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Abstract—This paper presents a gesture set for communi-
cating states to novice users from a small Unmanned Aerial
System (sUAS) through an elicitation study comparing gestures
created by participants recruited from the general public with
varying levels of experience with an sUAS. Previous work in
sUAS flight paths sought to communicate intent, destination, or
emotion without focusing on concrete states such as Low Battery
or Landing. This elicitation study uses a participatory design
approach from human-computer interaction to understand how
novice users would expect an sUAS to communicate states, and
ultimately suggests flight paths and characteristics to indicate
those states. We asked users from the general public (N=20) to
create gestures for seven distinct sUAS states to provide insights
for human-drone interactions and to present intuitive flight paths
and characteristics with the expectation that the sUAS would
have general commercial application for inexperienced users.
The results indicate relatively strong agreement scores for three
sUAS states: Landing (0.455), Area of Interest (0.265), and Low
Battery (0.245). The other four states have lower agreement
scores, however even they show some consensus for all seven
states. The agreement scores and the associated gestures suggest
guidance for engineers to develop a common set of flight paths
and characteristics for an sUAS to communicate states to novice
users.

Index Terms—sUAS; Communication; Elicitation Study; User
Design

I. INTRODUCTION

As technology improves and companies refine their busi-
ness models, the general public will increasingly encounter
small Unmanned Aerial Systems (sUAS) in everyday life.
Consumers might ask Amazon to deliver their packages via
Amazon Prime Air [19] or have Alphabet deliver lunch
through its experimental burrito service [12]. Because ev-
eryday users are not likely to be experts with an sUAS or
even aeronautics generally, it will be important for everyday
drones to communicate common states quickly and intuitively
to bystanders.

As we move towards this ubiquity, not every sUAS will
have hardware to communicate through sound or lights due to
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Fig. 1: For a side-by-side comparison, on the left is the palm-
sized model given to participants and on the right is the
Ascending Technologies Hummingbird used for demonstration
flights in this study.

cost or battery limitations, but they should be able to indicate
key states through motions in space (gestures). If an sUAS
is about to land and drop off its payload, it is critical that
bystanders interpret the intention to land so they can move
away from the landing area. Similarly, users and bystanders
will need to quickly understand when an sUAS has missed its
target so they do not unnecessarily worry that their packages
will be delivered to the wrong location.

Furthermore, a well-defined set of gestures should improve
SUAS user experiences and ultimately increase comfort with
their greater prevalence in everyday life. Inexperienced users
can be frightened or suspicious of a drone if they are confused
by its intent, creating market barriers to adoption or innovation
for new applications such as food delivery. As a result,
a gesture set should be understood from various distances
(even with partial occlusion), viewing angles, and qualities
of lighting. These gestures should also not require specialized
hardware so engineers can more easily incorporate them into
pre-existing systems. Additionally, the limitation to movement
alone allows this work to be better situated within exist-
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ing human-human and human-robot gestural communications
studies.

As an initial step for developing a gesture set for seven
important SUAS states requiring user interaction or bystander
awareness, we present an elicitation study which gathered
gestures from the general public (N=20). An “elicitation”
study gives users the opportunity to develop gestures for a
specific purpose within set parameters to understand whether
there is a common agreement across participants. We then
assessed their suggestions within a taxonomy and calculated
agreement scores.

This work is inspired by techniques from the human-
computer interaction (HCI) community [16], [24] which
elicited user-generated gestures to better understand com-
mon characteristics for each state (Attract Attention, Sensor
Lost, Low Battery, Signal Lost, Area of Interest, Missed
Goal/Target, and Landing). Users were asked to: 1) draw a
gesture based on the model sUAS shown in Fig. 1; 2) describe
their gesture to an experimenter; 3) observe their gestures on
a free-flying sUAS shown in Fig. 1 in a Vicon cage; and
4) confirm the free-flying SUAS gesture matched the gesture
drawn and described for the model sUAS.

The concept of elicitation studies can be broadly applied
within the social robotics community to understand naive
assumptions common among users, classify them, and then
make recommendations for candidates to evaluate in user
studies. The elicitation study described here is similar to the
methods used in [9], although our elicited gestures are not
immediately interpreted by a participant.

II. RELATED WORK

A. Human Gestural Communications

Researchers have studied human gestural communications
to assess their effectiveness regarding how they are perceived
and what kinds of information they communicate. Krauss,
Morrel-Samuels, and Colasante [10] conducted a set of studies
to understand how co-speech hand gestures are understood
and found that although hand gestures can convey some
information, they do not communicate as well as speech.
Prati and Pietrantoni [14] investigated effectiveness of different
types of hand gestures in conditions during which speech
would be difficult, such as when firefighters are trying to com-
municate inside burning buildings. In both studies, the gestures
were based on those with meanings already understood by
participants.

