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Identification of amino acids with sensitive nanoporous MoS2:
towards machine learning-based prediction
Amir Barati Farimani 1,2,3, Mohammad Heiranian1,2 and Narayana R. Aluru1,2

Protein detection plays a key role in determining the single point mutations which can cause a variety of diseases. Nanopore
sequencing provides a label-free, single base, fast and long reading platform, which makes it amenable for personalized medicine.
A challenge facing nanopore technology is the noise in ionic current. Here, we show that a nanoporous single-layer molybdenum
disulfide (MoS2) can detect individual amino acids in a polypeptide chain (16 units) with a high accuracy and distinguishability.
Using extensive molecular dynamics simulations (with a total aggregate simulation time of 66 µs) and machine learning techniques,
we featurize and cluster the ionic current and residence time of the 20 amino acids and identify the fingerprints of the signals.
Using logistic regression, nearest neighbor, and random forest classifiers, the sensor reading is predicted with an accuracy of 72.45,
94.55, and 99.6%, respectively. In addition, using advanced ML classification techniques, we are able to theoretically predict over 2.8
million hypothetical sensor readings’ amino acid types.
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INTRODUCTION
In recent years, nanopore-sequencing technology has matured to
an extent where it is now used in the industry (e.g., Oxford
Nanopore, Genia) as a long-read, single base resolution, and
label-free detection platform. The parallel use of thousands of
pores and the ability to read a chain of DNA thousands of times
empower the sequencing technology with single base resolution.
Specifically, with the advances in data alignment, machine
learning and data processing, the fast and long-read sequencing
features obtained from the nanopore-sequencing technology
have become practicable since multiple readings and statistical
learning can alleviate the problem of noise in detection.1–5 Ionic
current and residence time (signal bandwidth) of each base in the
nanopore are the primary detection signatures, which are used as
features in data classification.6–8 However, the fact that these
signals overlap with each other for different DNA bases, has
inspired scientists to propose other signal types or to functiona-
lize the existing nanopores and discover new materials for
improved signal resolution.9,10 The conventional Si3N4 pore and
other solid state nanopores have a thickness of several
nanometers2 limiting the single base recognition of biological
molecules.3,6 The thickness of these membranes results in the
encapsulation of multiple DNA/amino acid bases/residues, mak-
ing it difficult to decompose the signal associated with each
base.11–15

A single-layer molybdenum disulfide (MoS2) which is a 2-
dimensional (2D) material with a three-atom thick lattice of Mo
and S atoms has an appropriate bandgap for use as an electronic
transistor.16 Recent experimental17,18 and computational19 work
has shown that a MoS2 nanopore has a high signal-to-noise ratio
for DNA base detection making it an attractive material for
biological sensing. In addition, the stickiness of the biological
molecules to the mouth of MoS2 nanopore can be significantly

lowered by irradiation of sulfur atoms creating a molybdenum
dominated pore.18 Compared to other 2D materials (graphene
and boron nitride), MoS2 nanopores can operate without
degradation for an extended duration of time.18,20

Many diseases including cancer, diabetes and digestive
disorders are caused by malfunctioning of ribosomes (Riboso-
mopathies).21 As a result, the amino acid chain might have a
faulty transcription from DNA. Therefore, identification of an
amino acid chain is necessary for diagnostic purposes and early
stage of cancer/other disease detection.22 In fact, the data
acquired from proteomic fingerprints can be more trustworthy in
defining the health status of humans than the genome; but it is
important to note that acquiring and analyzing such data is more
difficult.23

Recent work has used graphene nanopores for protein
identification using molecular dynamics (MD) simulations where
stepwise translocation of polypeptides has been shown. These
results make interpretation of ionic current signal feasible.24

