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ABSTRACT: Machine learning is an attractive paradigm to
circumvent difficulties associated with the development and
optimization of force-field parameters. In this study, a deep neural
network (DNN) is used to study the inverse problem of the liquid-
state theory, in particular, to obtain the relation between the radial
distribution function (RDF) and the Lennard-Jones (LJ) potential
parameters at various thermodynamic states. Using molecular
dynamics (MD), many observables, including RDF, are deter-
mined once the interatomic potential is specified. However, the
inverse problem (parametrization of the potential for a specific
RDF) is not straightforward. Here we present a framework
integrating DNN with big data from 1.5 TB of MD trajectories
with a cumulative simulation time of 52 μs for 26 000 distinct
systems to predict LJ potential parameters. Our results show that
DNN is successful not only in the parametrization of the atomic LJ liquids but also in parametrizing the LJ potential for coarse-
grained models of simple multiatom molecules.

The Lennard-Jones (LJ) potential form is one of the widely
used nonbonded pair potentials to investigate molecular-

scale phenomena. The LJ potential comprises the repulsive and
attractive terms, which are usually represented using a standard
12−6 potential form with two parameters (C12, C6).

1 The 12−6
LJ potential is prominently used in molecular dynamics (MD)
simulations to study physical, chemical, biological, and
mechanical systems.2 Once the underlying potential parameters
and the thermodynamic state are specified, MD can compute
various quantities of interest such as the radial distribution
function (RDF). However, given a specific RDF, MD cannot
directly predict the underlying potential parameters. In general,
the estimation of potential parameters is a difficult task.3 As per
Henderson’s theorem,4 the relationship between the pair
potential and RDF is unique up to a constant at a given
thermodynamic state, implying that the potential parameters at a
specific thermodynamic state can be determined using the RDF.
In this work, we explore the feasibility of force-field development
based on Henderson’s theorem using a data-driven approach
combined with deep learning (DL).
The inverse problem of parametrization of the LJ potential to

reproduce a given RDF can also be viewed as a coarse-graining
problem (where the objective is to develop a pair potential
between coarse-grained (CG) particles such that the RDF of the
original system is reproduced) or as a solution to the inverse
problem of liquid-state theory.5−8 Different frameworks, such as
the fundamental measure theory9,10 and integral equations,11

have been developed to address this problem. However,
accuracy is an issue, and generalizability to more complex

systems is quite involved. An alternative route to reproduce a
given RDF relies on MD to refine the potential parameters. For
example, MD simulation data are either integrated with a
theoretical framework (e.g., iterative Boltzmann inversion5,12)
or used to optimize statistical or empirical errors between the
MD-calculated and given RDFs (e.g., relative entropy or the
simplex minimization method13,14). MD-based approaches
require thousands of simulations on a specific system of interest,
and the data are often not reused for other systems with similar
mapping and underlying potential form (see Figure 1a).15 The
main bottleneck in reusing data for the parametrization of a new
system originates from the inherent complexity of physics-based
model development as well as storing the data for a long period
of time. Recent advancements in data-driven approaches can
solve the reusability issue of MD data as well as obtain the
underlying physics of data, also known as the physics of big
data,16 by surrogate models. Surrogate models circumvent the
difficulty associated with the closed-form solution of physical
problems consisting of complex and many-body interactions by
switching to an equation-free framework. As a result, a data-
driven approach avoids the development of a closed-form
analytical solution or repetitive MD simulation of a specific
system.
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During the past decade, data-driven and machine-learning
(ML) methods have received enormous attention in the
computational analysis of physical problems.16−19 Even though
the usage of ML methods in scientific research and discovery
dates back to several decades ago, only in the last 5 years
researchers have embarked on using DL20 in the modeling and
understanding of physical phenomena such as data-driven
materials discovery,21−26 calculation of the thermodynamic and
ground states in multibody systems,27,28 phase transitions,29

classification of phases in strongly correlated Fermions,30

quantum entanglement,31 and many other applications.32

During the last couple of years, researchers have started to
develop deep neural networks (DNNs) for CG model
development.33,34 Nevertheless, to the best of our knowledge,
DL has not been used to solve the inverse problem of liquid-state
theory, especially as a systematic CG method.
In this study, we develop a DNN to learn the relation between

the RDFs of LJ particles at various thermodynamic states with
the potential parameters (C12 and C6). The data set is generated
using MD simulation of 26 000 distinct systems (each MD
simulation is performed for 2 ns summing to 52 μs of total
simulation time) with uniform sampling over a specific range of

