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Abstract

The convergence of surface and bulk in 2D electrodes enables
the swift exploration and control of interfacial reactivity. Owing
to their versatile synthesis and modification, these interfaces
have emerged as unique electrode models to study the impact
of electrode composition, heterostructure formation, and the
presence of defects, on their electrocatalytic response. This is
because the ultra-thin nature of materials such as graphene,
MoS,, and MXenes allows to amplify the role of these struc-
tural motifs in defining their electrode responses. Their 2D
geometry also facilitates the systematic tailoring of properties
for enhancing reactivity using simple methodologies such as
adsorption and elemental substitution. In this opinion, we
showcase and discuss how these aspects make 2D materials
an attractive platform for understanding electrocatalysis.
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Introduction

Many electrochemical processes, including classes of
redox and electrocatalytic reactions, are surface-limited,
r.e. they occur at the interface formed by two dissimilar
media. The reactivity of such systems depends largely
on the interfacial structure rather than on the bulk.
Thus, as depicted in Scheme 1, thinning a bulk
macroscopic electrode would not change the electrode
response to reactions such as ferrocene oxidation or the
reduction of H' to Hy. Scheme 1 depicts now a thinning

of the electrode down to a single monoatomic layer. At
this nanometer scale, quantum-mechanical effects
involved in electron transfer become relevant. For
example, the electron density of states and electronic
coupling arguments in the theories of Marcus and
Gerischer are dependent on the type and extent of
materials [1,2]. Thus, bulk and 2D materials can exhibit
stark differences in their reactivity. Likewise, at this
atomic scale features such as edges and defects, whose
activity and study are often obscured by the bulk, sud-
denly become evident or amplified to predominance.

In this opinion, we address the opportunities brought by
new 2D electrodes and their heterointerfaces for un-
derstanding fundamental aspects of their electro-
catalysis. Electrodes made of graphene, molybdenum
disulfide, and MXenes recently introduced in the liter-
ature are uniquely positioned to highlight the advan-
tages of ultra-thin materials in exploring interfacial
reactivity. These materials also represent synthetically
versatile platforms on which to explore new concepts of
electrode design.

The electrochemical transparency of
graphene

The synthetic versatility of graphene positioned it as
one of the most attractive 2D materials for exploring
electrocatalyst design principles. Diverse synthesis
methods enable graphene architectures from small
quantum dots, nanoribbons, and reduced graphene
oxide flakes, to large (doped-) graphene films and
complex 3D aerogels [3,4]. Graphene is commonly used
as a supporting material for electrocatalysts due to its
electrochemical stability, exceptional electrical con-
ductivity, and fascinating specific surface area [5]. The
low reactivity of the graphitic basal plane towards bond
breaking/forming reactions such as those involved in O,
and H; electrocatalysis, makes graphene an ideal plat-
form to understand how its interactions with other
materials improve electrocatalytic function.

The atomic thickness of graphene can be exploited to
modulate the reactivity of a heterointerface (Scheme
1) wia interactive electrocatalytic coupling. Single
layer graphene was explored as a semitransparent bar-
rier for hydrogen evolution reaction (HER) on Cu [6].
In this study, a Cu/G (G stands for graphene) interface
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Representation of ultrathin materials for various catalytic modifications.