B. Robot Gestural Communications

Gestural communications in robots can be split into ground
robot gestural communications and sUAS gestural commu-
nications. While gestures have been examined in humanoid
robots, that research has been limited to social gestures and
collaborative gestures. The current state of the art with sUAS
has been to communicate high-level state information or to
use gestures to control vehicles.

1) Ground Robot Gestural Communications: Researchers
have investigated social gestures for human-robot interaction
(HRI) through studies similar to those used to investigate
communicative hand gestures. Salem et al. [17] investigated
the ability for co-speech gestures to enhance humanoid-robot
communications. Huang and Mutlu [8] evaluated the use of
gestures to improve recall from humanoid robot interactions.
Ng, Luo, and Okita [13] developed a model to generate a
set of gestures from text and manipulated specific parameters
to convey excitement or expressiveness. Riek et al. [15] tested
cooperative social gestures on a humanoid robot to understand
the impact of gesture speed and viewing angle, finding that
negative attitudes towards robots correlated with decreased
ability to understand gestures. Overall, these works assessed
understanding of gestures, but they focused on leveraging
participants’ pre-existing interpretations of human gestures.

More relevant to this paper are the collaborative gestures
developed primarily for industrial applications as in [4], [7],
but work in this area is limited by the assumed presence
of a visible goal as reported in [22]. Dragan and Srinivasa
[4] studied integration of an observer into motion planning
for an industrial robot. Gleeson et al. [7] observed gestural
communications between humans, derived terms and gestures
for their robots, and implemented them to observe their
communicative ability. These studies indicated gestures were
more effective when they conveyed context and goal, which
is more challenging for an sSUAS.

2) sUAS Gestural Communications: Communications with
SUAS can be split into communication from the sUAS and
communication fo the SUAS. Communication to the sUAS is
outside the scope of this work, so will only be covered with
respect to design-based approaches.

Flight paths have been investigated for their ability to
communicate affective state [2], [18], intended destination
[20], intended flight direction [21], and to influence interaction
preferences [6]. These flight paths could enhance interaction
with sUAS in collocated environments, but do not communi-
cate actions or states to general bystanders.

Sharma et al. [18] investigated the ability to communicate
affective state via flight path with collocated users and found
that to increase valence or arousal, paths should use space
more indirectly and take less time. Szafir, Mutlu, and Fong
[20] used both online and in-person interactions to explore the
perception of animation principles applied to SUAS flight paths
to improve communication of intent. Szafir, Mutlu, and Fong
[21] next assessed the ability of a light ring to communicate
direction of sUAS flight through in-person testing where
participants made predictions regarding the end state of the
vehicle. This work considered viewing angles, movement in
multiple dimensions, occlusion, and ambient lighting. Duncan
and Murphy [6] investigated whether the speed, cyclicity,
and dimensionality of SUAS behaviors impacted the time,
distance, and preference for interaction of users in a simulated
interaction environment. However, none of these these works
used a design-based approach to ask users to create their own
gestures. Instead, they asked users to describe or react to pre-
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defined gestures.

C. Taxonomy Creation

Prior work on gesture classification has focused on creating
taxonomies based on objective qualities to understand the
relationship between humans and technology. Wobbrock et
al. [24], constructed a taxonomy for tablet surface gestures
to classify human hand movement and categorize different
features of gestures on a 2-D plane. Wobbrock suggested
surface computing has increased in prevalence compared to
traditional input methods such as keyboards and mice be-
cause traditional methods limit users’ motions. Wobbrock’s
participants were told a gesture’s effect, and then they were
asked to create a gesture that would cause that effect. This
approach, according to Wobbrock, helped eliminate the “gulf
of execution” between users and devices, because participants
were told their answers were always correct and they stressed
the importance of immediate usability to increase success rates
for tasks [24]. The results from Wobbrock’s taxonomy suggest
tablet users prefer one-handed gestures, and also suggest a
need for on-screen widgets to facilitate commands with low
agreement scores.

Ruiz et al. [16] investigated motion gestures for invoking
commands on a smart phone. Participants were given a list
of commands and asked to construct a gesture that would
execute each of the commands. Ruiz’s taxonomy categorizes
both the physical characteristics of the gesture as well as maps
properties exhibited by each gesture. Their taxonomy indicates
there is consensus among user-constructed commands in both
physical characteristics and mappings.

Cauchard et al. [1] also foresee the possibility of drones
becoming more prevalent in daily human activity. Therefore,
they described interaction metaphors from participants. Partic-
ipants were shown tasks which a drone could accomplish, then
participants constructed gestures which users could perform to
ask the drone to accomplish those tasks.

