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a b s t r a c t

We describe grain boundary structure and migration in graphene using the concept of dislocations in the
displacement shift complete lattice. The equivalence of displacement shift complete lattice dislocations
and grain boundary kinks in graphene is shown both topologically and energetically. Topologically, a
grain boundary kink and a displacement shift complete lattice dislocation both translate the coincident
site lattice. The energetic equivalence is established through comparison of atomistic and continuum
elasticity models of metastable states to show that DSC dislocations are well-described by elasticity
theory. The continuum results are fitted to the atomistic results with one adjustable parameter, the DSC
dislocation core radius. The atomistic results reveal that low sigma boundaries have large energy barriers
to grain boundary motion, which match continuum results obtained for smaller core radii dislocations.
The larger energy barriers for low sigma boundaries are consistent with experimental results reporting
isolated, low sigma boundaries in grown graphene. The trends in the dislocation Burgers vector and
fitted core radii across grain boundaries of different misorientation are expressed in a unified model. The
analysis provides a framework for understanding grain boundary motion in graphene and can serve as a
basis for engineering the atomic structure of graphene.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Graphene, the most extensively studied member of the class of
two-dimensional materials, offers new device possibilities in
electronics [1e3], chemical processing [4,5], and biological sensing
[6,7]. In order to harness the properties of graphene in engineering
devices, it is necessary to have precise control over the atomic
structure that arises during synthesis, including the structure and
distribution of grain boundaries and the resulting grain size.
Common growth techniques such as chemical vapor deposition
result in synthesized samples of variable crystallinity, grain size,
and grain boundary distribution [8,9]. The uncontrolled structure of
grain boundaries results in a large variation of properties. For
example, the fracture strength varies by a factor of three [10] and
the electronic conductivity can vary by an order of magnitude [11]
based on the grain boundary distribution. On the other hand, if
control over the grain structure could be achieved, several possi-
bilities open up such as tailoring the atomic structure to achieve
desired electronic and mechanical properties.

Although grain boundary structure has been identified as a
candidate approach for controlling properties, the complexity of
the structure and migration mechanisms of grain boundaries has
thus far hindered progress. Grain boundaries are regions of atomic
reconstruction between two neighboring, misaligned grains. As in
conventional three-dimensional materials, grain boundaries in
graphene tend to be composed of periodically arranged edge dis-
locations e here pairs of rings with 5 and 7 atoms [12]. The edge
dislocations that comprise a grain boundary can be arranged in
differing orientations with variable spacing. These degrees of
freedom alter the symmetries of grain boundaries and produce an
extensive configurational phase space. Statistical and Fourier
analysis of atomic scale microscopy images has shown that grain
boundaries tend to prefer misorientation angles around q¼ 30�

[8,9]. However, there is little explanation for the particular atomic
arrangements that produce the misorientation angles.

Several recent efforts have made progress in analyzing the for-
mation mechanisms and extensive configuration space of grain
boundaries in graphene. To understand formation mechanisms,
Zhuang et al. used kinetic Monte Carlo to evolve amorphous 2D
carbon into graphene using bond rotations [13]. They identified two
regimes: first, the coalescence of edge dislocations to form grain* Corresponding author.
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boundaries and, next, the modification of the atomic scale grain
boundary structure during annealing. This process yields misori-
entation angles around q¼ 30�. This corresponds to experimental
observations that show the formation of a variety of grain boundary
angles which anneal into structures with q¼ 30� [9]. Shekhawat
et al. mapped the phase space of symmetric grain boundaries
similar to those that form in the first stage of Zhuang et al. Here,
symmetric refers to a grain boundary whose direction bisects the
misorientation angle i.e. a line angle ql E¼ 0. Their results reveal the
existence of special misorientation angles corresponding to low-
energy ‘cusps’ in the relation between the grain boundary line
energy and q [14]. The predicted cusps at q ¼ 32:2+ and q ¼ 21:78+

correspond to the misorientation angles commonly observed in
both simulation and experiment, although the specific atomic scale
structures vary.