Kolmogrov et al.25 used machine learning (random forest and
support vector machines) to process the ionic current signals
obtained from solid-state nanopore sequencing of a polypeptide
chain. They showed that the signals obtained using a sub-
nanometer pore is sensitive enough for the detection of protein
sequence.
Given the significance of amino acids identification in health

diagnostics and the potential of MoS2 material, we characterized
the ionic current and residence time associated with the
20 standard amino acids by translocating them through a
single-layer MoS2 nanopore using extensive simulations. Super-
vised and unsupervised machine learning and classification
techniques were used to classify and detect signals with a high
prediction accuracy of up to 99.6%.
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RESULTS AND DISCUSSION
By performing detailed MD simulations, we demonstrate that a
single-layer nanoporous MoS2 can identify individual amino
acids with high accuracy. Figure 1 shows the schematic of a
typical simulation box consisting of a single-layer MoS2
membrane (with the pores considered), an amino acid chain
(16 identical residues), water and ions. The water molecules are
not shown in the figure.

Ionic currents and residence times
To characterize the ionic current characteristics for different pore
sizes and validate the simulations against experimentally known
properties (e.g., conductance), we performed MD simulations with
a bare pore (with no amino acid chain in the system) applying
both positive and negative biases. The I-V curves for different sizes
of the nanopore in MoS2, in the absence of the polypeptide
chains, show an Ohmic behavior (Fig. 1d). The conductance (G) is
computed to be 2.69, 4.96, and 10.64 nS for the 1.35, 1.85, and
2.52 nm diameter pores, respectively. These conductance values
are in good agreement with the experimentally measured
conductance of MoS2 nanopores with similar pore diameters.26

In addition, the conductance values obtained from the model
developed by Wannanu et al.27 are comparable to the values
computed in the simulations.
The amino acids are translocated through the nanopore using

an external force under a constant bias of 200 mV. All the
production simulations were performed for the pore with a

diameter of 1.85 nm. The average values of ionic currents and
residence times for all the amino acids are tabulated in Fig. 2. The
largest ionic current values (with 55–65% blockade) are observed
for the amino acids (G, A, S, T, C) in the first row of Fig. 2. G, A, S, T,
C are among the smallest amino acids based on the combined
vdW radii.28 G, A and S exhibited a very fast translocation with an
average residence time per amino acid of 33.02, 64.52, and
23.10 ps, respectively. Of all the amino acids in Fig. 2, Methionine
exhibits an inconsistent ionic current of −18.21 pA. We investi-
gated this anomaly by probing further into the components of the
current (anion and cation contributions). We observed an
intermittent anion binding to the thiol groups of Methionine
resulting in a strong negative ionic current due to the fact that the
Methionine is pulled by the external forces and drags the anions
in the direction of the electric field (see the supporting
information).
In Fig. 3a, the residence time and ionic current statistics for all

the 20 amino acids are shown. L, V, E, M, P, and I amino acids show
similar ionic current and residence time statistics. Their residence
time is between ~100 and ~1000 ps and their ionic current is
between ~13 and ~50 pA (except for the anomalous negative
current of M amino acid). These amino acids have both smaller
sizes and higher residence times compared to G, A, S, T, and C
amino acids. The common feature among this class of amino acids
is their hydrophobic nature (Fig. 3b). A 3D scattered plot of the
vdW volume of each amino acid (vdW volumes are taken from ref.
28) as a function of its residence time and ionic current is shown in
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Fig. 1 Schematic of the simulations and the I-V curve. a Simulation set up for the polypeptide chain with 16 units (here, TYR (Y)), MoS2
nanopore, and ions. Water is not shown. Mo and S atoms are in blue and yellow, respectively. b A snapshot of Proline polypeptide
translocation through the MoS2 nanopore and its conformational change. c Comparison of the 1.85 and 2.52 nm diameter nanopores and the
arrangement of Mo and S atoms at the edge of the pores. d I-V characteristics of MoS2 nanopores with pore diameters of 1.35, 1.85, and
2.52 nm (the error bars were generated with four simulation trajectories for each data point)
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Fig. 3c (a similar plot is available in the supporting information for
the mass of amino acids). The obvious trend in this data is the
correlation of the volume of amino acids (or mass) with their ionic
current, and residence time (higher volume (or mass) mostly leads
to higher residence time and lower current). We find that the
residence time (TR, ps) and the mass (M, Da) are related by a power
law relation, TR ¼ 4:66 10�9ð ÞM5:339

(supporting information).