Well-defined taxonomies allow researchers to apply objec-
tive classifications to gestures from elicitation (or guessability)
studies, leading to a useful calculation called an agreement
score.

D. Agreement Score

After collecting user-generated gestures, a common practice
is to calculate an agreement score for each task to evaluate con-
sensus among participants, yielding objective data to compare
against results from other studies. For this study, we adopted
the agreement score calculation from Wobbrock [23] but do
not convert scores into percentages or other ratios. Instead, our
agreement scores conform to the standard used by Ruiz [16]
and Cauchard [1]. An agreement score A, reflects the relative
degree of consensus for a gesture among the participants.
Wobbrock provides an equation to calculate an agreement
score, where:

2
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For Equation 1, ¢ is one task from the set of all Tasks 7.
P; is the set of proposed gestures for ¢, and P; is the subset
of identical gestures from P;. For an example calculation,
see [16], which implies an agreement score of 0.1 or higher
indicates a minimum level of consensus. The possible range
for A is [0, 1] and is not a percentage ratio.

III. STUDY AND METHODOLOGY

The goal of our study was to have participants construct
a preliminary gesture set for a list of sSUAS states, all of
which are important to communicate common conditions when
operator interaction is needed to complete a task or to warn
bystanders to avoid certain areas. Our study was heavily
influenced by the work of Wobbrock and Ruiz [16], [24], who
conducted elicitation (or guessability) studies to elicit gesture
sets categorized based on a proposed taxonomy to calculate
agreement scores.

A. Participants

Twenty English-speaking participants were recruited from
the general public at a university in the Midwest U.S. through
fliers and advertisements. As incentive for participation, suc-
cessful completion of the study included entry into a random
lottery for a $25 gift card. There were ten male and ten female
participants with an age range of 19-79 (M=37.60, SD=18.36).

All participants were asked about their robot experience
through broad questions to ensure they answered within their
understanding of what classifies as a robot. Robot experience
was assessed by asking: 1) whether participants had “ever
interacted with a robot”; 2) the frequency of their interaction
with robots; and 3) the type of robots with which they had
interacted. Examples included consumer robots such as Room-
bas, pool-cleaning robots, Lego Mindstorms, Sony’s Aibo,
DJI Phantom, interactive robots in museums, or industrial
robots. Seven of 20 participants reported some experience with
such robots. Remote control (RC) experience was assessed by
asking if they had ever owned or operated a “remote-controlled
helicopter or airplane or an unmanned aerial system.” Nine
participants (three female, six male) reported prior interactions
with RC aircraft.

B. Experiment Materials

The sUAS was an Ascending Technologies (AscTec) Hum-
mingbird (see Fig. 1) weighing 365 grams (0.81lbs) with
a diameter of 0.54m (2lin). A palm-sized model of the
Hummingbird (as shown in Fig. 1) was used for ease of
interaction during the participants’ time authoring gestures.
The palm-sized drone was roughly one-third the size of the
Hummingbird. The flights were controlled by a ROS script
coordinated with a Vicon motion-capture system, and all flight
paths were fully autonomous. A backup pilot was present in
all study runs to take over control of the vehicle if needed.

C. Experiment Procedure

The study took approximately one hour to complete three
parts: 1) Pre-interaction; 2) Flight Path Design; 3) and Flight
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Path Observation. The first part was scheduled for 15 minutes
and the final two parts were scheduled to consume the last
45 minutes. Each part included a survey and the experiment
concluded with an interview.

1) Pre-interaction: Each participant was escorted to a room
occupied by no other people except for one researcher. The
researcher read them the consent form including a description
of the objective of the study: to design gestures which a drone
could execute to communicate seven specific states. After
signing the consent form, the participants were given a pre-
questionnaire to collect data about their general background.

2) Flight Path Design: The seven sUAS states were chosen
because they are representative of some of the most common
states the general public might encounter increasingly in every-
day life. The states require either operator intervention, such
as re-establishing communication, or awareness of bystanders,
such as avoiding a landing site. The most common states
for bystander avoidance would likely be landing, low battery,
and signal lost. Bystanders need to know whether an UAS
intends to land so they can adapt their behavior accordingly.
Operators need to know about lost sensors, area of interest, or
a missed goal in order to intervene. These states were primarily
picked due to the motivating scenarios that these drones will be
performing missions and need to communicate with operators
who are otherwise engaged. We expected some of the states,
specifically vehicle-centric states like Landing or Low Battery,
to be intuitively understood by participants because they would
be familiar with them from prior observations of hobbyist
drones or even more traditional aircraft like airplanes and
helicopters. We expected other states, like Lost Sensor or Lost
Signal, to be similar to those same states users had already
experienced with mobile phones or tablets. Lastly, we avoided
choosing states that might need specific hardware or software,
such as Take Picture or Deploy Sensor.