In contrast to the symmetric structures predicted from simula-
tion, experimental observations also show the presence of high
dislocation density grain boundaries whose origins are not clear [8].
Such higher dislocation density grain boundaries may form, for
example, when two symmetric, low-energy grain boundaries
merge (the annealing stage of Zhuang et al.). Therefore, in addition
to the thermodynamic study of the line energy of pristine grain
boundaries, it is of interest to consider the kinetic grain boundary
migration mechanisms across a wide set of grain boundary angles.
This is of interest not only for misorientations q that are observed in
experiment, but also for grain boundaries with misorientation an-
gles q that may have disappeared during subsequent processing or
annealing.

In this work, we present a topological framework to describe the
conservative migration mechanisms of grain boundaries and assess
their mobility for different misorientations q. In this framework,
grain boundarymotion occurs via the formation and propagation of
kinks in the grain boundary [15,16] as shown in Fig. 1. For example,
the symmetric grain boundaries shown in Fig. 1a and b move when

edge dislocations glidewith respect to a grain boundary resulting in
the formation of a kink of length K as shown in Fig. 1c and d.
Subsequent glide of adjacent dislocations results in the propagation
of the kink walls and extension of K until the entire grain boundary
has shifted. The energy barrier for this process is considered to
represent the energy barrier for the conservative motion of the
grain boundary, where non-conservativemotion, through pure step
motion, for exampleethat depends on chemical potential mini-
mizationeis ignored. As for the case of bulk copper and other three
dimensional materials [17], we show that in graphene a double
kink in a grain boundary is equivalent to a dislocation dipole in the
displacement shift complete (DSC) lattice [18]. We develop a con-
tinuum approach, containing only one adjustable parameter, to
predict the energetics of kinked grain boundaries and determine
migration barriers. The continuum description is shown to repro-
duce atomistic simulations of grain boundary motion (kink for-
mation and propagation) and trends in the migration barrier for
different misorentiations q. Our results suggest that the prevalence
of q¼ 32.2� and q¼ 21.78� boundaries commonly observed in ex-
periments may arise from their relatively large energy barriers for
motion. Similarly, low angle boundaries have low migration bar-
riers, indicating that they may more readily anneal out of the
system.

2. Grain boundaries, kinks and their relation to the
displacement shift complete lattice

To construct atomic scale models of grain boundaries with
arbitrary misorientation q, we use a modified version of the
approach developed by Shekhawat et al. [14]. A unit cell containing
two grain boundaries of opposite orientation with the smallest
repeat height is first generated. The minimum unit cell height is
equivalent to the coincident site lattice (CSL) spacing, aCSL, of two
lattices misoriented by q. Each grain boundary in the unit cell

Fig. 1. (a,b) Straight and (c,d) kinked grain boundaries in graphene. In (a,c), periodic supercells of height H and width W containing a pair of anti-parallel grain boundaries are
shown. The gray dashed line in (a) marks the smallest unit cell height of a grain boundary given by aCSL. In (c) a portion of the grain boundary (K units long) has migrated,
corresponding to the formation of a double kink. In (b,d), the corresponding atomic-scale structure for a S7 boundary are shown. The different grain orientations are shown by gold/
purple coloring, while the grain boundaries are gray. The migration of the grain boundary corresponds to a shift in the coincident site lattice (CSL) (red points) in the region where
the migration has occurred. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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contains one or two edge dislocations depending on the type of
grain boundary (e.g. zig-zag or armchair) [10]. An example of a unit
cell is seen in Fig.1a. The unit cells are stacked vertically to generate
supercells of height H and widthW, where the grain boundaries are
W/2 apart. To indicate supercell sizes, we use dimensionless pa-
rametersH ¼ H=aCSL and K ¼ K=aCSL, which represent the supercell
and kink height in terms of the number of repeat units. For
instance, Fig. 1a shows a supercell built by stacking six unit cells (H
¼ 6) with K ¼ 0, while Fig. 1b shows the same supercell (H ¼ 6) but
with K ¼ 2. Fig. 1b,d shows the atomistic representations for the
associated q ¼ 21:78+ grain boundary.

