appreciable phase shifts can occur

between the rf current passing through the device and the FL torque.31 We propose a method to detect and further quantify

these non-zero phase shift effects.

Suppose that there is a non-zero phase shift, δ, between the FL torque and the rf current. Assuming that there is no DL

torque present, the lineshape amplitudes, S and A, have the following form:

S = a1 sin δ + a2 cos δ, (7)

A = a1 cos δ − a2 sin δ, (8)

a1 =
1

2
Ir f [
∂R
∂φ
γ2(τF cos φ) × (H0 cos (θ − ψ) − 4πMe f f cos 2ψ)+

sinψ
∂R
∂ψ
γ2(τF sin φ cosψ)(H0 cos (θ − ψ) − 4πMe f f cosψ2)], (9)

a2 =
1

2
Ir f [−∂R

∂φ
ωγ(τF cosψ sin φ) − sinψ

∂R
∂ψ
ωγ(τF cos φ)]. (10)

The above equations imply that one measures a non-zero S and A for a FL torque which is phase shifted, even in

the absence of a DL torque. What makes matters worse is that the experimenter cannot simply perform the typical, in-

plane, φ-dependent angular characterization to distinguish a phase-shifted FL torque from a FL and DL torque pair. In

other words, a FL torque strongly phase shifted from the rf current can lead to large amplitudes for S and A, with the

same in-plane angular dependence; this is exactly the same result one measures if both a FL and DL torque are present.1

However, by exploiting the unidirectional dynamic effect, and carrying out a θ-dependent angular characterization of the

ST-FMR lineshape, it can be verified that values of S and A arise from a DL and FL torque combination as opposed to a

phase-shifted FL torque.

Consider an example where a ST-FMR signal is measured to have an amplitude ratio of S/A = 1 when the field is

applied in-plane. The amplitude ratio of S/A = 1 can occur if the FL-torque is out-of-phase with the rf-current such that

δ = 45◦ and τD = 0. Alternatively, the same ratio can occur if δ = 0 and τF/τD = .2045. The lineshape for these two

cases is shown in Figure 3 (a), where four lineshapes are plotted for φ = 45◦ and θ, ψ = 90◦ and the field-reversed angular

counterpart. Note that although four cases are considered, there are only two lineshapes because the phase shifted FL torque

lineshape is indistinguishable from the FL and DL torque pair. Next, we fix φ = 45◦ and explore the angular dependence of

S/A as a function of ψ. In Figure 3 (b) we illustrate this effect by showing our model’s prediction of the lineshapes when

φ = 45◦ and θ = 27◦ and also for the field reversed case when φ = 225◦ and θ = 153◦. In (b) we can clearly differentiate

between the two cases as evidenced by the four distinct lineshapes. In Figure 3 (c), we plot the amplitudes ratio S /A as a

function of θ for φ = 45◦. It is clear that as the field is tipped out-of-plane, leading to enhanced unidirectional effects, the

four trajectories of S /A significantly separate leading to a clear identification of a phase-shifted FL torque from a FL and

DL torque pair.

4. CONCLUSION AND OUTLOOK

In this work we have reviewed the phenomenology behind a recent result where we have discovered that spin-torque

driven magnetization dynamics has a directional preference if a field-like torque is present as well.1 We then examined

how in addition to the precession amplitudes, the starting phase angle of the magnetization dynamics has a directional



asymmetry. This collection of asymmetries only becomes prominent when the magnetization is tipped out of the plane of

the sample. This trait, of how the asymmetries evolve, is a unique signature of the unidirectional dynamics, and it is not

shared by a situation where only a field-like torque drives the magnetization dynamics. This is important because when ST-

FMR experiments only are performed with magnetization and magnetic fields in the sample plane, in principle, one cannot

distinguish a phase-shifted field-like torque from a combination of damping- and field-like torques driving the dynamics.