Larger amino acids such as W, Y and F have larger residence
times (~1500 ps < TR < ~4000 ps) and low ionic currents (<10 pA,
where the bare pore current is 571 ± 2.1 pA). W, Y, and F have a
phenyl group that occupies most of the pore (the phenyl group
alone has a vdW diameter of 7.5 Å) and the blockade is higher (see
the supporting information) for these amino acids. Specifically, W
contains an α-amino group, an α-carboxylic acid group, and a side

227.14 ±± 9.56 283.94 ± 9.97 198.12 ± 3.76 175.5 ± 10.41  256.68 ± 8.84 
33.02 ± 8.76 64.52 ± 25.66 23.1 ±  6.69 249.92 ± 31.26 190.52 ± 8.25

13.02 ± 4.07 32.72 ± 6.52 25.11 ± 9.87 -18.21 ± 4.60 19.92 ± 3.68 
431.95 ± 20.95 500.9 ± 29.60 711.01 ± 37.01 990.32 ± 45.39 106.83 ± 124.1

9.91 ± 9.11 6.11 ± 4.82 1.80 ± 9.22 127.59 ± 13.37 49.87 ± 2.31 
2009.79 ± 124.1 1787.01 ± 121.4 2866.2 ± 276.78 821.89 ± 32.67 251.9 ± 37.01

97.28 ± 5.31 58.65 ± 5.41 113.2 ± 9.86 70.33 ± 2.27 81.86 ± 4.75 
1105.78 ± 33.59 1489.81 ± 17.25 1091.21± 113.41 1450 ± 9.34 1410.91± 20.99

Fig. 2 Ionic current and residence time. Ionic current (in red, first number and in pA) and residence time (in green, second number and in ps
per residue) associated with each amino acid. Each residence time value is an average over 100 simulations with an applied force of 0.7643 pN,
and each current value is an average over the same 100 simulations and an additional set of 100 simulations with different applied forces. The
pristine (bare) pore current is 571 ± 2.11 pA. All these simulations were performed for the pore with a diameter of 1.85 nm
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chain indole, making it the largest amino acid. W’s ionic current
(1.8 pA, with 99.9% pore blockade) depicts the larger size of this
amino acid (Fig. 3c). In the supporting information, we compared
the blockade of the MoS2 nanopore in different configurations of
ALA (A) and TRP (W) inside the pore.
Glutamate (E) and Tryptophan (W) have the lowest and highest

standard deviation (STD) of both ionic currents and residence
times among all amino acids, respectively. Amino acids N, H, D and
also Q, K and R have both intermediate ionic current and
residence time (~50 pA < Ic < ~200 pA and ~500 ps < TR <
~2000 ps). For these amino acids with intermediate residence
time and ionic current, the common feature is their polar behavior
(Fig. 3b). Based on the Ic and TR values, we classified the amino
acids into very small (G, A, S, T, C: very low TR and High Ic), very big
with phenyl groups (F, W, Y: very high TR and very low Ic), small
and hydrophobic (L, V, P, M, E, I: low TR and low Ic) and polar (N, H,
D, Q, K, R: intermediate Ic and intermediate TR) as shown in Fig. 3b.

It is noteworthy that these simulations are for short homopep-
tides. In protein identification platforms with different amino acids
in a sequence, the relative distance between the cluster centers
can also be used to identify an amino acid. To this end, we can use
ML with extrapolative properties.