Here onwards, we classify each grain boundary according to its
sigma number S, which exhibits a one to one relationship with the
misorientation angle q and is closely related to the concept of the
CSL [19]. For a given grain boundary as shown in Fig. 2a, the CSL is
defined as the set of lattice points of Lattice 1 (gold points) that, if
extended across the grain boundary, would coincide exactly with
the points of Lattice 2 (purple points), and vice versa. The CSL for the
grain boundary in Fig. 2a is shown in red. The S number then re-
lates the CSL to the real graphene lattice through the relation S ¼
ACSL=Alat , where ACSL and Alat are the areas of the primitive unit
cells of the CSL and graphene respectively. The areas, ACSL and Alat ,
can be found from Fig. 2a to find S for the q¼ 21.78� boundary to be
7. Alternatively, numerical routines have been developed that only
use q to find S [20].

Grain boundary motion occurs by nucleating double kinks in
symmetric grain boundaries and propagating the kinks so that they
are a distance K apart, as shown in Fig. 1c and d. In the atomistic
picture, kinks nucleate through the glide of an edge dislocation. The
kink propagates by sequentially gliding adjacent edge dislocations,
causing the grain boundary to shift and thereby the location of
registry between the grains, the CSL points, to shift. As adjacent
dislocations in the grain boundary glide, K increases to become
equal to H at which point the grain boundary has migrated by one
dislocation Burgers vector. The shift of the CSL points is seen in
Fig. 1b,d, where the glide of an edge dislocation moves the CSL
(colored in red) by one dislocation Burgers vector. The shift in the
CSL points can also be seen in Fig. 2b in the region where the grain
boundary edge dislocations have moved (the region between the
gray lines).

By associating the motion of CSL points with grain boundary
motion, we can formalize the DSC interpretation of grain boundary
motion. The DSC lattice, shown in Fig. 2 in cyan, is the sparsest
lattice that includes all points of crystal Lattices 1 and 2 on both
sides of the grain boundary. A feature of the DSC lattice is that it
enumerates the set of allowable shifts that maintain a given CSL. As
Fig. 2b shows, even though Lattices 1 and 2 and the CSL are shifted
between the gray lines, all points of all lattices, even in the shifted
region, are captured by the DSC lattice.

The utility of the DSC lattice is that it enumerates shifts that
correspond to all possible kinks in a given grain boundary. Fig. 2b
shows the equivalence of the grain boundary kink in Fig. 1d and a
dislocation in the DSC lattice. The blue and green lines in Fig. 2b
show the kink structure that is formed in Fig. 1d using the modified
method from Shekhawat et al. To recreate this shift, the points of
Lattice 1, Lattice 2, and the DSC lattice in the region between the
two gray lines are all shifted by a DSC lattice vector oriented
vertically, parallel to the grain boundary and perpendicular to the
gray lines. This shift vector is shown by the small black arrow below
the lower gray line. This nucleates oppositely oriented dislocations
in the DSC lattice centered at the symbol, Ð, and shown in the inset.
The introduction of this shift to all points between the gray lines is
equivalent to the introduction of two edge dislocations of opposite
orientation in the DSC lattice. The DSC dislocations naturally cause
the CSL points (red) in the shifted region to translate by a lattice