Figure 1. (a) AA and CG model representations showing how different AA models are mapped to the single-bead CG model with different potential
parameters. (b) Schematic representation of a deep neural network. (c) Deep-learning-based methodology employed in this work to develop an atom-
agnostic framework for inverse liquid-state theory. First, MD simulations are performed on a variety of LJ fluids at different thermodynamic states to
generate RDFs, which are used for training, validation, and testing. 75% of the RDFs (inputs) are subsequently used for training the DNN to generate
atom-agnostic force-field parameters (outputs). The DNN loss function is monitored on 12.5% of the data and then tested on the rest of the data. The
DNN architecture is redesigned (as necessary) until the errors from training, testing, and validation are within a specific tolerance. (The solid lines
denote the DL training and inference stages.) Once the training and assessment of the network are accomplished, either RDFs obtained from AA
models or experimental data are used as input to the DNN to predict the force-field parameters. (Transfer-learning-based coarse-graining is shownwith
dashed lines.) Finally, the accuracy of the force-field parameters is assessed using KL divergence and the total variation in RDFs of AA and CGmodels.
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temperature, density, and potential parameters. Once the
training part is complete on the single-atom systems (referred
to as the purely atomistic case), the knowledge acquired from
the single-atom systems or LJ particles is transferred to coarse-
grain simple multiatommolecules, with bonded and nonbonded
interactions, into a single LJ particle. We refer to the CG model
developed through this route as transfer-learning-based coarse-
graining. DL model performance on the parametrization of LJ
particles and transfer-learning-based CG models is assessed
using different metrics such as the deviation from ground-truth
potential parameters, total variation between predicted and
specified RDFs, and Kullback−Leibler (KL) divergence. The
study presented here can also be viewed as a data-driven solution
to the inverse problem of liquid-state theory (deep inverse
liquid-state theory (DeepILST)) for LJ particles and simple
multiatommolecules using DL. (See Figure 1c for the DL-based
methodology developed in the current study, which is also
applicable to other potential forms as well as for other molecular
structures.) We show that DeepILST is also able to estimate
other thermodynamic quantities like pressure and potential
energy.
The rest of the paper is organized as follows. First, we describe

the details of MD simulations for both multiatom and single-
bead molecules and DNN development as well as coarse-
graining through transfer learning. Then, we present the results
of DL training as well as coarse-graining through transfer
learning. Finally, we summarize the findings of this study.
The data for DNN training are generated via MD simulation

of 26 000 distinct systems with interaction potential parameters
and thermodynamic states sampled uniformly over the range
shown in Table 1. The LJ potential form is given by

= −u r
C
r

C
r

( ) 12
12

6
6 (1)

where C12 (= 4ϵσ12) and C6 (= 4ϵσ6) are the interaction
potential parameters and ϵ and σ are the energy- and length-
scale parameters of the LJ pair potential, respectively. All of the
MD simulations are performed using GROMACS35 with a time
step of 1 fs in the NVT ensemble. The temperature is controlled
using the Nose−́Hoover thermostat with a time constant of 0.2
ps. Each LJ particle system is simulated for 2 ns, and the RDF is
calculated from the last 1.8 ns of the MD trajectory. RDF and its
corresponding thermodynamic state are stored as feature vectors
to be fed as input data to the input layer of DNN, and the
interatomic potential parameters constitute the output layer of
DNN.
Three distinct simple multiatom molecules such as CH4, F2,

and CO are simulated to evaluate the development of CG
potentials for these multiatom molecules using the DNN
developed for LJ particles. The simple multiatom molecules,
shown in Figure 1a, are modeled using the GROMOS force
field.36 The interactions between simple multiatom molecules

are described by both bonded and nonbonded potentials. The
bonded interactions are modeled according to GROMOS force-
field bond and angle potential form.36 The nonbonded potential
includes the van der Waals potential, described by the LJ
potential given in eq 1, and electrostatic interactions given by the