showed an intermediate HER activity when compared
to Cu (more active) and graphene (less active). These
observations suggested an electronic semi-transparency
effect in which Cu participates partially in the reaction
despite being buried below graphene. Such electronic
effects have been also suggested in scanning tunneling
microscopy experiments of the Cu/G interface [7],
while images of graphite itself, despite its well-known
honeycomb structure, reflect the impact of the elec-
tronic density of states of layers beneath the topmost
carbon sheet [8]. Our group recently reported a six-fold
increase in the £ of metal/graphene heterostructures
towards outer-sphere redox reactions, which we hy-
pothesize derive from a similar electronic transparency
[9]. Furthering these observations, we performed a
systematic study of various electrocatalyst hetero-
structures for the oxygen reduction reaction (ORR), in
which the catalytic activity was tuned vz the syner-
gistic effect of metal substrate doping and the
adsorption of a molecular catalyst (Figure 1A and B)
[10]. This study resulted in two relevant observations.
First, that while underlayer modification of graphene
with a metal can lead to kinetic improvements due to
electron donation, the surface mechanism of the reac-
tion remains that of the overlayer, e.g. primarily a H,0O;-
forming route for graphene during the ORR. And
second, that electronic perturbations are metal-
dependent and can be propagated to molecular cata-
lysts adsorbed onto the graphene basal plane. Specif-
ically, the reactivity of a Pt/G/porphyrin interface was
superior to its Au/G/porphyrin analogue. Furthermore,
and exploiting the electrocatalyst support nature of
graphene, the resulting heterointerface demonstrated
excellent long-term stability and cyanide poisoning
resistance due to its physical impermeability
(Figure 1C) [10]. This strong coupled interaction be-
tween graphene and active component has been
applied as design principle for other OER and HER
electrocatalysts as well, e.g. Co—B and Ni—Fe Hydrox-
ide nanosheets [15,16]. Owing to the electronically
tunable and interactive nature of the basal plane of
graphene, we foresee that this material will keep
playing a crucial role on fundamental studies of ultra-
thin electrocatalysts.

Amplifying the role of defects: graphene
and MoS,

Exploring the role of structural features on 2D materials,
such as edges, point defects, and the basal plane is of
great interest to identify strategies to improve electro-
catalytic behavior. Introducing defects to create edge-
rich graphene and heteroatom doping are two common
low-cost, metal-free strategies for enhancing ORR ac-
tivity [11—14]. Identifying the active sites of these
materials provides guidance for future design of
graphene-based catalysts. Recently, Wang et al. identi-
fied the ortho-carbon atom nearest to pyridinic-N as the
reactive site of N-doped graphene ORR electrocatalyst
via selective acetyl group blocking [13], in agreement
with first-principles calculations [14]. Furthering this
concept, dual-doped graphene with two heteroatoms
opens new scenarios for multifunctional electrocatalysts
with enhanced activities, Figure 2A. Using the binding
energies of ORR intermediates as descriptors, Li et al.
calculated a volcano plot-type relationship of dual-
doped graphene catalysts (Figure 2B) [14]. Simula-
tions suggested that Z—N—P (Zigzag edge N—P) and
G—B—Sb (Basal plane B—Sb) dual-doped graphene
have smaller ORR overpotentials than Pt [15].By
increasing the active P—N bond concentration, Chai
et al. demonstrated a bifunctional dual-doped graphene
electrocatalyst with exceptional ORR and OER (oxygen
evolution reaction) activity (Figure 2C) [15]. Other
combinations such as Ru—N;, N—F dual-doped
graphene also exhibited efficient ORR and OER prop-
erties, respectively [16,17].

We now turn to discuss the role of edges and their
atomic substitutions in 2D materials. Molybdenum di-
sulfide (MoS;) belongs to the category of transition-
metal dichalcogenides [18], and it has served as a
great model system to explore the impact of surface
features. Typically synthesized by chemical vapor
deposition (CVD) or liquid or chemical exfoliation [19],
the band gap energy and catalytic activity of MoS; is
dependent on the crystal structure, number of layers,
and the presence of defects [20]. When layers of MoS;
are removed until a single layer remains, the bulk ma-
terial transforms from an indirect-gap semiconductor to
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Experimental studies of basal plane modification for graphene elecrocatalysis. A. Schematic of ORR on molecular catalyst/graphene/Pt heterostructures. B, ORR behavior on various combination

heterostructures. C. Resistance to poisoning by cyanide ion of the graphene heterointerface in A. Reprinted with permission from Ref. [10]. Copyright 2018 American Chemical Society.

