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Abstract—This paper presents a gesture set for communi-
cating states to novice users from a small Unmanned Aerial
System (sUAS) through an elicitation study comparing gestures
created by participants recruited from the general public with
varying levels of experience with an sUAS. Previous work in
sUAS flight paths sought to communicate intent, destination, or
emotion without focusing on concrete states such as Low Battery
or Landing. This elicitation study uses a participatory design
approach from human-computer interaction to understand how
novice users would expect an sUAS to communicate states, and
ultimately suggests flight paths and characteristics to indicate
those states. We asked users from the general public (N=20) to
create gestures for seven distinct sUAS states to provide insights
for human-drone interactions and to present intuitive flight paths
and characteristics with the expectation that the sUAS would
have general commercial application for inexperienced users.
The results indicate relatively strong agreement scores for three
sUAS states: Landing (0.455), Area of Interest (0.265), and Low
Battery (0.245). The other four states have lower agreement
scores, however even they show some consensus for all seven
states. The agreement scores and the associated gestures suggest
guidance for engineers to develop a common set of flight paths
and characteristics for an sUAS to communicate states to novice
users.

Index Terms—sUAS; Communication; Elicitation Study; User
Design

I. INTRODUCTION

As technology improves and companies refine their busi-

ness models, the general public will increasingly encounter

small Unmanned Aerial Systems (sUAS) in everyday life.

Consumers might ask Amazon to deliver their packages via

Amazon Prime Air [19] or have Alphabet deliver lunch

through its experimental burrito service [12]. Because ev-

eryday users are not likely to be experts with an sUAS or

even aeronautics generally, it will be important for everyday

drones to communicate common states quickly and intuitively

to bystanders.

As we move towards this ubiquity, not every sUAS will

have hardware to communicate through sound or lights due to
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Fig. 1: For a side-by-side comparison, on the left is the palm-

sized model given to participants and on the right is the

Ascending Technologies Hummingbird used for demonstration

flights in this study.

cost or battery limitations, but they should be able to indicate

key states through motions in space (gestures). If an sUAS

is about to land and drop off its payload, it is critical that

bystanders interpret the intention to land so they can move

away from the landing area. Similarly, users and bystanders

will need to quickly understand when an sUAS has missed its

target so they do not unnecessarily worry that their packages

will be delivered to the wrong location.

Furthermore, a well-defined set of gestures should improve

sUAS user experiences and ultimately increase comfort with

their greater prevalence in everyday life. Inexperienced users

can be frightened or suspicious of a drone if they are confused

by its intent, creating market barriers to adoption or innovation

for new applications such as food delivery. As a result,

a gesture set should be understood from various distances

(even with partial occlusion), viewing angles, and qualities

of lighting. These gestures should also not require specialized

hardware so engineers can more easily incorporate them into

pre-existing systems. Additionally, the limitation to movement

alone allows this work to be better situated within exist-
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ing human-human and human-robot gestural communications

studies.

As an initial step for developing a gesture set for seven

important sUAS states requiring user interaction or bystander

awareness, we present an elicitation study which gathered

gestures from the general public (N=20). An “elicitation”

study gives users the opportunity to develop gestures for a

specific purpose within set parameters to understand whether

there is a common agreement across participants. We then

assessed their suggestions within a taxonomy and calculated

agreement scores.

This work is inspired by techniques from the human-

computer interaction (HCI) community [16], [24] which

elicited user-generated gestures to better understand com-

mon characteristics for each state (Attract Attention, Sensor

Lost, Low Battery, Signal Lost, Area of Interest, Missed

Goal/Target, and Landing). Users were asked to: 1) draw a

gesture based on the model sUAS shown in Fig. 1; 2) describe

their gesture to an experimenter; 3) observe their gestures on

a free-flying sUAS shown in Fig. 1 in a Vicon cage; and

4) confirm the free-flying sUAS gesture matched the gesture

drawn and described for the model sUAS.

The concept of elicitation studies can be broadly applied

within the social robotics community to understand naive

assumptions common among users, classify them, and then

make recommendations for candidates to evaluate in user

studies. The elicitation study described here is similar to the

methods used in [9], although our elicited gestures are not

immediately interpreted by a participant.

