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toward our ultimate objective of a user-adaptive autonomy
for robots.

In this paper, using data from the aforementioned study,
we make three key contributions to address the several
issues elucidated above. First, we showcase data from the
participants that demonstrates that it is possible to infer
intrinsic user qualities from user interactions with a robot.
Second, this data is split into two groups, a first group of
30, and a second group of 30 participants. We compare and
contrast those two groups to demonstrate the differences
in conclusions that can be drawn from different groups of
random users, as well as whether they hold for a larger
group of 60. This helps provide insights to the community
for the circumstances under which more participants may
be needed, but also the variability of data gathered from
groups of users in human subjects studies. Finally, we
provide a corpus of our data 1 allowing other researchers
to avoid the need to run such time consuming and complex
studies. Our data correlates intrinsic, unchanging user
qualities with robot autonomy principles such that other
researchers can download and mine the data to find answers
for particular design challenges.

2. RELATED WORK

We briefly summarize work related to user qualities and
preferences in shared control in telepresence systems and
then discuss user qualities studies related to our work to
set the stage for our study.

In telepresence robotics, several studies have identified
that autonomous navigational assistance is essential in
telepresence robots to provide better control of the robot
and also reduce the cognitive load of users (Desai et al.,
2011). In a similar study, Bruemmer et al. (2005) found that
participants performed better with shared control through
reduction in task completion time, reduction in errors, and
increase in number of items found by users during a search
task. Riano et al. (2011) conducted human studies with
shared control implemented on telepresence robot in order
to assess the improvement of user performance with shared
control. They observed that with shared control in obstacle
avoidance, people made less mistakes in navigation, and
felt more comfortable to drive the robot and maintain
conversation simultaneously.

The role of shared control has also been evaluated on Brain
Computer Interface (BCI) based telepresence systems by
Tonin et al. (2010). The study used shared control on
a telepresence robot (Robotino) to provide its operators
a feeling of control over the robots while ensuring safe
navigation in a remote environment. It was observed that
shared control with low-level obstacle avoidance enabled
operators to complete the task faster than without shared
control.

Even though shared control has been found to improve
user performance with telepresence robots, the performance
has been found to vary with user qualities. Takayama
et al. (2011) conducted human studies to evaluate the
effectiveness of shared control implemented on telepresence
robots by comparing performance of users based on system
dimensions (shared control and manual control) and human

1 https://nimbus.unl.edu/projects/cyphuas/

dimensions (gaming experience, locus of control, and spatial
cognitive ability). It was observed that even though shared
control was effective over manual control, user performance
varied based on their locus of control. People with a more
internal locus of control fought against the autonomy
and hence required more time to complete the tasks in
comparison to people with a more external locus of control.
The results of their study suggest that shared control
should be adaptive based on the user qualities to improve
performance.

Finally, we summarize work related to the specific quality,
locus of control, we study in this work, demonstrating that
locus of control helps define how a person interacts with the
world, and by extension, will interact with a robot. Rotter
(1966) divides people into two groups, internal locus of
control and external locus of control. People who perceive
that outcomes are based on one’s own actions are labeled as
having internal locus of control whereas those who believe
that outcomes are dependent on luck, fate or other external
forces are labeled as having external locus of control.

Studies have shown that people with internal locus of
control believe in their ability to control their life events,
expect their actions to result in outcomes that can be
predicted, and are more satisfied with situations allowing
personal control (Brenders, 1987; Phillips and Gully, 1997)
than people with external locus of control. A study by
Samana et al. (2009) found locus of control to be one of
the better predictors of presence in virtual environments.
With an increased sense of presence in virtual environments
people’s behavior in virtual environments could be similar
to their behavior in the real world (Mestre et al., 2006)
which could lead to improvement in performance. As a
result, we expect that differences in locus of control of
individuals will lead to difference in performance with
different obstacle avoidance settings invoked in shared
control.

Our work here is differentiated from this related research
by leveraging the impacts of a user’s locus of control on
the robot toward development of a shared control strategy.
We show there is high likelihood that locus of control can
be predicted from these interactions, and as a result, an
autonomy could be adapted to that user quality to improve
shared control performance.