Coulomb potential, = πϵru ( )
q q

rCoulomb 4
i j

ij0
, where ϵ0 denotes the

dielectric permittivity of the vacuum, qi and qj are the point
charges on atoms i and j, respectively, and rij is the radial
distance. The particle mesh Ewald algorithm is used to treat the
long-range part of the electrostatic interaction.37 Once the initial
configuration of atoms is generated, energy minimization is
performed, followed by 8 ns of production simulation, from
which 6 ns is used to calculate the center-of-mass (COM)RDFs.
In general, the many-body nature of interactions in liquids

makes it difficult to develop a closed-form analytical relation
between the pair potential and RDF. The complex relationship
between the underlying potential and RDF can be expressed as

ρ= fC C g r T( , ) ( ( ); , )12 6 (2)

where f is a vector valued function, which is a nontrivial function
of RDF, and thermodynamic state variables T and ρ represent
the temperature and density, respectively. r is the radial distance
between the particles, and g(r) is the RDF between particles.
RDF is also related to the potential of mean force (PMF) by the

expression, = −( )g r( ) exp U r
k T

( )PMF

B
, where kB is the Boltzmann

constant. The explicit relation between PMF and the pair
potential is also nontrivial.
In this work, we use a feed-forward neural network (FNN) to

estimate the function in eq 2 based on the universal
approximation theorem, which states that FNN with enough
capacity can approximate many continuous functions.38 The
data of each MD simulation are fed into DNN as

ρ ρ ρ= gx r T T T( ( ), , , ..., , , , ..., )i i i i i
p

i i i
p
m

1 2 2
(3)

where xi is the input vector composed of the concatenation
of system i RDF (size of n) and thermodynamic states (each
with size of p) in the data set (D) with a total size ofm (= n + 2p)
and i refers to the ith LJ system (xi ∈ D). The first
n elements correspond to the value of RDF discretized
between its minimum and maximum range, that is,
( = < ≤ + ∀ ∈ { }

∈
x g r r r dr g r l n( )/max ( ) 1, 2, ...,i l i l l

i D i, ,

where = −
−dr r r

n 1
max min and rl = rmin + (l− 1)dr). The remaining 2p

elements of the input vector correspond to the different
exponents of the scaled density and temperature; for example,

ρ ρ ρ ρ= − −+ ∈ ∈ ∈
x ( min )/(max min )i n l i

l

i D i
l

i D i
l

i D i
l

, ∀ l ∈ {1, 2, ..., p}

defines the input vector for density.
The simplest unit of a DNN, denoted as a perceptron or node,

receives an input signal and applies a linear transformation,
followed by a nonlinear activation function resulting in an
output signal. Stacking nodes in width (within a layer) and in
depth (stacking layers successively; hidden layers are shown
with blue circles in Figure 1b) results in a multilayer perceptron,
which can approximate many continuous functions.20,39 With xi
as the input and the LJ potential parameters as the output, the
DNN can be mathematically expressed as

ϕ ϕ ϕ ϕ= + + +W W W b b bC C x( , ) ( (... ( ( ) )) )i i n i12,
fnn

6,
fnn

o o 2 2 1 1 1 2 oh

(4)

Table 1. Thermodynamic States and the Range of Parameters
Used during MD Simulation of Single-Bead Systems

thermodynamic state parameter range

ρ (nm−3) T (K) ·
C

kJ
mol nm12 12 ·

C
kJ

mol nm6 6

min 8.0 290.0 0.000005 0.00005
max 19.4 400.0 0.0001 0.01
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where ϕk is the nonlinear activation function of layer k given by
ϕk(x) = ϕk(Wkϕk−1(x) + bk) = tanh(Wkϕk−1(x) + bk) +
sigmoid(Wkϕk−1(x) + bk). Layer k receives a linear trans-
formation of the output of layer k − 1, given by ϕk−1(x), and
applies the activation function ϕk to produce the output of layer
k. Each layer, k, has weights, Wk, and bias, bk, with dimensions,
Wk ∈ Rdk−1×dk and bk ∈ Rdk, where dk is the number of nodes in
layer k. nh denotes the number of hidden layers. The summation
of the tangent hyperbolic and sigmoid nonlinearities (tanh x +
sigmoid x) is used between layers, except for the output layer
(ϕo) where the sigmoid nonlinearity is used (see eqs S4−S7).
As shown in Figure 1c, once the data generation is complete,

the DNN is trained to obtain the near-optimal weights and
biases throughminimization of theDNN loss function. The loss-
function minimization is performed with a backpropagation
algorithm. The FNN is trained based on the mean square loss
function, where the mean-squared error (MSE) between the
ground-truth and the predicted parameters is optimized. The
adaptive moment estimation (Adam) optimizer40 is used to
minimize the loss function ( θϵ D( , )), which can be expressed
as