II. RELATED WORK

A. Human Gestural Communications

Researchers have studied human gestural communications

to assess their effectiveness regarding how they are perceived

and what kinds of information they communicate. Krauss,

Morrel-Samuels, and Colasante [10] conducted a set of studies

to understand how co-speech hand gestures are understood

and found that although hand gestures can convey some

information, they do not communicate as well as speech.

Prati and Pietrantoni [14] investigated effectiveness of different

types of hand gestures in conditions during which speech

would be difficult, such as when firefighters are trying to com-

municate inside burning buildings. In both studies, the gestures

were based on those with meanings already understood by

participants.

B. Robot Gestural Communications

Gestural communications in robots can be split into ground

robot gestural communications and sUAS gestural commu-

nications. While gestures have been examined in humanoid

robots, that research has been limited to social gestures and

collaborative gestures. The current state of the art with sUAS

has been to communicate high-level state information or to

use gestures to control vehicles.

1) Ground Robot Gestural Communications: Researchers

have investigated social gestures for human-robot interaction

(HRI) through studies similar to those used to investigate

communicative hand gestures. Salem et al. [17] investigated

the ability for co-speech gestures to enhance humanoid-robot

communications. Huang and Mutlu [8] evaluated the use of

gestures to improve recall from humanoid robot interactions.

Ng, Luo, and Okita [13] developed a model to generate a

set of gestures from text and manipulated specific parameters

to convey excitement or expressiveness. Riek et al. [15] tested

cooperative social gestures on a humanoid robot to understand

the impact of gesture speed and viewing angle, finding that

negative attitudes towards robots correlated with decreased

ability to understand gestures. Overall, these works assessed

understanding of gestures, but they focused on leveraging

participants’ pre-existing interpretations of human gestures.

More relevant to this paper are the collaborative gestures

developed primarily for industrial applications as in [4], [7],

but work in this area is limited by the assumed presence

of a visible goal as reported in [22]. Dragan and Srinivasa

[4] studied integration of an observer into motion planning

for an industrial robot. Gleeson et al. [7] observed gestural

communications between humans, derived terms and gestures

for their robots, and implemented them to observe their

communicative ability. These studies indicated gestures were

more effective when they conveyed context and goal, which

is more challenging for an sUAS.

2) sUAS Gestural Communications: Communications with

sUAS can be split into communication from the sUAS and

communication to the sUAS. Communication to the sUAS is

outside the scope of this work, so will only be covered with

respect to design-based approaches.

Flight paths have been investigated for their ability to

communicate affective state [2], [18], intended destination

[20], intended flight direction [21], and to influence interaction

preferences [6]. These flight paths could enhance interaction

with sUAS in collocated environments, but do not communi-

cate actions or states to general bystanders.

Sharma et al. [18] investigated the ability to communicate

affective state via flight path with collocated users and found

that to increase valence or arousal, paths should use space

more indirectly and take less time. Szafir, Mutlu, and Fong

[20] used both online and in-person interactions to explore the

perception of animation principles applied to sUAS flight paths

to improve communication of intent. Szafir, Mutlu, and Fong

[21] next assessed the ability of a light ring to communicate

direction of sUAS flight through in-person testing where

participants made predictions regarding the end state of the

vehicle. This work considered viewing angles, movement in

multiple dimensions, occlusion, and ambient lighting. Duncan

and Murphy [6] investigated whether the speed, cyclicity,

and dimensionality of sUAS behaviors impacted the time,

distance, and preference for interaction of users in a simulated

interaction environment. However, none of these these works

used a design-based approach to ask users to create their own

gestures. Instead, they asked users to describe or react to pre-
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defined gestures.