Each participant was given a sheet of paper that listed
the seven states (Attract Attention, Sensor Lost, Low Bat-
tery, Signal Lost, Area of Interest, Missed Goal/Target, and
Landing) along with extra whitespace for supplemental notes.
This sheet included instructions at the top stating they would
have 15 minutes to brainstorm and requesting they “design an
appropriate gesture that the drone may take to communicate
that state using the drone model provided within the defined
area. Area is defined as between: (i) The top of the table to the
top of your head, and (ii) Your chest to the tip of your fingers
when your arm is extended. It is highly recommended that you
provide a gesture for each task. It is also highly recommended
you write notes in the space provided for each task.” The page
then had a space for each of the seven states for the participant
to use when brainstorming.

Participants were given 15 minutes to design a set of
appropriate gestures, but they were also welcome to request
more time. Two participants completed this task in less than
five minutes, ten participants needed five to ten minutes, seven
participants needed ten to 15 minutes, and one participant
requested an additional five minutes (20 minutes total) to
complete the task. Two of these participants designed gestures

with lights and sounds in less than five minutes, but then
requested time to redesign their flight paths after clarification.
These participants ended with one in the five-to-ten and one in
the ten-to-15 minutes groups. Each participant was told that
after the first 15 minutes lapsed, a researcher would come
to announce each state to prompt them to demonstrate their
gestures using a palm-sized model drone (see Fig. 1). They
were told their gestures were always correct, even if they
conflicted with the physical capabilities for the sUAS. For
example, some participants thought the sSUAS should ascend
quickly to indicate Low Battery despite ascension being an
energy-intensive flight path.

Participants were told they had to demonstrate their gestures
within a bounded area to restrict participants from wandering
around or making more complicated gestures that would be
difficult for an sUAS to perform, and the bounded space was
roughly to scale with respect to the room and drone used
in the next part of the study, the Flight Path Observation.
It is also natural to prescribe some boundary for a drone
because drones cannot execute unlimited or infinite flight
paths. Furthermore, prior elicitation studies on tablets and
smartphones have inherent boundaries, either at the corners
within the devices themselves, or only to the extent the human
hand can move while holding the devices.

The participants were told they had to begin each gesture on
or above an ‘X’ marker on the table. They were encouraged
to provide verbal commentary of their thought process in
designing the gesture for each state and to describe each
gesture while performing it manually with the model drone.
A researcher took written notes about the flight paths while
participants provided commentary for each gesture.

3) Flight Path Observation: Participant flight paths were
recorded in a Vicon motion-capture cage using a script
that wrote a set of waypoints to a file and then had the
drone fly from point-to-point in order to recreate a path that
was “drawn” by the researcher walking the vehicle through
the path. After the researcher used the previously described
method to program the gestures indicated from the Flight Path
Design, participants were next escorted to the Vicon motion-
capture cage where they observed their gestures performed
autonomously by an AscTec Hummingbird. As each of the
seven gestures were being demonstrated, participants were
encouraged to provide verbal feedback regarding the similarity
of their expected gestures to the flight path of the drone.
After the demonstration, participants were escorted back to
the original room to thank them for their time and conclude
the study. Of the 140 flight paths which were automatically
replayed (20 participants for seven states), only four of them
were described as incorrect representations of the gestures
drawn on paper. All four inconsistencies were easily and
quickly corrected to satisfy the participants’ original drawings.

Some of the drawn gestures required representative substi-
tutes because they were not physically repeatable by the sUAS.
For example, Roll and Waggle maneuvers are not possible
with the AscTec Hummingbird, so we chose Rock in Place
as a reasonable substitute. Regardless, we achieved 140 out of
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140 agreement between drawn gestures and replayed gestures.

D. Classification and Taxonomy for User-Designed Flight
Paths

Having elicited 140 gestures, the final step was to create an
objective classification and taxonomy to group them according
to specific, common characteristics. Although related work
provides a taxonomy for HCI, HRI, and human-to-sUAS
interactions, no work has established a taxonomy for user-
designed flight paths to communicate states. Also, some of the
taxonomies from related work are for gesture sets for mobile
phones and tablets, and not necessarily applicable to SUAS.

We classified each gesture along six categories: Complexity,
Space, Cyclicity, Command, Altitude, and Motion. Within each
category are multiple sub-categories shown in Table I.