∑ ∑θ θϵ =
| |

−
∈ ∈{ }

D
D

v v x( , )
1

2
( ( , ))

i D j C C
j
i

j p
i

i
,

,GT
( )

,
( ) 2

12 6 (5)

where θ represents the free parameters (weights and biases) of
DNN. vj,GT

(i) and vj,p
(i)(θ) are the ground-truth and DNN-predicted

scaled LJ interaction parameters (with respect to the minimum
andmaximum in Table 1) of the ith data point in the data set. |D|
denotes the size of the training data set. The training data set
corresponds to ∼75% of the data obtained from MD
simulations, and it are used to find the optimal weights and
biases of the DNN. The validation data set (∼12.5% of the MD
data set) is used as a metric during the loss function
minimization to monitor network performance, avoiding
overfitting or underfitting in the learning process; that is, it is
fed into the network to determine the value of the loss function,
but it does not contribute to the backpropagation. Furthermore,
during training, we use the dropout technique for the second
hidden layer to avoid overfitting.41 The dropout technique drops
nodes in layers with a specific probability, therefore training only
a fraction of weights (W2) and biases (b2) of the second hidden
layer at each training step. In this study, the FNN units are
dropped randomly with a probability of 0.25. Improvements
achieved using the dropout technique are mainly due to
preventing nodes from undesirable coadapting, and they far
outweigh the ones achieved with L1 and L2 regularizations.
The training and design of DNN continue until a good

performance is achieved on both the training and validation data
sets. Once the network is trained, we check its loss function value
on the testing data set (the remaining 12.5% of MD data set) to
ensure its generalizability. If the network performance shows
overfitting or underfitting on the validation or training data sets,
then its architecture involving the number of layers, the number
of nodes in each layer, and the activation functions are changed
by trying rectified linear unit, sigmoid, tangent hyperbolic, or a
combination of them until a reasonable performance is achieved.
On the basis of the network performance on the entire data set,
the network with two hidden layers with 48 and 15 nodes is
selected, and an exponent of three for the thermodynamic states
is chosen (p = 3). All of the results presented in the main
manuscript are obtained using this network. (See the Supporting
Information Section S.2 for more details.)

Next, we consider coarse-graining simple multiatom mole-
cules into single beads to preserve the structure (RDF) of the
multiatom molecule. Specifically, a multiatom molecule is
coarse-grained into a single bead such that the COM RDF of
the multiatom molecule system is preserved in the single-bead
system. The interactions among the single beads are represented
by the 12−6 LJ potential, and the interaction potential
parameters (C6, C12) are obtained by transferring the DNN
knowledge of LJ particles; this approach is referred to as transfer-
learning-based coarse-graining. As shown in Figure 1c (dashed
arrows in the figure), the COM RDF and the thermodynamic
state of a simple multiatommolecule are fed into the DNN as an
input. The DNN provides the interatomic potential parameters
as an output for the single-bead representation of the multiatom
molecule. Once the potential parameters are available, MD
simulations can be performed using the single-bead representa-
tion of the multiatom molecule to estimate RDF and other
properties of the CG multiatom system. It is important to note
that, typically, coarse-graining introduces errors in the
estimation of various properties of the original multiatom
system. Here we estimate the error in the RDF obtained from
the DNN-predicted potential parameters by using two
measures: The first is the error in the total variation between
CG and AARDFs, and the second is the KL divergence.13,15 The
error in the total variation between CG and AA RDFs is
calculated using the expression

∫
∫

ϵ =
| − |g r g r r r

g r r r

( ) ( ) d

( ) d

r

rrdf
0 CG AA

2

0 AA
2

cf

cf

(7)

where gCG(r) and gAA(r) are RDFs of CG and AA models,
respectively. The error is also estimated using the KL metric
using the expression

β βϵ = ⟨ − ⟩ − ⟨ − ⟩ + ⟨ ⟩U U F F SKL CG AA AA CG AA AA map AA

(8)

where U (= ∑i<j u(rij)) and F are the potential energy and free
energy of the system in the AA and CG systems and ⟨Smap⟩AA is
the mapping entropy, which is not a function of the potential
parameters. Appendix I contains mathematical details of KL
divergence calculation as well as its convexity and the existence
and uniqueness of a global minimum.42,43