C. Taxonomy Creation

Prior work on gesture classification has focused on creating

taxonomies based on objective qualities to understand the

relationship between humans and technology. Wobbrock et

al. [24], constructed a taxonomy for tablet surface gestures

to classify human hand movement and categorize different

features of gestures on a 2-D plane. Wobbrock suggested

surface computing has increased in prevalence compared to

traditional input methods such as keyboards and mice be-

cause traditional methods limit users’ motions. Wobbrock’s

participants were told a gesture’s effect, and then they were

asked to create a gesture that would cause that effect. This

approach, according to Wobbrock, helped eliminate the “gulf

of execution” between users and devices, because participants

were told their answers were always correct and they stressed

the importance of immediate usability to increase success rates

for tasks [24]. The results from Wobbrock’s taxonomy suggest

tablet users prefer one-handed gestures, and also suggest a

need for on-screen widgets to facilitate commands with low

agreement scores.

Ruiz et al. [16] investigated motion gestures for invoking

commands on a smart phone. Participants were given a list

of commands and asked to construct a gesture that would

execute each of the commands. Ruiz’s taxonomy categorizes

both the physical characteristics of the gesture as well as maps

properties exhibited by each gesture. Their taxonomy indicates

there is consensus among user-constructed commands in both

physical characteristics and mappings.

Cauchard et al. [1] also foresee the possibility of drones

becoming more prevalent in daily human activity. Therefore,

they described interaction metaphors from participants. Partic-

ipants were shown tasks which a drone could accomplish, then

participants constructed gestures which users could perform to

ask the drone to accomplish those tasks.

Well-defined taxonomies allow researchers to apply objec-

tive classifications to gestures from elicitation (or guessability)

studies, leading to a useful calculation called an agreement

score.

D. Agreement Score

After collecting user-generated gestures, a common practice

is to calculate an agreement score for each task to evaluate con-

sensus among participants, yielding objective data to compare

against results from other studies. For this study, we adopted

the agreement score calculation from Wobbrock [23] but do

not convert scores into percentages or other ratios. Instead, our

agreement scores conform to the standard used by Ruiz [16]

and Cauchard [1]. An agreement score At, reflects the relative

degree of consensus for a gesture among the participants.

Wobbrock provides an equation to calculate an agreement

score, where:

At =

X

Pi

✓�

�

�

�

Pi

Pt

�

�

�

�

◆2

(1)

For Equation 1, t is one task from the set of all Tasks T.

Pt is the set of proposed gestures for t, and Pi is the subset

of identical gestures from Pt. For an example calculation,

see [16], which implies an agreement score of 0.1 or higher

indicates a minimum level of consensus. The possible range

for A is [0, 1] and is not a percentage ratio.

III. STUDY AND METHODOLOGY

The goal of our study was to have participants construct

a preliminary gesture set for a list of sUAS states, all of

which are important to communicate common conditions when

operator interaction is needed to complete a task or to warn

bystanders to avoid certain areas. Our study was heavily

influenced by the work of Wobbrock and Ruiz [16], [24], who

conducted elicitation (or guessability) studies to elicit gesture

sets categorized based on a proposed taxonomy to calculate

agreement scores.

A. Participants

Twenty English-speaking participants were recruited from

the general public at a university in the Midwest U.S. through

fliers and advertisements. As incentive for participation, suc-

cessful completion of the study included entry into a random

lottery for a $25 gift card. There were ten male and ten female

participants with an age range of 19-79 (M=37.60, SD=18.36).

All participants were asked about their robot experience

through broad questions to ensure they answered within their

understanding of what classifies as a robot. Robot experience

was assessed by asking: 1) whether participants had “ever

interacted with a robot”; 2) the frequency of their interaction

with robots; and 3) the type of robots with which they had

interacted. Examples included consumer robots such as Room-

bas, pool-cleaning robots, Lego Mindstorms, Sony’s Aibo,

DJI Phantom, interactive robots in museums, or industrial

robots. Seven of 20 participants reported some experience with

such robots. Remote control (RC) experience was assessed by

asking if they had ever owned or operated a “remote-controlled

helicopter or airplane or an unmanned aerial system.” Nine

participants (three female, six male) reported prior interactions

with RC aircraft.

B. Experiment Materials

The sUAS was an Ascending Technologies (AscTec) Hum-

mingbird (see Fig. 1) weighing 365 grams (0.81lbs) with

a diameter of 0.54m (21in). A palm-sized model of the

Hummingbird (as shown in Fig. 1) was used for ease of

interaction during the participants’ time authoring gestures.