Fig. 2. Lattice representations of (a) straight and (b) kinked S7 grain boundaries
display the equivalence of a grain boundary kink and a dislocation in the displacement
shift complete (DSC) lattice. The two lattices are shown in gold and purple and are
extended past the boundary (blue/green) to show the CSL lattice. Red points indicate
the CSL, which represents the lattice points shared by both grains. Teal points indicate
the DSC lattice, constructed so that it contains all points of both lattices. In (b), kinks in
the grain boundary corresponds to a region (between the gray lines) where the CSL is
shifted. The shift in the CSL can also be understood as dislocations in the DSC lattice,
with the Burgers vector of the dislocation indicated by the black arrows. The inset
isolates the DSC lattice around the dislocation core where there is an extra half-line of
DSC lattice points. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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vector of either Lattice 1 or 2 (and notably not by the DSC vector
that describes the shifts of Lattice 1, Lattice 2, and the DSC lattice).
We use the equivalent motion of the CSL points in both frames to
create a topological connection between the atomistic and DSC
representations of grain boundary migration. The shift in the CSL
point caused by a DSC dislocation is the same as that associated
with a grain boundary kink, and therefore effectively represents the
presence of a kink in the grain boundary although there is no
manifestation of the grain boundary in the DSC frame.

3. Simulation methods

3.1. Atomistic simulation

Before describing the details of our continuum formulation to
predict grain boundary migration barriers, we first describe the
atomistic simulations that we will use to validate the continuum
approach. Computational supercells of varying height H and width
W are created, each containing two anti-aligned grain boundaries
with sigma number S separated byW=2, as shown in Fig. 1a. Due to
the use of periodic boundary conditions, this amounts to modeling
an infinite array of parallel grain boundaries of alternating direc-
tion. Total energies of atomic configurations are determined using
LAMMPS [21]; we use the Tersoff functional with parameters found
by Broido et al. to describe interactions between carbon atoms
[22,23]. The atomic coordinates during minimization are con-
strained to be flat since we are most concerned with grain
boundaries migration during annealing and in multilayer devices.
In both of these cases, graphene remains flat and does not buckle
out of plane. Therefore, we do not include the screening of elastic
interactions due to out of plane buckling [12].

Grain boundary migration is represented by the process of kink
nucleation and propagation, i.e. the glide of one 5e7 ring by one
Burgers vector in each grain boundary and subsequent glide of
adjacent dislocations. Each glide event results in the rearrangement
of each atom's neighbors and creates a different topology (bonding
network) within the supercell. As the kink propagates, the energy
of each metastable state is determined by relaxing the structure
while maintaining the bonding network. The energy barriers be-
tween the metastable states are ignored as we expect them to be
independent with respect to grain boundary length H and, there-
fore negligible, relative to the total energy, in the large grain size
limit [17]. In this way, the energy required to nucleate and propa-
gate a kink in the supercell by one dislocation burgers vector is
tracked.

Since our atomistic simulations invoke periodic boundary con-
ditions, the energy of kink formation and propagation may be
influenced by image interactions from neighboring supercells. To
assess the magnitude of finite size effects, we present the effect of
supercell parameters (W, H) on the energy profile for a S7
boundary. Fig. 3a and b considers how the grain boundary migra-
tion barrier varies for different W for fixed H ¼ 6, and Fig. 3c and
d considers how the grain boundary migration barrier varies for
different H for fixed W¼ 180 Å. The energy profiles in Fig. 3a,c
shows the nucleation and propagation of a grain boundary kink.
The kink energy is shown vs. K=H relative to that of the unkinked
grain boundaries at K=H ¼ 0. The migration energy is symmetric
across the position K=H ¼ 0.5 due to the periodic boundary con-
ditions and translational symmetry of the grain boundaries. The
maximum energy occurs at K=H ¼ 0:5, which corresponds to the
point where exactly half of the grain boundary has migrated. This
energy is classified as the barrier energy for grain boundary motion.
From the perspective of the DSC lattice, K=H ¼ 0 and K=H ¼ 1
correspond to the case where the two oppositely-oriented DSC
dislocations for each grain boundary lie directly atop each other

causing them to destructively interfere, whereas K=H ¼ 0:5 corre-
sponds to the case where the two DSC dislocations are maximally
separated by H=2.