Figure 1

a more electrochemically active direct bandgap semi-
conductor. This has been shown experimentally through
the increase in photoluminescence with decreasing layer
number [21,22]. MoS; is a promising candidate to fulfill
the role of an electrocatalyst for two prominent re-
actions: the HER and carbon dioxide reduction (CO;R)
[18,23—25]. Early theoretical and experimental elec-
trocatalytic research into single MoS; crystals showed an
increased reactivity for H, production at the edge sites
over the basal plane [18,26]. From these early findings
there has been steady progress towards increasing the
reactivity of MoS; for HER, either through increasing
edge plane reactivity, or increasing the reactivity of the
basal plane [27—30].

Similar to the HER, CO;R is also more active at the
edge site of MoS;. To increase the performance of CO;
reduction, Salehi-Khojin et al. chose Nb and Ta to
selectively dope the edge plane of MoS; (Figure 2D)
[30]. Using different doping levels in the CVD process
the group was able to form regions of NbS; and TaS; on
the edges of MoS; that possess a metallic behavior due
to a half-filled valence band [31]. The produced ultra-
thin electrodes were tested in a CO; saturated ionic
liquid. The group found that Nb acted as a more pro-
ficient dopant for CO;R, and that Ta reduced the
reactivity as compared to the pristine material
(Figure 2E). They also found that Mog 95sNbg 95S; pro-
duced the highest current density, faradaic efficiency,
and turn over frequency (Figure 2F). Reduction of CO;
on MoS; has also been shown in aqueous environments,
but competition with HER results in low faradaic effi-
ciency [25,32]. Overall, these experiments highlight the
value of 2D materials in helping amplify the role of
surface features in the electrochemical response of a
sample, in these cases allowing correlations between
structure and reactivity.

Work towards improving basal plane reactivity in MoS;
has been achieved through various methodologies
including cation intercalation, controlling underlying
morphology, and generation of sulfur vacancies [27—29].
Recently a new electrochemical method was reported
for creating sulfur vacancies in MoS; (Figure 2G) [29].
In monolayer MoS, supported on Au, treatment by a
linear sweep voltammogram in 0.5 M sulfuric acid
created a S-vacancy of ~15%, which increased the
current density of HER by ~438% over pristine MoS;
(Figure 2H). The groups furthermore showed the
versatility of the electrochemical removal of sulfur by
applying a potential step to multilayer MoS; on carbon
supports. Like in the case of monolayer MoS;, desul-
furization caused an increase in current density for
HER, although thicker samples were not as active as
monolayer MoS; (Figure 2I). As shown in Figure 21,
different responses were also measured on distinct
electrode supports. Considering the impact of the sup-
port electrode described by Hui et al. [9], the impact of
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Theoretical and experimental studies of modified graphene and MoS; elecrocatalysis. A, Atomic structure of dual-doped graphene material. B, Volcano plot
of ORR limiting potential (Uorg) and *OH adsorption Gibbs free energy (AG-on) for various dual-heteroatom doped graphene electrocatalyst. A and B
Reprinted with permission from Ref. [14]. Copyright 2017 American Chemical Society. C, OER and ORR activities of P-N dual-doped graphene framework
(PNFG) and its comparison with Pt/C and It/C for durability. Reprinted from Ref. [15] copyright (2017), with permission from The Royal Society of Chemistry. D,
Structure of Nb-doped MoS.. E, Plot of CO2R current density vs. doping of Nb and Ta on MoS, edge sites. F, Faradaic efficiency of Nb doped MoS,. D-F,
reprinted with permission from Ref. [30]. Copyright 2017 American Chemical Society. G, Structure of MoS, with S vacancies. H, Plot of current density vs
voltage for pristine MoS, and MoS; with S vacancies. I, Normalized current density vs type of MoS; catalyst. G-I, reprinted with permission from Ref. [29].

a metallic gold os. non-metallic carbon support on the
band structure of MoS; needs to be investigated to truly
parse out contributions of decreasing layer number and
substrate effects. These observations also suggest a
practical warning: while monolayer materials are useful
as reaction models, they are also affected by underlayer
structures.