The palm-sized drone was roughly one-third the size of the

Hummingbird. The flights were controlled by a ROS script

coordinated with a Vicon motion-capture system, and all flight

paths were fully autonomous. A backup pilot was present in

all study runs to take over control of the vehicle if needed.

C. Experiment Procedure

The study took approximately one hour to complete three

parts: 1) Pre-interaction; 2) Flight Path Design; 3) and Flight
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Path Observation. The first part was scheduled for 15 minutes

and the final two parts were scheduled to consume the last

45 minutes. Each part included a survey and the experiment

concluded with an interview.

1) Pre-interaction: Each participant was escorted to a room

occupied by no other people except for one researcher. The

researcher read them the consent form including a description

of the objective of the study: to design gestures which a drone

could execute to communicate seven specific states. After

signing the consent form, the participants were given a pre-

questionnaire to collect data about their general background.

2) Flight Path Design: The seven sUAS states were chosen

because they are representative of some of the most common

states the general public might encounter increasingly in every-

day life. The states require either operator intervention, such

as re-establishing communication, or awareness of bystanders,

such as avoiding a landing site. The most common states

for bystander avoidance would likely be landing, low battery,

and signal lost. Bystanders need to know whether an UAS

intends to land so they can adapt their behavior accordingly.

Operators need to know about lost sensors, area of interest, or

a missed goal in order to intervene. These states were primarily

picked due to the motivating scenarios that these drones will be

performing missions and need to communicate with operators

who are otherwise engaged. We expected some of the states,

specifically vehicle-centric states like Landing or Low Battery,

to be intuitively understood by participants because they would

be familiar with them from prior observations of hobbyist

drones or even more traditional aircraft like airplanes and

helicopters. We expected other states, like Lost Sensor or Lost

Signal, to be similar to those same states users had already

experienced with mobile phones or tablets. Lastly, we avoided

choosing states that might need specific hardware or software,

such as Take Picture or Deploy Sensor.

Each participant was given a sheet of paper that listed

the seven states (Attract Attention, Sensor Lost, Low Bat-

tery, Signal Lost, Area of Interest, Missed Goal/Target, and

Landing) along with extra whitespace for supplemental notes.

This sheet included instructions at the top stating they would

have 15 minutes to brainstorm and requesting they “design an

appropriate gesture that the drone may take to communicate

that state using the drone model provided within the defined

area. Area is defined as between: (i) The top of the table to the

top of your head, and (ii) Your chest to the tip of your fingers

when your arm is extended. It is highly recommended that you

provide a gesture for each task. It is also highly recommended

you write notes in the space provided for each task.” The page

then had a space for each of the seven states for the participant

to use when brainstorming.

Participants were given 15 minutes to design a set of

appropriate gestures, but they were also welcome to request

more time. Two participants completed this task in less than

five minutes, ten participants needed five to ten minutes, seven

participants needed ten to 15 minutes, and one participant

requested an additional five minutes (20 minutes total) to

complete the task. Two of these participants designed gestures

with lights and sounds in less than five minutes, but then

requested time to redesign their flight paths after clarification.

These participants ended with one in the five-to-ten and one in

the ten-to-15 minutes groups. Each participant was told that

after the first 15 minutes lapsed, a researcher would come

to announce each state to prompt them to demonstrate their

gestures using a palm-sized model drone (see Fig. 1). They

were told their gestures were always correct, even if they

conflicted with the physical capabilities for the sUAS. For

example, some participants thought the sUAS should ascend

quickly to indicate Low Battery despite ascension being an

energy-intensive flight path.

Participants were told they had to demonstrate their gestures

within a bounded area to restrict participants from wandering

around or making more complicated gestures that would be

difficult for an sUAS to perform, and the bounded space was

roughly to scale with respect to the room and drone used

in the next part of the study, the Flight Path Observation.

It is also natural to prescribe some boundary for a drone

because drones cannot execute unlimited or infinite flight

paths. Furthermore, prior elicitation studies on tablets and

smartphones have inherent boundaries, either at the corners

within the devices themselves, or only to the extent the human

hand can move while holding the devices.