Fig. 3a and b shows how the kink energy and the barrier height
vary for differentW and, therefore, the grain boundary spacing. The
results show that beyond a cell width of ~100 Å, the kink energy
plateaus and becomes insensitive toW. The corresponding analysis
for the cell height H is shown in Fig. 3c and d. Instead of a plateau,
the kink energy profiles increase monotonically with H. The
dependence of the barrier energy exhibits a logarithmic depen-
dence on H, as shown by plotting the migration barrier for each in
Fig. 3d. This is expected since grain boundary kinks are topologi-
cally equivalent to DSC dislocations, and dislocation interaction
energies exhibit a logarithmic dependence on their spacing [24].
The logarithmic dependence of the barrier energy on the cell height
and the plateau of barrier energy with cell width shows that the
interaction energy of kinks from the same grain boundary is the
dominant energy contribution for sufficiently largeW such that the
interaction with neighboring grain boundaries is minimized. Hav-
ing established the nature of finite size effects in our simulations, all
subsequent energy profiles are produced for supercells with W;H
so that the intra-grain boundary kink energy is dominant according
to the analysis of Fig. 3.

Next, we consider the dependence of kink energy on grain
boundaries with varying S. Fig. 4a and b shows the kink energy vs.
K=H for various S boundaries with W¼ 120 Å and H ¼ 10. In the
atomistic model, we use constant H as opposed to H because the
periodicity of the boundary, aCSL, does not allow for a constant H
across S because aCSL for each boundary is an irrational number
making the least common multiple the product of aCSL from each
boundary. The energy profiles for high and low S are shown
separately in Fig. 4a and b due to the two orders of magnitude
difference in kink energies; note that the y-axis in Fig. 4b is scaled
by a factor of 10�1. Fig. 4c compares the energy barrier for each of
the boundaries shown in Fig. 4a and b. We observe an empirical
power-law relationship in which the migration barrier scales as
� S�0:95. Low S boundaries have a higher migration barrier and are
less mobile, while high S boundaries have a lower, nearly negligible
migration barrier and are more mobile.

To show that this trend persists even when comparing across
constant H rather than constant H, the inset in Fig. 4c shows the
barrier height plotted vs. S for H ¼ 270 Å (the cell height of the
S127 boundary). The results in the inset are obtained via the con-
tinuum approach that will be described in the next section rather
than atomistic simulation. The power law dependence remains,
although each DSC energy calculated in the inset is slightly higher
than its corresponding value in Fig. 4c. This is expected due to the
logarithmic relationship of the barrier with H shown in Fig. 3d,
which is represented by a larger exponent for the power fit
� S�1:07. The higher migration barrier for low S ð S7; S13Þ
boundaries is related to the observation that those boundaries are
most commonly seen after CVD growth [8], while other boundary
angles anneal from the system [9,13]. Using this understanding,
coupled with the knowledge that dislocations anneal by merging
with oppositely oriented dislocations, we posit that high S grain
boundaries migrate and interact with low S grain boundaries. If
they have opposite sign, their dislocations can annihilate or, if they
are of the same sign, the boundaries merge until their dislocations
are adjacent and form a near S13 structure although not neces-
sarily with ql ¼ 0 [8,9].

3.2. Continuum model

We now develop a continuum formulation to capture the
atomistic trends shown in Figs. 3 and 4 using a description of the
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kinked grain boundaries as dislocations in the DSC lattice. Instead
of explicitly considering the grain boundaries, we consider only the
kinks in the grain boundaries, which we have shown to be equiv-
alent to DSC dislocations. For each double kinked boundary, there
are two oppositely oriented DSC dislocations located a distance K
apart (a DSC dislocation dipole). Each supercell, containing two
double-kinked grain boundaries, therefore contains a DSC dislo-
cation quadrupole. For a given configuration, the spacing of the DSC
dislocations in the quadrupole depends on H, W, and K . Since
dislocation strain fields are long-ranged, dislocation-dislocation
image interactions are present in these systems, and as shown
above in Fig. 3, the energy of the quadrupole is sensitive to the
supercell dimensions.