Machine learning (ML)-based prediction
In practice, the data acquired from amino acid translocation
through a MoS2 nanopore is unlabeled and a priori information is
not available on the sensing ability (i.e., identifying the type of
amino acid) of the nanopore. Here, we employ ML-based models
to predict the amino acid type if the ionic current and residence
time are known from nanopore detection. In addition, we also
attempt to identify the most accurate and predictive ML model. To
estimate the accuracy of amino acid class (or type) prediction of
each model, the Monte Carlo Cross Validation (MCCV) algorithm is

Fig. 3 Physical properties of amino acids based on the ionic currents and residence times. a Ionic current and residence time data for 20
amino acids with their respective labels (see Fig. 2 for the errors). b Fingerprints and classification of amino acids categorized based on the
strength of their ionic current and residence time, size (mass), and chemical properties. c 3D plot of vdW volume (Å3) for each amino acid vs.
their average residence time (ps) and ionic current (pA) (the 3D data is presented by the squares). The squares are provided with a color
palette for a clearer vdW volume presentation. Residence time-current data is shown in blue color, vdW-current is shown in red color and
vdW-residence time data is shown in green color. Amino acids with higher volumes (or masses) exhibit higher residence time and lower
current
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used. The MCCV randomly splits the dataset into test (unlabeled)
and train sets (labeled). We split the dataset keeping 80% of it for
training and the rest for testing the prediction by the trained
models. In the training process, we used three ML models, namely,
k-nearest neighbor, logistic regression and random forest,
available in the Scikit-learn machine learning package in Python.29

Initially, using each model, the training was performed with the
labeled data from all 20 amino acids having 100 data points each
for the current and residence time. The details on the three ML
models and the optimization technique to determine the
parameters are described in the supporting information. To
identify and predict the class of a future reading (amino acid
translocation data from the nanopore), we generated a grid with
mesh size 0.5 × 0.5 (pA, ps) with the upper and lower bounds of
the current (along x-axis) and residence time (along y-axis). The
upper and lower bounds of ionic current and residence time
(current: −45–330 pA, residence time: 0.1–3800 ps) can be
obtained from Fig. 3a. To account for data at the boundaries,
we extended the upper and lower limits by 2 pA and 2 ps. A total

number of 2,885,714 grid squares were generated in current/
residence time space. Each grid square can be thought of as a
hypothetical sensor reading. Many of these grid squares in the top
right corner of the current/residence time plot are beyond the
scope of the available data; therefore, the practical number of
hypothetical readings is lower in actuality. The amino acid class/
type of each grid square is predicted using all the three ML
models. The prediction landscapes are shown in Fig. 4. The
prediction is denoted by different colors for different amino acid
types. The mean values of the labeled data (from Fig. 3a) are
marked on each figure to compare with the prediction. The
prediction of amino acid class regions with k-nearest neighbor is
affected by different scales of ionic current (two orders of
magnitude variation) and residence times (three orders of
magnitude variation) (Fig. 4a). Since the scale of residence time
is higher than that of ionic current, the prediction of the region
associated with each amino acid is dominated by the residence
time data (Fig. 4a). Logistic regression shows smooth and straight
decision boundaries (Fig. 4b) whereas random forest shows

Fig. 4 Machine learning classification. Comparison of different machine learning models and their prediction capability in mapping the ionic
current-residence time landscape. Each colored region represents an amino acid type (each letter indicates the type of amino acid) predicted
by the models using the training data. Note that the colors in each plot are not correlated to the other ones. The solid dots along with the
labels on the plots represent the mean values of the actual data (presented in Fig. 3a). a Prediction based on Nearest Neighbor Model with k
= 3 b Prediction based on Logistic Regression (large red region belongs to the class of R). c Prediction based on Random Forest Model with
the number of estimators= 9
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flexible and mixed decision boundaries (Fig. 4c). The accuracy of
logistic regression, k-nearest neighbor and random forest is 72.45,
94.55, and 99.6%, respectively. From these results, we can
conclude that random forest and k-nearest neighbor are the best
models for the prediction. Random forest exhibits the best
accuracy (up to 99.6%) in the regions where training data (labeled
data) is populated.