The participants were told they had to begin each gesture on

or above an ‘X’ marker on the table. They were encouraged

to provide verbal commentary of their thought process in

designing the gesture for each state and to describe each

gesture while performing it manually with the model drone.

A researcher took written notes about the flight paths while

participants provided commentary for each gesture.

3) Flight Path Observation: Participant flight paths were

recorded in a Vicon motion-capture cage using a script

that wrote a set of waypoints to a file and then had the

drone fly from point-to-point in order to recreate a path that

was “drawn” by the researcher walking the vehicle through

the path. After the researcher used the previously described

method to program the gestures indicated from the Flight Path

Design, participants were next escorted to the Vicon motion-

capture cage where they observed their gestures performed

autonomously by an AscTec Hummingbird. As each of the

seven gestures were being demonstrated, participants were

encouraged to provide verbal feedback regarding the similarity

of their expected gestures to the flight path of the drone.

After the demonstration, participants were escorted back to

the original room to thank them for their time and conclude

the study. Of the 140 flight paths which were automatically

replayed (20 participants for seven states), only four of them

were described as incorrect representations of the gestures

drawn on paper. All four inconsistencies were easily and

quickly corrected to satisfy the participants’ original drawings.

Some of the drawn gestures required representative substi-

tutes because they were not physically repeatable by the sUAS.

For example, Roll and Waggle maneuvers are not possible

with the AscTec Hummingbird, so we chose Rock in Place

as a reasonable substitute. Regardless, we achieved 140 out of
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140 agreement between drawn gestures and replayed gestures.

D. Classification and Taxonomy for User-Designed Flight

Paths

Having elicited 140 gestures, the final step was to create an

objective classification and taxonomy to group them according

to specific, common characteristics. Although related work

provides a taxonomy for HCI, HRI, and human-to-sUAS

interactions, no work has established a taxonomy for user-

designed flight paths to communicate states. Also, some of the

taxonomies from related work are for gesture sets for mobile

phones and tablets, and not necessarily applicable to sUAS.

We classified each gesture along six categories: Complexity,

Space, Cyclicity, Command, Altitude, and Motion. Within each

category are multiple sub-categories shown in Table I.

1) Categories Selected from Related Work: We adopted the

Complexity category from Ruiz, Li, and Lank to classify the

movements of the drone. We also adopted the Space category

from Chi et al. and Cyclicity from Duncan and Murphy to

capture the spatial characteristics of the flight paths.

Complexity classifies the gesture either as simple or com-

pound. Simple gestures are defined as a single movement along

any direction and a compound gesture is a collection of simple

gestures combined with spatial discontinuities. Discontinuities

are inflection points, pauses in motion, or corners [16].

Space dimension describes a gesture’s attention to its sur-

roundings [3]. Indirect gestures have a multi-focused approach

to a destination and can deviate from a straight line path, while

direct gestures do not deviate from focus on the destination.

Taxonomy for User-Designed Flight Paths

Categories from Related Work

Complexity
Simple Single movement.
Compound Collection of movements.

Space
Direct Focused approach to a point.
Indirect Deviates from direct path.

Cyclicity
Cyclic Repeated motion (same path).
Random Singular flight path.

Additional Categories

Command

Roll Left or right movement.
Pitch Forward or back movement.
Yaw Rotation.
Throttle Up or down movement.

Altitude

Increasing Increase flight height.
Decreasing Decrease flight height.
Variable Increase and decrease.
Stable No height change.

Motion

Rectilinear
Only straight movement(s)
and 90-degree turns.

Curvilinear Only curved movement(s).
Rotational Only rotates.
Combinational Combination of the above.

TABLE I: This taxonomy has six categories and is divided

into two sections: Related Work Categories and Additional

Categories.

Cyclicity was adopted from [6], where it was defined as

“a judgment of whether the expression is cyclic or random in

nature” and is based on assumptions in animal literature that

unpredictable behaviors are used to display fitness, confuse

predators, and startle observers. Here it is used as a measure

of observability and likelihood for reception, because random

flight paths are likely to be perceived in part by observers as

their attention is gained.