1) Categories Selected from Related Work: We adopted the
Complexity category from Ruiz, Li, and Lank to classify the
movements of the drone. We also adopted the Space category
from Chi et al. and Cyclicity from Duncan and Murphy to
capture the spatial characteristics of the flight paths.

Complexity classifies the gesture either as simple or com-
pound. Simple gestures are defined as a single movement along
any direction and a compound gesture is a collection of simple
gestures combined with spatial discontinuities. Discontinuities
are inflection points, pauses in motion, or corners [16].

Space dimension describes a gesture’s attention to its sur-
roundings [3]. Indirect gestures have a multi-focused approach
to a destination and can deviate from a straight line path, while
direct gestures do not deviate from focus on the destination.

Taxonomy for User-Designed Flight Paths

Categories from Related Work
Complexity Simple Single movement.

Compound Collection of movements.
Space Direct Focused approach to a point.

Indirect Deviates from direct path.

. Cyclic Repeated motion (same path).

Cyelieity 2 Singular Tight path
Additional Categories

Roll Left or right movement.

Pitch Forward or back movement.
Command -

Yaw Rotation.

Throttle Up or down movement.

Increasing Increase flight height.
Altitude Dec.reasing Decrease flight height.

Variable Increase and decrease.

Stable No height change.

. Only straight movement(s)

Rectilinear andy90—de§ree turns.
Motion Curvilinear Only curved movement(s).

Rotational Only rotates.

Combinational | Combination of the above.

TABLE I: This taxonomy has six categories and is divided
into two sections: Related Work Categories and Additional
Categories.

Cyclicity was adopted from [6], where it was defined as
“a judgment of whether the expression is cyclic or random in
nature” and is based on assumptions in animal literature that
unpredictable behaviors are used to display fitness, confuse
predators, and startle observers. Here it is used as a measure

of observability and likelihood for reception, because random
flight paths are likely to be perceived in part by observers as
their attention is gained.

2) Additional Categories: Because drones have more de-
grees of freedom than a tablet or mobile phone, we developed
additional categories to account for expected differences in
sUAS flight paths compared to categories developed in prior
work involving human movement, tablets, and mobile phones.
In defining these categories, there could be some overlap with
related work.

The Command category maps to operator or autopilot input
to the drone. Roll is movement in the left or right direction,
pitch is movement in the forward or backward direction, yaw
is rotational movement, and thrust is movement up or down
in elevation. This category is related to Ruiz’s “Dimension,”
which describes the number of axes involved in the movement
of the gesture, but the description of commands allows an
inherent representation of the number of axes of movement
required to perform them, as opposed to simply counting the
number of axes along which the drone must move to perform
a particular command. There are four subcategories within
the Command category, but we considered the possibility of
collapsing these subcategories in combinations of two, three,
or all four. For example, Command subcategories could also
be “pitch and yaw,” “yaw and thrust,” or “pitch and yaw
and roll.” Our inter-rater reliability scores did not account for
every possible subset of these four subcategories, only those
which raters indicated were employed in the flight paths. The
agreement scores, on the other hand, combined flight paths by
collapsing categories which bystanders cannot easily perceive
(such as pitch versus roll and intent behind behaviors), which
is described further in Section IV.

Altitude is an additional category to describe one charac-
teristic which was explicitly defined by each participant and
is central to the understanding of the sUAS. This category is
divided into increasing, decreasing, variable, and stable. That
is, increasing or decreasing flight paths will end higher or
lower from where they started, variable refers to paths that
both increase and decrease, and stable refers to paths that are
fixed in the Z plane.

Motion is another dimension that classifies the general shape
of the gesture’s movements. The gesture could consist of only
rectilinear, curvilinear, rotational, or a combination of two or
more of those sub-categories.

State Most Common Flight Path Count
Attract Attention Up-down; Horizontal Circle; Descending 4
Sensor Lost Yaw 4
Low Battery Up-down 8
Signal Lost Yaw 4
Area of Interest Horizontal circle 8
Missed Goal/Target Horizontal circle 6
Landing Descending 13

TABLE II: The most popular flight path for each of the seven
states, and the number of participants who designed those
flight paths. Attract Attention had a three-way tie, with each
flight path chosen by four participants.
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E. User-Defined Gestures for sUAS Communications

Using the 140 gestures designed by our participants, we
generated a combined gesture set for our seven states. We
then grouped gestures with common features according to our
taxonomy, and used these groupings to calculate our agreement
scores to determine the level of consensus. Finally, we chose
the most common gesture for each state as the representative
gesture for that state as shown in Fig. 2. The most commonly
designed flight paths are listed for each state in Table II.