Heterogeneous chain of amino acids
The ML classification is used to predict the type of amino acids in a
practical amino acids chain. As the actual proteins do not typically
contain chains of polypeptides, a chain of mixed type amino acids
has been translocated in 10 different long-time simulations (each
~100 ns) in which a smaller force per residue of 0.4516 pN is
applied. The ionic current as a function of translocation time is
plotted for one of the simulations (Fig. 5a). The chain consists of
16 amino acids as shown in Fig. 5b. To alleviate the challenge of
noise, the ionic current and residence time of each amino acid are
averaged over the 10 simulations (Table 1). The resulting currents
and residence times are then used as unlabeled data by the
polypeptides trained classification models in Fig. 4. Since a smaller
force per residue is applied, the residence times are much larger
than that of the polypepties. Therefore, to use the classification
from the training on the polypeptipes, which are based on larger
forces, the currents and residence times of both polypepties and
mixed amino acids chain are normalized by the maximum values
of current and residence time, respectively (Table 1). The type of
each amino acid in the mixed chain is predicted and the accuracy
of prediction for logistic regression, k-nearest neighbor and
random forest is found to be 31.25, 43.75, and 62.50%,
respectively. The lower accuracy is due to the large noise in the
chains of mixed amino acids. The noise is expected to be much
lower in experiments where the translocation times of each
residue are much longer.

MoS2 pore sensitivity
To characterize the sensitivity of MoS2 pore with regard to its size,
another set of simulations for two pore sizes of d= 1.85 nm and d
= 2.52 nm were performed (d= 1.35 nm pore is not used as it is
too small to accommodate a residue of a large amino acid). We
selected two amino acids (W and Y) having similar ionic currents
and residence times (Fig. 3a). A force of 0.7643 pN was applied.
We performed 100 simulations with an applied transmembrane
bias of 200mV for each amino acid (200 simulations in total). All
other simulation parameters were kept the same except for the
pore size. The ionic current and residence time data represent
different patterns and values for the two pore diameters (Fig. 6).
For d= 1.85 nm, TYR (Y) and TRP (W) show quite distinguishable
residence times with the mean values of ionic current and
residence time (5.83 pA, 1787 ps) and (2.23 pA, 2866 ps), respec-
tively (these values are for 100 samples per each pore diameter
and the average values differ slightly from the data in Fig. 2). For d
= 2.52 nm, the ionic current and residence times clusters overlap
and does not exhibit the distinguishability of the 1.85 nm pore
(Fig. 6). The mean values of ionic current and residence time are
(TYR: 1125.91 pA, 645.84 ps) and (TRP: 964.92 pA, 786.92 ps). The
inter cluster distance (reported as a dimensionless number and
computed by treating each unit of current and time as one unit)
between TYR and TRP, for the pore diameters of 1.85 nm and
2.52 nm is 1079 and 51.9, respectively. Based on this data and inter
cluster distances, it can be inferred that the pore with a smaller
diameter (d= 1.85 nm) is 20 times more sensitive compared to
the 2.52 nm pore (the ratio of the distance between cluster means
of 1.85 nm pore to 2.25 nm pore is ~20). In general, as the
diameter increases, the sensitivity decreases significantly. Our
conclusion is consistent with the experimental result of Feng
et al.18 for DNA identification in different MoS2 pore sizes. It is also
notable that there is a lower limit to the nanopore size for the
translocation of biomolecules. For DNA, pore sizes smaller than
2.0 nm will cause a permanent blockade of pore due to the large
size of bases and the presence of deoxyribose. For amino acids, it
can be as small as ~1.80 nm.
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Fig. 5 Heterogeneous chain of amino acids. a The ionic current as a function of time for one of the simulations of the mixed amino acids
chain. The translocation of each amino acid, while inside the pore, is specified by two dotted lines. b 16 different amino acids are shown in
different colors
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In summary, we have proposed a single-layer MoS2 nanopore
for amino acid detection using ionic current, residence time and
machine learning-based predictive models. We demonstrated that
the acquisition of current-residence time (with at least 1000 reads
per amino acid type) would yield an accuracy of up to 99.6% for
amino acid detection assisted with machine learning. The 20
amino acids, each with 16 units, were categorized into different
classes based on the similarity of current-residence time data. We
found that the W, Y, and F residence times are significantly higher
than those of A, C, G, S, and T. However, their ionic current data
has an inverse relationship with the residence time (i.e., higher
residence time, less current and more blockade). We also found
that the polar characteristics of K, Q, R, N, H, and D give rise to
intermediate current levels and residence times. The hydrophobic
amino acids, in spite of their small size, exhibit very low currents

and intermediate residence times. We also employed and
compared different machine learning classification techniques to
predict the amino acid type based on the current-residence time
training data.