2) Additional Categories: Because drones have more de-

grees of freedom than a tablet or mobile phone, we developed

additional categories to account for expected differences in

sUAS flight paths compared to categories developed in prior

work involving human movement, tablets, and mobile phones.

In defining these categories, there could be some overlap with

related work.

The Command category maps to operator or autopilot input

to the drone. Roll is movement in the left or right direction,

pitch is movement in the forward or backward direction, yaw

is rotational movement, and thrust is movement up or down

in elevation. This category is related to Ruiz’s “Dimension,”

which describes the number of axes involved in the movement

of the gesture, but the description of commands allows an

inherent representation of the number of axes of movement

required to perform them, as opposed to simply counting the

number of axes along which the drone must move to perform

a particular command. There are four subcategories within

the Command category, but we considered the possibility of

collapsing these subcategories in combinations of two, three,

or all four. For example, Command subcategories could also

be “pitch and yaw,” “yaw and thrust,” or “pitch and yaw

and roll.” Our inter-rater reliability scores did not account for

every possible subset of these four subcategories, only those

which raters indicated were employed in the flight paths. The

agreement scores, on the other hand, combined flight paths by

collapsing categories which bystanders cannot easily perceive

(such as pitch versus roll and intent behind behaviors), which

is described further in Section IV.

Altitude is an additional category to describe one charac-

teristic which was explicitly defined by each participant and

is central to the understanding of the sUAS. This category is

divided into increasing, decreasing, variable, and stable. That

is, increasing or decreasing flight paths will end higher or

lower from where they started, variable refers to paths that

both increase and decrease, and stable refers to paths that are

fixed in the Z plane.

Motion is another dimension that classifies the general shape

of the gesture’s movements. The gesture could consist of only

rectilinear, curvilinear, rotational, or a combination of two or

more of those sub-categories.

State Most Common Flight Path Count

Attract Attention Up-down; Horizontal Circle; Descending 4
Sensor Lost Yaw 4
Low Battery Up-down 8
Signal Lost Yaw 4

Area of Interest Horizontal circle 8
Missed Goal/Target Horizontal circle 6

Landing Descending 13

TABLE II: The most popular flight path for each of the seven

states, and the number of participants who designed those

flight paths. Attract Attention had a three-way tie, with each

flight path chosen by four participants.
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E. User-Defined Gestures for sUAS Communications

Using the 140 gestures designed by our participants, we

generated a combined gesture set for our seven states. We

then grouped gestures with common features according to our

taxonomy, and used these groupings to calculate our agreement

scores to determine the level of consensus. Finally, we chose

the most common gesture for each state as the representative

gesture for that state as shown in Fig. 2. The most commonly

designed flight paths are listed for each state in Table II.

Five flight paths were prevalent in the gesture set: descend-

ing, horizontal circle, up-down, left-right, and yaw. Thirteen

participants used descending to indicate Landing and seven

participants used descending to indicate Low Battery. Nine

participants used a horizontal circle for Area of Interest. Eight

participants generated an up-down flight path to indicate Low

Battery. Four participants used yaw for Signal Lost and four

used yaw for Sensor Lost. For Attract Attention, three groups

stood out: four participants used horizontal circle, four used

up-down, and three used left-right. Three groups also stood

out for Sensor Lost: four participants used yaw, three used

left-right, and three used descend.

For each of the categories, participants tended towards a

single-entry subcategory from our taxonomy, and the most

common subcategories are shown for each state in Table III.

Due to strong agreement among several of the taxonomy

subcategories, we can make some inferences about how to

communicate states more intuitively. For example, participants

preferred simple and stable altitude gestures for Attract At-

tention, but preferred compound and decreasing or variable

altitude gestures for Sensor Lost. Rectilinear gestures were

preferred for most states, with the exception of curvilinear

gestures for Area of Interest and Missed Goal/Target.

Table III also suggests several other insights about novice

users’ preferences. Most of the gestures could be classified as

simple, indirect, random, some combination of roll and throttle

and pitch, stable altitude, and rectilinear. These subcategories

could also represent types of gestures which bystanders could

more easily perceive and interpret. Curvilinear motion pre-

dominated for only two states, Area of Interest and Missed

Goal/Target, both of which are mission-centric. Similarly,

compound motion predominated for only two states, Low

Battery and Signal Lost, both of which are vehicle-centric.