We examine the performance of DNN by considering two
cases: First, the generalizability and transferability of the
interatomic potential parametrization for LJ particles (this is,
in fact, the development of atomistic force fields for single-atom
particles) is investigated, and second, transfer learning for CG
force-field development is considered. Generalizability refers to
the use of DNN to estimate potential parameters for LJ particles
for thermodynamic states that fall within the range of the
training data set; that is, the thermodynamic state considered to
establish generalizability is not part of the training data set, but
the thermodynamic state lies within the training data set
thermodynamic states that are part of the training data set.
Transferability refers to the use of DNN to estimate potential
parameters for LJ particles for thermodynamic states that fall
outside the range of the training data set; that is, the
thermodynamic states considered are not within the range
shown in Table 1. Transfer learning refers to the use of DNN to
estimate potential parameters for CG representation of simple
multiatom molecules shown in Figure 1a.
DNN is trained to reproduce the potential parameters of LJ

particles using RDFs and thermodynamic-state variables. The
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network architecture (the number of layers and the number of
nodes in each layer) is optimized based on its performance on
both the training and validation data sets. (See Figure S4 for the
loss function minimization during each iteration of training; the
total number of iterations for each network is about 20 000 000.)
The generalizability of the network is assessed through its
performance on the test data set, which is not seen until the
DNN training step is complete.
One-to-one comparison of the DNN-predicted and ground-

truth potential parameters (parameters used in MD simulation)
are shown in Figure 2. We note that all of the points are
distributed almost uniformly around the one-to-one mapping
line, that is, the line on which the ground-truth and DNN
predicted parameters match exactly. Figure 2a,e shows the
training data set results for the prediction of C12 and C6,
respectively. Whereas the thermodynamic states and RDF vary
for each point, the DNN is able to relate them correctly to the
underlying potential parameters. Similarly, Figure 2b,f shows the
validation data set results for the predictability of C12 and C6,
respectively. The validation data set is used for the design of
DNN to avoid overfitting and is not part of the data set used for
the minimization of the loss function. Figure 2c,g shows the
generalizability of DNN for the prediction of C12 and C6,
respectively, for unforeseen data during the training of DNN.
The accuracy of the model is measured based on the loss

function value of the training data set. (See eqs S8−S10 for the
definition of bandwidth and accuracy as well as the definition of
the mean absolute percentage error (MAPE),44 defined as

ϵ = × ∑ | − |
∑ | |

∈

∈
100j

v v

vMAPE,
i D j

i
j
i

i j
i

,DNN
( )

,GT
( )

D ,GT
( ) , where i represents the ith data

point in the data set and vj is either C12 or C6.) The dashed-
dotted lines, shown in Figure 2, are parallel to the one-to-one

mapping line and at a distance equal to four times the square of
the loss function value of the training data set. These lines show
the interval in which ∼99% of DNN prediction points are
located compared with ground truth of the training data set. The
same accuracy lines are shown for the rest of the data sets, which
shows that most of the data of validation and testing data sets lie
in this region (close to 99% of points). The MAPE is also shown
for each data set and potential parameters.C12 andC6 of training,
validation, and testing data sets have about 1.7 and 4.2%MAPE,
respectively, indicating high accuracy of prediction.
The transferability of DNN to thermodynamic states outside

the range of the data set is also investigated. For this, we estimate
the potential parameters by considering the temperature range
of [200, 500] K and density range of [1.96, 20.49] nm−3,
excluding the range shown in Table 1 (temperature range of
[290, 400] K and density range of [8.0, 19.4] nm−3). One-to-one
comparison (prediction versus ground truth) for the trans-
ferability data set is shown in Figure 2d,h, indicating about 8.7
and 39.8% MAPE for C12 and C6, respectively. Similarly, about
half of the points of the transferability data set lie in the region
bounded by the accuracy lines. This result indicates that caution
should be exercised in using the DL model outside the range of
the training data. However, DNN shows a clear correlation
between the predicted and ground-truth parameters. (See
Supporting Information S.2 for a discussion on the details of the
transferability data set selection.)
To evaluate the performance of DNN for other thermody-

namic properties of a given system, MD simulations are
performed on argon particles for 121 different thermodynamic
states with a uniform sampling of the temperature and density
ranges shown in Table 1, with each having 11 points. The
pressure calculated using the DNN-estimated potential