METHODS
Molecular Dynamics simulations were performed using the LAMMPS
package.30 Each simulation box consists of a single-layer MoS2 membrane,
an amino acid chain (16 identical residues), water and ions (Fig. 1.a). The
MoS2 membrane, amino acids, water molecules and ions were generated
using visual molecular dynamics.31 A nanopore is created in MoS2
membrane by removing the unwanted atoms in the center of the MoS2
lattice. The MoS2 pore has both Mo and S atoms at its edge to replicate the
most probable pore architecture in experiments. The system has
dimensions of 6 × 6 × 10 nm in x, y, and z, respectively. The membrane is

Table 1. Machine learning prediction of the heterogeneous chain of amino acids

Amino acid Ic (pA) TR (ps) Ic/Ic-max TR/TR-max Prediction of KNN Prediction of random forest Prediction of logistic regression

ALA 94.48295075 807.7 0.473851 0.033599 THR ALA ALA

TRP 1.577286347 24039.1 0.007910 1.000000 TRP TRP TRP

CYS 198.7587907 3709.5 0.996815 0.154311 ALA CYS ALA

PHE 14.78847776 11363.9 0.074167 0.472726 TRP TRP PHE

GLY 113.0418062 2171.3 0.566927 0.090324 THR THR THR

TYR 47.65469162 4932.7 0.238998 0.205195 ILE TYR ILE

SER 199.3938263 2634.3 1.000000 0.109584 SER ALA ALA

GLN 37.21509764 10705.1 0.186641 0.445320 GLN GLN GLN

THR 69.70952663 14615.8 0.349607 0.608001 ARG THR ARG

MET 30.24249828 8317.9 0.151672 0.346015 GLN HIS ARG

ASN 73.96791658 3418.3 0.370964 0.142198 ASN ASN THR

PRO 13.43813196 12125.4 0.067395 0.504403 PRO TYR TYR

HIS 87.66930508 9906.5 0.439679 0.412099 HIS GLN ARG

VAL 10.73088303 9417.5 0.053818 0.391758 VAL VAL TYR

LYS 46.76167160 14818.6 0.234519 0.616437 TRP LYS GLN

LEU 43.47634199 10428.1 0.218043 0.433797 GLN LEU LEU

The averaged ionic current and residence time as well as the normalized values (by the maximum value) for each amino acid, and the prediction of each
classification model are presented. The correctly predicted amino acids are highlighted in bold.
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Fig. 6 Sensitivity of MoS2 nanopore. a Comparison of ionic current and residence time of TRP and TYR translocation through MoS2 nanopores
of two different diameters of 1.85 and 2.52 nm. The clusters are distinguishable for the 1.85 nm pore while they overlap for 2.52 nm pore. The
bare pore current for the 1.85 and 2.52 nm pores are 571 and 1610 pA, respectively. The mean value of each cluster is also shown. b The mean
and error bars of each cluster clearly show that the clusters are distinguishable by residence time for the 1.85 nm pore

Identification of amino acids with sensitive
Amir Barati Farimani et al.

7

Published in partnership with FCT NOVA with the support of E-MRS npj 2D Materials and Applications (2018)  14 



fixed in the xy plane at z= 0 and the amino acid chain is initially placed
just above the nanopore center along the of the pore (Fig. 1.a). The box
containing the membrane and the polypeptide is solvated with water
molecules with a padding of ~3 nm in z. Then the resulting box is ionized
with a molarity of ~1M (sodium and chloride). A typical simulation box
contains about 32,000 atoms. A snapshot of proline chain translocating
through the MoS2 pore is depicted in Fig. 1b. The pore (diameter=
1.85 nm) used in the production simulations has an accessible area of
156.9 Å2. The pore diameters are computed using the method in ref. 32. To
characterize the size-dependent pore sensitivity of MoS2 and study the I-V
curves, we created two other pores with an average diameter of 1.35 and
2.52 nm (Fig. 1c).
The TIP3P water model was used and the SHAKE algorithm was