Consequently, we demonstrate that by tipping the magnetization out-of-plane the unidirectional dynamic effect can be used

to distinguish these two scenarios from one another. Thus, by simply performing ST-FMR measurements in orientations

where the magnetization is oblique to the sample’s plane, we have devised a more stringent test that can be performed on

new materials exhibiting damping-like torques that have an unknown origin and are currently called into question.
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Figure 1: (a) a schematic drawing of a NM/FM bilayer (blue and green slabs) integrated into a co-planar waveguide geometry (golden

stripline). The circuit drawing illustrates that by using a bias-tee (dashed line), a high frequency signal generator can transmit an rf-

current through the bilayer while the dc voltage across the bilayer is monitored. (b) illustrates how in the NM/FM bilayer, a magnetic

field can be generated from the NM layer onto the FM layer (red arrows). Additionally, we assume that the NM layer has a spin Hall

effect, where a spin current flows from the NM layer into the FM layer, thereby causing a STT. The polarization of the spin current is

illustrated by the yellow arrows. (c) is the coordinate system we will refer to; note that due to the thin film geometry, the magnetization

and field are not generally co-linear. (d) illustrates a coordinate system where the y′-direction is rotated to align along the magnetization

direction. In this coordinate scheme the magnetization precession can be descibred by two dynamic amplitude mx′ , mz′ and a phase angle

β.
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Figure 2: (a) and (b) are trajectories of the dynamic amplitudes mx′ and mz′ for various FL and DL torque combinations. The trajectories

begin along a dashed line which represents when the magnetization lies in-plane. The trajectories end at a point which represents when

the magnetization lies out-of-plane. In (a), the ‘+’ magnetization configuration defined in text is used, and (b) is the ‘-’ configuration

representing the field/magnetization reversal state of ‘+’. For any case where both a FL and DL torque are both present, the trajectories

are not invariant between the ‘+’ and ‘-’ configuration. In (c) we plot the elliptical precession orbits for an instance of the ‘+’ configura-

tion (φ, θ, ψ) = (45◦, 8◦, 75◦) and an instance of the ‘-’ configuration where (φ, θ, ψ) = (225◦, 172◦, 105◦). For pure FL and DL torques,

the orbits are invariant between the ‘+’ and ‘-’ configuration, but they are asymmetric when a FL and DL torque are present with equal

magnitudes. In (d) we plot how the phase angle, β, varies as a function of the field polar angle, θ. In the main portion of (d), closed

circles represent the ‘+’ configuration and open circles represent the ‘-’ configuration when both a FL and DL torque are present. Here,

there is no obvious symmetry in how β changes between the ‘+’ and ‘-’ configuration. The inset shows a pure DL torque in blue and a

pure FL torque in red. For both of these cases when a single torque is driving the dynamics, when the field/magnetization is reversed, β

goes to −β.
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Figure 3: (a) we show how the ST-FMR lineshape is indistinguishable in a case when a FL torque is phase shifted from the rf-current

compared to a case where both a FL and DL torque are present. The lineshapes are generated from the phenomenological model

presented in the text, and the angular configuration in (a) represents a situation where the magnetization lies in-plane and is driven to

resonance at 5.5 GHz. In (b) we demonstrate how when the field is tipped out-of-plane, a phase-shifted FL torque and a FL and DL

torque pair cause the lineshape to evolve in different ways. Consequently, the two cases are now distinguishable. In (c) we plot the

symmetric lineshape amplitude S divided by the antisymmetric amplitude A as a function of θ. The ratio of S/A is the same for both

‘+’ and ‘-’ configurations when the field is in-plane for both scenarios, but as the field is rotated out-of-plane each trajectory evolves

differently. We note that the driving frequency is held fixed at 5.5 GHz for this entire demonstration. This result illustrates how the

out-of-plane angular dependence of the ST-FMR signal can be used to distinguish phase-shifted FL torques from FL and DL torque

pairs.