Lastly, participants generally preferred random cyclicity mo-

tions for all seven states, and showed a preference for indirect

motions except for Landing. Based on these observations,

we can conclude that for all seven sUAS states, participants

generally preferred: simple (Complexity); indirect (Space);

random (Cyclicity); some combination of roll, throttle, and

pitch (Command); stable (Altitude); and rectilinear (Motion).

F. Inter-rater Reliability for Taxonomy

In order to assess the usefulness of the taxonomy categories

and to classify the individual states according to common sub-

categories, two raters were obtained to independently assign

each of the 140 user-generated flight paths to a single subcat-

egory within each taxonomy category. After their independent

assessments, their results were compared in order to calculate

Cohen’s Kappa and assess their agreement according to [11].

Complexity (0.881), Motion (0.907), Command (0.92), and

Altitude (0.914) were considered “Almost Perfect” agreement,

while Space (0.79) and Cyclicity (0.641) were considered

“Substantial Agreement.” Of note is the wide distribution

of participant agreement within categories (as shown in the

parentheses of Table III), with 17 participants designing “Sim-

ple” paths for Area of Interest compared to a relatively even

split between “Simple” and “Compound” for Sensor Lost.

Similarly, though not reflected in the table, Signal Lost had

a three-way tie in the Command category between “Yaw,”

“Throttle,” and “Roll and Pitch” with 4 participants’ paths in

each compared to Low Battery which had 13 participants using

only “Throttle.” These distributions, particularly those with

high agreement among the participant paths, suggest common

perceptions about how to convey these states even if designers

would like to stray from the very straightforward paths with

high agreement.

IV. RESULTS

Our agreement scores for each state, after analyzing all

140 gestures and categorizing them according to our new

taxonomy, are shown in Table IV along with whether the state

is “mission-centric” or “vehicle-centric.” A state is mission-

centric if that state needs to be communicated to an operator

or bystander to indicate the sUAS has encountered difficulty

completing its mission. A state is vehicle-centric if it simply

reflects an error state that is inherent to the sUAS and irrelevant

to its mission.

As an intermediary step, we combined gestures into com-

mon flight paths with respect to drone orientation or bystander

perspective. That is, because the drone will not be aware of the

location of a bystander and a bystander will not be aware of

the drone’s orientation, flight paths such as left-right and front-

back were combined into a single gesture for the purposes

of calculating agreement scores. Such combinations were not

used in the inter-rater reliability scoring for our taxonomy.

Ruiz implicitly suggests that the minimum threshold for

consensus is 0.1 [16], and participants achieved that level of

consensus for all seven states. Our participants achieved a

stronger agreement score of 0.2 or higher for three states: Low

Battery, Area of Interest, and Landing. Of note, Landing had

the strongest agreement score by far, and Landing is the sUAS

state which is arguably the most important for a bystander to

understand and act accordingly.

As part of the survey between construction and observation

of the flight paths, we recorded participants’ opinions on

whether they were confident their gestures would effectively

communicate the seven states to other bystanders. Their confi-

dence was measured on a 1-5 Likert scale, with average confi-

dence shown in Table IV. Participants were most confident in

their gestures for Attract Attention (4.4), Landing (4.2), and

Area of Interest (4.05).

After participants viewed their gestures replayed on the

sUAS, we asked them to indicate which states they were
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municative flight paths, which implies creating a generalized

communication system of gestures for sUAS is challenging.

One recommendation would be to show participants video

vignettes about the states to provide context and make them

easier to understand. For example, one vignette could ask

the participants to imagine they are walking a dog and they

encounter a drone attempting to deliver a package to a neigh-

bor’s house, but the drone experiences an error and must land

immediately. Then the participants would be asked to describe

a gesture the drone should take to indicate Landing.

Another insight is that our participants had likely never seen

some of these failure states in sUAS. We assumed they would

understand all seven states based on previous interactions

with smart phones, tablets, or hobbyist drones. It might be

better to explain the failure states, possibly also through

video vignettes, to make sure participants had a common

understanding of the states. However, this creates the risks of

anchoring participants to certain gestures, or influencing them

to create gestures which were similar to what they saw in the

videos.