employed to maintain the rigidity of the water molecules. The CHARMM27
force field33 was used for water molecules, ions and polypeptides. For
MoS2, the non-bonded interactions were modeled by the combination rule
to obtain the Lennard-Jones (LJ) parameters.34 The LJ cutoff distance was
12 Å. The long range electrostatic interactions were computed by Particle-
Particle-Particle-Mesh.35 Periodic boundary conditions were applied in all
the three orthogonal directions.
For each simulation, the energy of the system was minimized for

30,000 steps. Next, to reach the equilibrium water density (1 g/cm3), the
system was simulated in NPT ensemble for 2 ns at a pressure of 1 atm and
a temperature of 300 K. Then, the system is further equilibrated in NVT
ensemble for 2 ns. Temperature was maintained at 300 K by using the
Nosè-Hoover thermostat with a time constant of 0.1 ps.36,37 The production
simulations were performed in NVT ensemble for up to 40 ns depending
on the translocation speed of polypeptides. In each simulation, a constant
bias of 200mV was applied in the z-direction. Since only 4 out of 20 amino
acids are charged, an external force per residue was needed to pull the
polypeptide chain through the nanopore. Different forces were applied in
the range of 0.4169–1.1811 pN to find the common applied force that can
successfully translocate all twenty amino acids (see supporting information
for translocation history vs. different applied forces). For residence times,
we ran 100 simulations per amino acid type (total 2000 trajectories) with
an applied force of 0.7643 pN, but we used different external forces for
ionic current calculations to better mimic the experimental conditions.
During all the simulations, the MoS2 atoms were held fixed in space (See
supporting movie for Proline translocation through a MoS2 nanopore).
We monitored the time-dependent ionic current, I (t), in the pore. We

computed the ionic current through the nanopore by using the definition
of current, I (t)= dq/dt, as I tð Þ ¼ 1

Lz

Pn

i¼1
qi

zi tþδtð Þ�zi tð Þ
δt

h i
, where the sum is for

all the ions, δt is chosen to be 5 ps, and zi and qi are the z-coordinate and
charge of ion i, and n is the total number of ions, respectively.10 To get less
noisy ionic current, we skip the first and last 10% of the trajectory of the
translocation. For all the trajectories used in the post-processing analyses,
the presence of amino acids is checked frame by frame inside the pore.
The frames, where amino acids are absent, are discarded. The residence
time per residue is computed by dividing the total translocation time of
the polypeptide chain translocated through the nanopore by the number
of residues.
To achieve statistically meaningful data, we ran 4283 simulations in

parallel (4103 translocation simulations, 80 I–V characteristic simulations,
100 pore sensitivity simulations). For each amino acid, at least 200 replica
trajectories are used (out of 4103 simulations, 103 simulations were
discarded because of no translocation event). This resulted in an aggregate
data of ∼2 TB as well as a total combined simulation time of ∼66 µs (see
the supporting information for details on all the simulation sets.). We used
Python Numpy for post-processing the data.38 After collecting the ionic
currents and residence times for the 20 amino acids, we created two sets
of unlabeled and labeled (by the names of acid types) data for machine
learning analyses. In the labeled data, we have three columns consisting of
ionic currents (Ic), residence times (TR) and amino acids labels (e.g., THR,
TYR, ALA, …). In the unlabeled data, we removed the third column with
amino acid labels. Both the unlabeled and labeled data are available as
supporting information (Amino_acid_IR.xlsc).

Supporting Information Available
Machine Learning parameter selection and optimization technique, pore
blockade for ALA and TRP for different conformations inside the pore,
effect of mass of amino acids, translocation history of residues versus
different applied forces, and Methionine thiol binding to anions.

Data availability
The data related to the findings of this work are available from the
corresponding author subject to a reasonable request.
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