One other way in which ultra-thin electrodes can be
used to amplify the impact of structural variables on
their electrochemistry is by enabling unique chemo-
mechanics [33]. Recently, the simultaneous impact of
vacancy chemistry and strain was probed using thin
MoS;, samples in combination with scanning electro-
chemical microscopy [34]. In this case, effecting and
measuring the strain on a thin sample is easier than in
the bulk counterpart.

Exploring reactivity on the bulk of a
monolayer via versatile MXenes

An emerging class of materials for exploring the impact
of composition and surface termination on the electro-
catalytic behavior of 2D structures are MXenes [35].
Derived from carbides and nitrides of the phase
M, 1 1AX,, where M is an early transition metal, A is
typically a group IIIA or IVA element, X is C or N, and
n = 1, 2, or 3. MXenes are the product of selectively
removing the A-group to form M, X, Ty, where T is a
terminal functional group [36—39]. Exfoliation of MAX
phase materials produces 2D nanosheets, optimal for
exploring the layer number and species variability effect
on reactivity.

Electrocatalysis involving MXenes has predominantly
been regarding HER, where new theoretical tools such
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DFT and experimental results on the impact of edge sites on MXenes. A, Structure of MXenes with a functional basal plane for HER. B, DFT and
experimental results of overpotential of HER vs. F:Ti ratio for TizC,Ty terminated with varying degrees of F. C, Plot of current density vs potential
comparing the onset for HER of TizCoTx and Moo,CTx. Figures reprinted with permission from Ref. [42]. Copyright 2018 American Chemical Society.

as surface Pourbaix diagrams have been introduced to
address the reactivity of these samples with varying
transition metals and surface terminations [40—44]. An
example of the synthetic versatility and amplified
electrochemical response from the substitutional
chemistry in an ultra-thin sample came from a collabo-
ration of the groups of Gogotsi, Vojvodic, and Seh [42].
Using DFT the groups looked at the effect of swapping
fluorine for oxygen as terminating groups on Ti3C, T,
Ti,CTy, Mo,CTyx, Mo, TiC, Ty, and Moy Ti,CsTy
(Figure 3A) [43]. Testing the HER the researchers
found the MXenes with the lowest ratio of fluorine
terminating groups produced the highest activity, ze.
lower overpotential (Figure 3B). The groups also found
the same trend for their Mo based MXenes, in accor-
dance with the DFT findings (Figure 3C). The increase
in electrochemically active surface area and the decrease
in mass of material by decreasing layer of MXenes ex-
emplifies the beneficial qualities of 2D electrodes over
their bulk counterparts. This is further highlighted by
the simple preparation methods used in these studies,
where F substitution was achieved by exposure to
fluoride containing solutions.

The number of layers that compose MXenes suggests
also thickness-dependent activity. When the researchers
used sonication to break up the basal plane of Mo,CT,
the overpotential for HER almost doubled. Seh et al.
concluded this means that the basal plane of MXenes is
inherently active towards HER, unlike graphene and
MoS;, discussed above. It is an exciting time for
discovering new MXenes, where these materials present
exciting prospects in the search for superior non-
precious metal electrocatalysts. These 2D interfaces
create new opportunities for systematically exploring
how chemical and structural substitutions on the bulk of
a monolayer impact reactivity [45].

Outlook

Chemical versatility is essential for swiftly tuning the
properties of materials to explore their electrochemical
behavior. As highlighted here, by working with ultrathin
electrodes it is possible to amplify the structural and
chemical motifs that lead to improved electrochemical
reactivity. Graphene, MoS;, and MXenes serve as
exemplary platforms for diverse chemical alterations
that can be systematically modified to generate new
clectrocatalytic performances. The synthetic versatility
of these materials facilitates the identification of new
chemistries and new reactive trends. Here, we showed
how simple procedures such as molecular adsorption, ion
substitution, and defect creation can be conveniently
explored in 2D materials to impact dramatically their
activity. The electroanalysis of interfacial properties will
always be essential for designing next generation elec-
trocatalysts, and ultra-thin electrodes are ideal platforms
for concentrating experimental efforts where it counts:
at the interface.
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