There were a handful of outlier gestures which were more

creative, such as the horizontal spiral path shown in Fig. 2c

which one participant used to indicate Signal Lost. Other

outliers included making a figure ‘X’ in vertical space for

Signal Lost, and making two vertical squares (one parallel,

and one perpendicular to the operator) for Area of Interest.

VI. THREATS TO VALIDITY AND LIMITATIONS

The primary threat to the validity of this study is that we

attempted to create an objective taxonomy to classify sUAS

gestures from members of the general public, and we grouped

them according to our own taxonomy. Other researchers could

easily develop their own different taxonomies and produce

different agreement scores, but we nevertheless believe our

taxonomy and classifications are a fair representation of con-

sensus for several flight paths and states. In particular, we

successfully recorded and replayed 136 out of 140 of the

handwritten gestures, and easily fixed the other four quickly

to the satisfaction of the participants.

A minor threat to validity is that all users were presented the

states in the same order and with the same amount of time. It is

possible some participants felt pressure to create their gestures

within the specified time limit, which could have resulted in

fewer distinct gestures. However, all participants except one

completed their handwritten drawings within the time limit

and most had several minutes leftover.

This study is inherently limited by the problem of commu-

nicating states and sUAS possible flight paths to members of

the general public. This was evident when a few participants

suggested upward motions to indicate Low Battery, reflecting

understandable ignorance about sUAS energy consumption.

Even participants with prior drone experience were not neces-

sarily experts with sUAS. Some participants struggled to create

gestures for the states likely due to this lack of familiarity with

sUAS. If all participants were experts with sUAS, there might

have been less consensus because they would have understood

the full set of possible maneuvers the sUAS could perform and

might have created more varied gesture sets. However, the

goal of this study was to create a gesture set which general

bystanders could understand.

VII. FUTURE WORK

A natural next set of follow-up experiments would be to

conduct “reverse” elicitation studies to determine whether the

gestures could be understood to communicate states, either

through video or in-person replays of gestures. One such study

was performed in [5] on an initial set of gestures, but could

be refined based on this work. Other research could assess

whether these states can be more effectively communicated or

achieve higher consensus with specialized hardware to include

light and sound.

Based on the relative preferences of the taxonomy subcat-

egories shown in Table III, it would be worth investigating

a dichotomy of gesture sets for sUAS states depending upon

whether the states are mission-centric or vehicle-centric. The

intuition is that bystanders would expect different classes of

sUAS gestures to indicate a mission-centric error versus a

vehicle-centric error. Vehicle-centric errors are more likely to

require bystanders to avoid specific areas as opposed mission-

centric errors which might require operator interaction. If

that is the case, vehicle-centric gestures arguably should take

less time perform than mission-centric gestures in order to

be effective. Furthermore, Table III suggests certain types of

motions might be more natural or intuitive for bystanders

to interpret. Follow-up studies could help confirm this by

investigating whether gestures from minority subcategories are

effective at communicating sUAS states.

Further research, such as the previously mentioned “reverse”

elicitation study, could be performed to determine whether

the more creative outlier gestures can efficiently communicate

states, because some fit neatly within the preferred subcate-

gories from our taxonomy. That is, the spiral flight path chosen

for Signal Lost in Fig. 2c is simple, indirect, random, roll and

pitch, stable altitude, and curvilinear. These subcategories were

also preferred for Area of Interest and Missed Goal/Target.

VIII. CONCLUSION

This paper presented an elicitation study to elicit gestures

from participants recruited from the general public to com-

municate seven key sUAS states to operators and especially

bystanders. The agreement scores showed promise that a

common gesture set can be created and implemented for

current sUAS. Future work could refine the gesture set and

confirm it conforms to how bystanders would expect sUAS to

behave, hopefully increasing the general public’s acceptance

of increased commercial drone usage in everyday life.

The concept of elicitation studies can be broadly applied

within the social robotics community to understand the naive

assumptions that are common amongst users, classify them,

and then make recommendations for candidates to test through

wide-scale user studies.
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