Five flight paths were prevalent in the gesture set: descend-
ing, horizontal circle, up-down, left-right, and yaw. Thirteen
participants used descending to indicate Landing and seven
participants used descending to indicate Low Battery. Nine
participants used a horizontal circle for Area of Interest. Eight
participants generated an up-down flight path to indicate Low
Battery. Four participants used yaw for Signal Lost and four
used yaw for Sensor Lost. For Attract Attention, three groups
stood out: four participants used horizontal circle, four used
up-down, and three used left-right. Three groups also stood
out for Sensor Lost: four participants used yaw, three used
left-right, and three used descend.

For each of the categories, participants tended towards a
single-entry subcategory from our taxonomy, and the most
common subcategories are shown for each state in Table III.
Due to strong agreement among several of the taxonomy
subcategories, we can make some inferences about how to
communicate states more intuitively. For example, participants
preferred simple and stable altitude gestures for Attract At-
tention, but preferred compound and decreasing or variable
altitude gestures for Sensor Lost. Rectilinear gestures were
preferred for most states, with the exception of curvilinear
gestures for Area of Interest and Missed Goal/Target.

Table III also suggests several other insights about novice
users’ preferences. Most of the gestures could be classified as
simple, indirect, random, some combination of roll and throttle
and pitch, stable altitude, and rectilinear. These subcategories
could also represent types of gestures which bystanders could
more easily perceive and interpret. Curvilinear motion pre-
dominated for only two states, Area of Interest and Missed
Goal/Target, both of which are mission-centric. Similarly,
compound motion predominated for only two states, Low
Battery and Signal Lost, both of which are vehicle-centric.
Lastly, participants generally preferred random cyclicity mo-
tions for all seven states, and showed a preference for indirect
motions except for Landing. Based on these observations,
we can conclude that for all seven sUAS states, participants
generally preferred: simple (Complexity); indirect (Space);
random (Cyclicity); some combination of roll, throttle, and
pitch (Command); stable (Altitude); and rectilinear (Motion).

FE. Inter-rater Reliability for Taxonomy

In order to assess the usefulness of the taxonomy categories
and to classify the individual states according to common sub-
categories, two raters were obtained to independently assign
each of the 140 user-generated flight paths to a single subcat-
egory within each taxonomy category. After their independent

assessments, their results were compared in order to calculate
Cohen’s Kappa and assess their agreement according to [11].

Complexity (0.881), Motion (0.907), Command (0.92), and
Altitude (0.914) were considered “Almost Perfect” agreement,
while Space (0.79) and Cyclicity (0.641) were considered
“Substantial Agreement.” Of note is the wide distribution
of participant agreement within categories (as shown in the
parentheses of Table III), with 17 participants designing “Sim-
ple” paths for Area of Interest compared to a relatively even
split between “Simple” and “Compound” for Sensor Lost.
Similarly, though not reflected in the table, Signal Lost had
a three-way tie in the Command category between “Yaw,’
“Throttle,” and “Roll and Pitch” with 4 participants’ paths in
each compared to Low Battery which had 13 participants using
only “Throttle.” These distributions, particularly those with
high agreement among the participant paths, suggest common
perceptions about how to convey these states even if designers
would like to stray from the very straightforward paths with
high agreement.

IV. RESULTS

Our agreement scores for each state, after analyzing all
140 gestures and categorizing them according to our new
taxonomy, are shown in Table IV along with whether the state
is “mission-centric” or “vehicle-centric.” A state is mission-
centric if that state needs to be communicated to an operator
or bystander to indicate the sUAS has encountered difficulty
completing its mission. A state is vehicle-centric if it simply
reflects an error state that is inherent to the SUAS and irrelevant
to its mission.

As an intermediary step, we combined gestures into com-
mon flight paths with respect to drone orientation or bystander
perspective. That is, because the drone will not be aware of the
location of a bystander and a bystander will not be aware of
the drone’s orientation, flight paths such as left-right and front-
back were combined into a single gesture for the purposes
of calculating agreement scores. Such combinations were not
used in the inter-rater reliability scoring for our taxonomy.

Ruiz implicitly suggests that the minimum threshold for
consensus is 0.1 [16], and participants achieved that level of
consensus for all seven states. Our participants achieved a
stronger agreement score of 0.2 or higher for three states: Low
Battery, Area of Interest, and Landing. Of note, Landing had
the strongest agreement score by far, and Landing is the sUAS
state which is arguably the most important for a bystander to
understand and act accordingly.

As part of the survey between construction and observation
of the flight paths, we recorded participants’ opinions on
whether they were confident their gestures would effectively
communicate the seven states to other bystanders. Their confi-
dence was measured on a 1-5 Likert scale, with average confi-
dence shown in Table IV. Participants were most confident in
their gestures for Attract Attention (4.4), Landing (4.2), and
Area of Interest (4.05).