Figure 2. Comparison of the pair potential parameters determined from the DNN with the ground-truth values for training, validation, testing, and
transferability data sets. (a−d) C12 parameter from training, validation, testing and transferability data sets. (e−h) C6 parameter from training,
validation, testing, and transferability data sets. The mean absolute percentage error is also shown for each data set. (Red circles, square, pentagon, and
diamond points represent training, validation, testing, and transferability data sets, respectively, while black solid lines show a one-to-one mapping and
black dashed-dotted lines denote lines parallel to the one-to-one mapping line with a distance of four times the square root of loss function of the
training data set. 99% of the training data are enclosed in this region. The region also encloses ∼99% of the data of validation and testing data sets.)
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parameters (shown in Figure 3) has a mean error of 17%
compared with the AA MD pressure for the 121 points used in
the data set. This error is reasonably small compared with the
pressure fluctuations observed in MD simulations. The
comparison between mean values of LJ parameters predicted
by DNN and ground-truth LJ parameters of argon are shown in
Table 2. (The details of the calculation of the thermodynamic

quantities including pressure and total energy are presented in
Supporting Information S.1.) As Table 2 indicates, the network
is able to map all 121 points into a single value of LJ parameter
with a small deviation as well as a small error compared with the
MD ground-truth parameters (6.18% for C12 and 0.16% for C6

relative to the ground-truth LJ parameters of argon).
The DNN results for the parametrization of LJ particles

exhibit no more than 4.4% MAPE over the data set, which
implies that FNN is an efficient approach to solve the inverse
problem of the liquid-state theory, at least for the LJ particles. To
investigate the transferability of knowledge acquired from LJ
particles as a new coarse-graining route, single-bead CG models
of simple multiatom molecules such as carbon monoxide,
fluorine, and methane are developed. The COM RDFs of these
systems are first obtained using all-atom molecular dynamics
(AAMD) simulations. Then, the COM RDFs and thermody-
namic states (midpoint of Table 1) are fed into the DNN. (The
procedure is shown with a dashed line in Figure 1c.) The
comparison of the COM RDFs of multiatom molecules and CG
model RDFs is shown in Figure 4. Figure 4 also shows the results
of CG RDFs of multiatom molecules for the LJ pair potential
parametrized by simplex and relative entropy methods. The

Figure 3. Calculation of the bulk pressure of argon for different thermodynamic states. (a) Molecular dynamics simulations. (b) Deep-learning-
predicted potential parameter-based pressure.

Table 2. Predictability of Argon Parameters on a 11 × 11
Mesh Covering Various Temperature and Density Valuesa

ground truth deep learning relative error %

× [
·

]−C 10
kJ

mol nm12
6

12 9.70 10.3 ± 0.116 6.18

× [
·

]−C 10
kJ

mol nm6
3

6 6.22 6.23 ± 0.0053 0.16

aMD simulations are performed on argon with ground-truth LJ
potential parameters at different thermodynamic states on a uniform
grid over the temperature and density ranges stated in Table 1. All
121 RDFs and their corresponding thermodynamic states are fed into
the DNN, which provides estimates of LJ potential parameters.

Figure 4.Comparison of RDFs obtained with DNN-based (solid red line), relative entropy (dotted green line), and simplex (dashed-dotted blue line)
CGmodels and the AAmodel. All threemethods show an excellent match with the AAmodel results (shown as black circles). (a) CO. (b) F2. (c) CH4.
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results indicate that DNN parametrized force fields are
indistinguishable from the other two methods. Considering
that DNN is a single-shot method with no iterations, its speed to
derive the CG force field is faster compared with the simplex and
relative entropy methods. (See Figures S11 and S12 as well as
Table S1 for further details and additional case studies.)
Following the procedure shown in Figure 1c, we assess the
accuracy of CG models with two additional metrics, that is, ϵrdf
and ϵKL. In Figure 5a,b, ϵrdf is shown on a mesh discretizing the
space of LJ potential parameters. The mesh points have different
values of C12 and C6, and using these data, one can find the LJ
parameters with a minimum value of ϵrdf. The minimum point of
ϵrdf lies in the vicinity of the LJ parameters predicted by the
DNN. On the basis of eq 8, ϵKL between simple multiatom
molecules and the LJ particles is shown in Figure 5e,f. Similar to
ϵrdf, the minimum value of ϵKL is close to the DNN-predicted
parameters. The convexity of ϵKL ensures that the local
minimum of ϵKL found within the LJ parameter space is a global
minimum. (For a more detailed discussion on KL divergence
and its convexity, see Appendix I or ref 13 and references
therein.) Both error metrics show a small deviation from the
DNN-predicted LJ parameters with a distance <0.1% of the
maximum error in the investigated parameter space. Because
DNN does not have prior knowledge about the information
theory (KL metric) or the statistical mechanics metric (error in
the total variation of the RDF), we can conclude that DL is a
good CG strategy because it performs well on both metrics.
In this study, a deep neural network is used for atom-agnostic