To find the energy associated with the presence of the DSC
dislocation quadrupole, we use a continuum formulation for the
energy of a set of dislocations in a linear elastic medium that
naturally incorporates periodic boundary conditions and accounts
for dislocation-dislocation interactions [25]. In this formulation,
each dislocation introduces a topological constraint to the contin-
uum distortion field D given by

εklvkDlm ¼ am (1)

where Dij ¼ ui;j is the ij -component of the distortion tensor and ui
is the i-component of the displacement field introduced by the DSC
dislocations. The constraint states that the curl of the distortion

field is equal to the Nye tensor (a), which gives the density of dis-
locations. For instance, the Nye tensor component am for a dislo-
cation centered at the origin is given by

akð r!Þ ¼ bkdð r!Þ (2)

where bk is the k component of the dislocations Burgers vector and
d the Kronecker-delta function. However, the singularity of the
delta function in Eq. (2) is sufficient to cause the total energy of the
dislocation to diverge. The divergence can be avoided by instead
smearing the delta function into a gaussian according to

akð r!Þ ¼ bk exp

 
� r! 2

R2DSC

!
; (3)

where the parameter RDSC is the gaussian width and defined as the
DSC dislocation core radius; it is the single adjustable parameter of
our model.

To account for the periodic boundary conditions and the
resulting image interactions between dislocations in neighboring
supercells, we write the distortion tensor as a sum over Fourier
components ~D according to

Fig. 3. The effect of simulation cell size on the migration energy for the S7 boundary. Squares represent atomistic results and dots continuum results. (a, b) The effect of changing
the supercell width W at constant H ¼ 6 CSL periods. (a) The full energy profile for four different W are given. The maximum energy, defined here as the migration barrier, occurs at
K=H ¼ 0:5 corresponding to migrating half of the grain boundary. (b) The migration barrier energy is shown as a function of W. ForW >100 Å the barrier energy becomes relatively
insensitive toW. (c) The effect of changing the supercell height, reported as the number of CSL periods H, for constant at W ¼ 180 Å on the full energy profile, and (d) the migration
barrier energy for varying H showing a logarithmic dependence.
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where G
!

represents the reciprocal lattice (wave) vectors. The total
distortion energy Ed associated with the distortion field is then
given by

Ed ¼ 1
2
Cjklm

ð
cell

DjkD
�
lmdA

¼ 1
2
UcCjklm

X
G
!

~Djk
~D
�
lm

(5)

where Cjklm are the components of the fourth order elastic stiffness
tensor as determined by the interatomic potential, and Uc is the
supercell area.

By substituting Eqs. (3) and (4) into Eq. (1), a linear set of
equations relating the Fourier components ~D for each G

!
is ob-

tained. However, the topological constraints of Eq. (1) do not
uniquely determine the distortion tensor. The actual distortion field
is the one that satisfies all topological constraints but uses all
remaining degrees of freedom to minimize the total distortion
energy in Eq. (5). The energy can be minimized separately for each
G
!

component as they are linearly independent. Once the compo-
nents ~D are obtained, the energy terms are summed to find the total
distortion energy. This approach has been applied previously to
describe the energetics of 5e7 (real space) dislocations in two-
dimensional materials [26], but to our knowledge this is the first
application to dislocations in the DSC lattice to describe grain
boundary kinks.

The best-fit core radius, RDSC for the DSC dislocations is deter-
mined independently for each type of grain boundary S considered,
via a least squares fit of the continuummodel to all atomistic results
sampling across different H, W, and K . The continuum results in
Figs. 3 and 4a and b, use the best fit RDSC for each S. The continuum
approach captures all the trends of the atomistic simulations over
the full range of S values and supercell dimensions, reproducing
the migration energy profiles and barriers. For all cases considered,
the maximum discrepancy between the continuum and atomistic
framework is always less than 2%. The agreement between the
atomistic and continuum curves show that, in essence, grain
boundary kinks interact with each other elastically in a manner
analogous to the interactions of linear elastic dislocations in the real
crystal lattice.