After participants viewed their gestures replayed on the
sUAS, we asked them to indicate which states they were
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TABLE III: Summary of the taxonomic subcategories with most participant agreement (as classified by

state. Bold text indicates strong agreement amongst participants.

the raters) for each

State Complexity Space Cyclicity Command Altitude Motion

Attract Attention Simple (12) Indirect (9) Random (10) | Reoll and Throttle (7) | Stable (8) Rectilinear (12)
Sensor Lost Simple (9) Indirect (11) | Random (10) | Roll and Throttle (6) | Stable (10) Rectilinear (10)
Low Battery Compound (12) | Indirect (12) | Random (11) | Throttle (13) Ir‘l‘fj 3:;‘:;;2“%)(8) Rectilinear (15)
Signal Lost Compound (11) | Indirect (13) | Random (15) | No Majority Stable (13) Rectilinear (9)
Area of Interest Simple (17) Indirect (13) | Random (14) | Roll and Pitch (9) Stable (13) Curvilinear (10)
Missed Goal/Target | Simple (14) Indirect (13) | Random (16) | Roll and Pitch (7) Stable (14) Curvilinear (9)

Landing Simple (11)

Direct (10)

Random (12)

Throttle (12)

Decreasing (16)

Rectilinear (14)

4%’ -»
<
(a) Horizontal circle flight path. Nine par-
ticipants used this path to indicate Area of

Interest and four used it to indicate Attract
Attention.

(d) Up-and-down flight path. Eight
participants used this path to indicate
Low Battery and four used it to indicate
Attract Attention.

S+ &

(b) Yaw flight path. Four participants used
this path to indicate Sensor Lost and four
used it to indicate Signal Lost.

—%

(e) Left-and-right flight path. Three par-
ticipants used this path to indicate Attract
Attention and three used it to indicate
Sensor Lost.

N

(c) Spiral flight path.

One participant used

this path to indicate Signal Lost.

A

v

(f) Descending flight

4

path. Thirteen partic-

ipants designed this path to indicate Land-

ing and seven used
Low Battery.

Fig. 2: User defined gestures to convey requested states.

this path to indicate

most and least confident about in their gestures’ ability to
communicate those states. Attract Attention was the state for
which participants expressed the most confidence (12 of 20
participants), and Signal Lost had the least confidence (eight
of 20 participants). These ratings are also consistent with the
Likert ratings assigned after creating the gestures.

State Agreement Score Type Confidence
Attract Attention 0.155 mission 44
Sensor Lost 0.125 vehicle 32
Low Battery 0.245 vehicle 3.5
Signal Lost 0.125 vehicle 32
Area of Interest 0.265 mission 4.05
Missed Goal/Target 0.145 mission 35
Landing 0.455 vehicle 4.2

TABLE 1V: Agreement scores across all participants and
average individual confidence for gestures elicited from par-
ticipants for each of the seven states. Individual confidence
reflects the mean Likert value (1-5, 5 being “strongly agree”)
from participants that they were “confident in their gesture for
[state]” after describing it to the experimenter.

V. DISCUSSION

Our elicitation study with 20 participants resulted in the
development of the first user-designed gesture set for sUAS
to communicate states. Three states had relatively strong

agreement scores: Landing (0.455), Area of Interest (0.265),
and Low Battery (0.245). The agreement scores were also
reflected in the participant confidence in the ability of their
gestures to communicate the state for Area of Interest, Land-
ing, and Attract Attention. These results are encouraging,
because those states are arguably the most important for
bystanders to understand and act accordingly, especially as
sUAS become more prevalent in everyday consumer services.
Further research into sUAS gestures can help reduce public
concerns about increasing drone interactions, and engineers
should be able to implement these gestures on pre-existing
sUAS without special hardware.

In order to generalize the gestures designed by the partic-
ipants, the common and uncommon subcategories from the
taxonomy give us guidance about their underlying thought
process when considering those states. For example, the use of
curvilinear motion for Area of Interest and Missed Goal/Target
shows an agreement from participants that these states are
likely circling around a space rather than transitioning to
another space as in the other states. Another interesting note
is that most of these states would require action on the part
of the operator or bystanders and the participants defaulted to
Indirect motions, which [18] recommended to increase valance
or arousal, in contrast to the Landing state which was Direct.