parametrization of the LJ potential at different thermodynamic

states. The DNN demonstrates good performance for two
casesparametrization of LJ particles and the development of
single-bead CG LJ potentials for simple multiatom molecules
through transfer learning obtained from LJ particles. The
transferability and generalizability of the method are inves-
tigated by computing the total variation in the RDF and KL
divergence for the CG model development. Our results indicate
that DL is able to compute the solution to the inverse problem of
liquid-state theory (DeepILST) under the assumption of a
predetermined pair potential in a CG model.

■ APPENDIX I. KULLBACK−LEIBLER DIVERGENCE

The KL divergence or the relative entropy is a concept from
information theory and mathematical statistics to measure the
distance between two probabilities. It is defined as

∑ϵ = −P Q P i
Q i
P i

( ; ) ( ) log
( )
( )i

KL
(A.1)

where P and Q are the model and target probabilities,
respectively, and i represents a microstate of the system. The
probability of each microstate in the canonical ensemble can be
expressed as

∫
=

β

β

−

−r
r

P( )
e
e d

r

r Ni

U

U

( )

( )

i

(A.2)

The overlap between two canonical ensembles (see ref 42 for
more information) can be expressed as

Figure 5. Assessment of the coarse-grained force fields through total variation in RDF (first row) and Kullback−Leibler divergence (second row)
criteria. The parameter space is discretized into a mesh, and ϵrdf and ϵKL are computed at each mesh point. White cross points are the minimum values
obtained from the two metrics, while red filled circles are predictions from deep learning. (a,d) CO. (b,e) F2. (c,f) CH4.
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where M(r) is the mapping operator from AA to CG
configuration, Smap is the mapping entropy, which arises from
degeneracies during the mapping of AA configuration, and
PAA(ri) and PCG(M(ri)) are the normalized probability of a
configuration i in the AA and CG ensembles, respectively.
Substituting eq A.2 into the above equation, the KL divergence
can be rewritten as

β βϵ = ⟨ − ⟩ − ⟨ − ⟩ + ⟨ ⟩U U F F SKL CG AA AA CG AA AA map AA

(A.4)

where U (= ∑i<ju(rij)) and F are the potential energy and free
energy of the system in the AA and CG systems, respectively.
The first derivative of the above equation with respect to the
interaction parameters can be expressed as

λ
λ λ

β β∇ϵ = ∂
∂

− ∂
∂

U U
( )kKL

CG AA (A.5)

which again can be simplified to

∫λ
λ
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∂

∞
N g r g r
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0 CG AA
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The optimality condition requires this quantity be zero.
Furthermore, the curvature of KL distance (its Hessian) should
be non-negative. TheHessian of KL divergence can be expressed
as
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where i and j are indices of second-order derivatives of KL
divergence with respect to the parameters λi and λj, respectively.
For linear parameters, which appear frequently in the empirical
force fields, the Hessian of KL divergence reduces to

λ λ
β β= ∂

∂
− ∂

∂
U U

H 2 CG
2

CG

2 CG
2

CG (A.8)

which denotes the variance of a derived quantity in the CG
ensemble. Therefore, the curvature is always non-negative,
implying the existence of a global minimum. Thus the problem
considered here is a convex optimization problem in terms of the
potential parameters, and, if a local minimum exists, then it has
to be a global minimum.
To calculate the KL divergence, we employ the first-order

forward finite difference algorithm over a grid representing
discretization of the LJ potential parameters at the thermody-
namic states of AAMD systems. The following formula is used
for the finite difference method

ϵ = ∂ϵ
∂

+ ∂ϵ
∂C

C
C

Cd d dKL
KL

12
12

KL

6
6

(A.9)

where the method is applied on a grid of size 150 × 150. The
same mesh is used to compute the total variation in RDF.
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