4. Implications of DSC results

Since grain boundary kinks can be interpreted as DSC disloca-
tions, we reinterpret the atomistic results with our continuum
framework and dislocation theory. Fig. 5 shows the best-fit core
radius normalized by the DSC dislocation Burgers vector Rs ¼ RDSC=
aDSC as a function of S, revealing a linear relationship. The ratio
between the CSL and DSC lattice vectors is also linear with S (i.e.
aCSL ¼ S aDSC), so the ratio of the core radius to the CSL lattice
vector is constant across S. We believe this to be a general result for

Fig. 4. Grain boundary migration energy profiles for various SwithW ¼ 120 Å, H ¼ 10
CSL periods. Squares represent atomistic results and dots continuum results. (a, b)
Energy vs. K=H , the ratio of the grain boundary moved, for seven different S. (c) The
atomistic grain boundary migration barrier energies show a � S�1 power-law
dependence for constant H. The inset shows the barrier energies for constant
H¼ 270 Å calculated with the continuum theory. The two cases exhibit the same
scaling, although the barrier energies are slightly larger for the inset (due to larger H).
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boundaries described using CSL/DSC theory because the normali-
zation parameter aCSL is a topological descriptor of the system.
Rather than one core radius for each type of grain boundary, only
one parameter, the slope of Fig. 5, is sufficient to define all core radii
and, ultimately, the energetics of all grain boundary kinks in gra-
phene. Numerically, for a given S boundary in graphene we obtain
RDSC ¼ 0:11 S aDSC ¼ 0:11 aCSL, where 0.11 is the slope in Fig. 5.

We return to Fig. 4c to analyze the � S�1 power-law depen-
dence of the migration barriers in light of the findings above. Ac-
cording to linear elasticity theory, the total energy of a dislocation
scales as b2 lnðRdisl=RcoreÞ, the square of the magnitude of the bur-
gers vector multiplied by the natural log of the ratio of the dislo-
cation spacing to the dislocation core radius [24]. The Burgers
vector of DSC dislocations is given by the DSC lattice spacing, which
scales according to S�1=2 so b2 � S�1. For the case of constant H, as
in the main part of Fig. 4c, we have Rdisl � S1=2 and Rcore � S1=2.
This makes the term inside the logarithm a constant, resulting in an
overall scaling of S�1 for the migration barrier, in good agreement
with the numerically fitted value.

For the case of constant H, as in the inset of Fig. 4c, we still have
Rcore � S1=2, but the dislocationedislocation spacing Rdisl is con-
stant. This yields a migration barrier that scales as �
ð1=2ÞS�1 lnðSÞ, and a corresponding difference between the curve
in the inset and the main plot of Fig. 4c that scales as lnðS+=SÞ,
where S+ is the reference value of S (here S+ ¼ 127). This shifts the
barriers slightly upwards for the other S>S+, and is responsible for
the slightly higher magnitude exponent in the inset power-fit
compared to the main plot. The numerical change of exponent on
S is small because the variation of S+=S is within an order of
magnitude throughout the considered domain. The scaling analysis
of the power-fit from Fig. 4c further shows the ability of DSC dis-
locations to be described by the standard, linear elastic interaction
energy of dislocations and supplements the correspondence be-
tween graphene grain boundary kinks and dislocations in the DSC
lattice.

In conclusion, we have shown that grain boundary kinks in

graphene are equivalent to DSC dislocations, which allows us to
understand grain boundary structure and migration barriers using
the linear elastic theory of dislocations. Our atomistic simulations
show that grain boundary migration barriers have an inverse
power-law dependence with S, which is attributed to the depen-
dence of the DSC dislocation Burgers vector on S. We posit that the
lower energy barrier of high S boundaries explains why they are
not observed experimentally. The continuum analysis is unified
across all boundaries by showing that the single fitting parameter,
RDSC , scales linearly with the CSL spacing. Together, these results
provide examples of the usefulness of the DSC lattice to analyze the
structure and motion of grain boundaries in graphene.
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