Participants expressed some difficulty when creating com-
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municative flight paths, which implies creating a generalized
communication system of gestures for SUAS is challenging.
One recommendation would be to show participants video
vignettes about the states to provide context and make them
easier to understand. For example, one vignette could ask
the participants to imagine they are walking a dog and they
encounter a drone attempting to deliver a package to a neigh-
bor’s house, but the drone experiences an error and must land
immediately. Then the participants would be asked to describe
a gesture the drone should take to indicate Landing.

Another insight is that our participants had likely never seen
some of these failure states in SUAS. We assumed they would
understand all seven states based on previous interactions
with smart phones, tablets, or hobbyist drones. It might be
better to explain the failure states, possibly also through
video vignettes, to make sure participants had a common
understanding of the states. However, this creates the risks of
anchoring participants to certain gestures, or influencing them
to create gestures which were similar to what they saw in the
videos.

There were a handful of outlier gestures which were more
creative, such as the horizontal spiral path shown in Fig. 2¢
which one participant used to indicate Signal Lost. Other
outliers included making a figure ‘X’ in vertical space for
Signal Lost, and making two vertical squares (one parallel,
and one perpendicular to the operator) for Area of Interest.

V1. THREATS TO VALIDITY AND LIMITATIONS

The primary threat to the validity of this study is that we
attempted to create an objective taxonomy to classify sUAS
gestures from members of the general public, and we grouped
them according to our own taxonomy. Other researchers could
easily develop their own different taxonomies and produce
different agreement scores, but we nevertheless believe our
taxonomy and classifications are a fair representation of con-
sensus for several flight paths and states. In particular, we
successfully recorded and replayed 136 out of 140 of the
handwritten gestures, and easily fixed the other four quickly
to the satisfaction of the participants.

A minor threat to validity is that all users were presented the
states in the same order and with the same amount of time. It is
possible some participants felt pressure to create their gestures
within the specified time limit, which could have resulted in
fewer distinct gestures. However, all participants except one
completed their handwritten drawings within the time limit
and most had several minutes leftover.

This study is inherently limited by the problem of commu-
nicating states and sUAS possible flight paths to members of
the general public. This was evident when a few participants
suggested upward motions to indicate Low Battery, reflecting
understandable ignorance about SUAS energy consumption.
Even participants with prior drone experience were not neces-
sarily experts with sSUAS. Some participants struggled to create
gestures for the states likely due to this lack of familiarity with
sUAS. If all participants were experts with sUAS, there might
have been less consensus because they would have understood

the full set of possible maneuvers the sUAS could perform and
might have created more varied gesture sets. However, the
goal of this study was to create a gesture set which general
bystanders could understand.

VII. FUTURE WORK

A natural next set of follow-up experiments would be to
conduct “reverse” elicitation studies to determine whether the
gestures could be understood to communicate states, either
through video or in-person replays of gestures. One such study
was performed in [5] on an initial set of gestures, but could
be refined based on this work. Other research could assess
whether these states can be more effectively communicated or
achieve higher consensus with specialized hardware to include
light and sound.

Based on the relative preferences of the taxonomy subcat-
egories shown in Table III, it would be worth investigating
a dichotomy of gesture sets for SUAS states depending upon
whether the states are mission-centric or vehicle-centric. The
intuition is that bystanders would expect different classes of
sUAS gestures to indicate a mission-centric error versus a
vehicle-centric error. Vehicle-centric errors are more likely to
require bystanders to avoid specific areas as opposed mission-
centric errors which might require operator interaction. If
that is the case, vehicle-centric gestures arguably should take
less time perform than mission-centric gestures in order to
be effective. Furthermore, Table III suggests certain types of
motions might be more natural or intuitive for bystanders
to interpret. Follow-up studies could help confirm this by
investigating whether gestures from minority subcategories are
effective at communicating sUAS states.

Further research, such as the previously mentioned “reverse”
elicitation study, could be performed to determine whether
the more creative outlier gestures can efficiently communicate
states, because some fit neatly within the preferred subcate-
gories from our taxonomy. That is, the spiral flight path chosen
for Signal Lost in Fig. 2c is simple, indirect, random, roll and
pitch, stable altitude, and curvilinear. These subcategories were
also preferred for Area of Interest and Missed Goal/Target.

VIII. CONCLUSION

This paper presented an elicitation study to elicit gestures
from participants recruited from the general public to com-
municate seven key sUAS states to operators and especially
bystanders. The agreement scores showed promise that a
common gesture set can be created and implemented for
current sUAS. Future work could refine the gesture set and
confirm it conforms to how bystanders would expect sUAS to
behave, hopefully increasing the general public’s acceptance
of increased commercial drone usage in everyday life.

The concept of elicitation studies can be broadly applied
within the social robotics community to understand the naive
assumptions that are common amongst users, classify them,
and then make recommendations for candidates to test through
wide-scale user studies.
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