3. STUDY DESCRIPTION

In this section we provide a condensed description of our
hypotheses, the autonomy used in the study, and the user
study experiment reported in Acharya et al. (2018).

3.1 Hypotheses

Takayama et al. (2011) found varied performance across
users with different locus of control when operating a
telepresence robot with shared control. Based on that work
we formulated following hypotheses:
Hypothesis 1: Users with a more internal locus of control
will perform better with an autonomy more responsive to
user inputs than a more restrictive autonomy.
Hypothesis 2: Users with different locus of control will
have different performance given a robot autonomy.
Hypothesis 3: Users with different locus of control will
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or counterclockwise). The robot’s position was tracked
with Vicon motion capture cameras through the obstacle
course. This data was used to calculate metrics, such as
the deviation of the user’s path from the optimal path,
velocity, and the number of collisions with obstacles.

Participants 60 participants (30 male, 30 female) with
ages ranging from 19–74 were recruited through emails
to campus mailing lists, and advertisements on- and off-
campus. The first 30 participants were paid $10 and the
remaining 30 were paid $20 as compensation for their time.
Based on the value of locus of control, 23 participants were
found to be “Highly Internal,” six participants were found
to be “Highly External,” and 31 participants were found
to be “Average.”

Methodology This describes the questionnaires, perfor-
mance metrics, and procedure used in the study.
Questionnaires:

(1) Demographics Questionnaire: This questionnaire con-
sisted of questions regarding gender, age, handedness,
computer experience, and robot experience.

(2) Locus of Control Questionnaire: An abbreviated ver-
sion of the Locus of Control Questionnaire (LoCQ)
(Valecha and Ostrom, 1974) with 11 items, each
consisting of options for internal and external attribu-
tion was used in the study. This was used to group
participants into three categories: strong internal locus
of control (“Highly Internal”, 0-3), mid-range locus of
control (“Average”, 4-7), and strong external locus of
control (“Highly External”, 8-11).

Procedure: The experiment was run in two parts with an
identical procedure. Initially, the study was run with 30
participants, but after collecting and viewing the data, 30
more participants were recruited to verify and strengthen
our findings. The procedure below was consistent for all
participants in the study.

An experimenter welcomed the participants and provided
them with consent forms, standard options to leave without
penalty, and a pre-questionnaire collecting demographic
information and assess their Locus of Control. Subsequently,
the iPad interface was explained and the study was divided
into two phases. Each phase would be conducted with either
linear or exponential obstacle avoidance profiles in either a
clockwise or counterclockwise direction. Both the direction
and obstacle avoidance profile were randomly selected and
counterbalanced to assure an equal number of males and
an equal number of females in each configuration.

At the beginning of each phase, participants complete two
laps on the training course (shown in Figure 4) in the
direction and obstacle avoidance profile that they will use
on the main course. Then, the participant completes one
lap on the main obstacle course and their performance is
tracked. Once the participant has completed the training
and main obstacle courses, the first phase is complete,
and they are asked to complete a questionnaire to gather
feedback and insight into their experience with the robot.
After the 2nd phase, the participant completed a post-
questionnaire to gather the same information as the
questionnaire. The study was then wrapped up with a
closing interview, again for feedback and a more personal
discussion of their interaction with the robot.

Performance Metrics: We developed metrics to analyze
user and robot performance in the shared control scheme.
All metrics were computed from the time the robot crossed
the start line to the time the robot crossed the finish line.
To compile the data, we computed means across all six
combinations of our defined locus of control categories
and obstacle avoidance profile. For example, to measure
the average duration of the “Exponential/Highly External”
category, we took a mean of the duration of all runs from
users having a highly external locus of control using the
exponential obstacle avoidance magnitude profile.

We computed metrics to assess holistic CPHS performance.
First, total duration, in seconds, to complete the main
obstacle course. Next, total distance driven, in meters,
during traversal of the main obstacle course. Both metrics
give an overview of general task performance. The third
metric is error from a optimal path through the main
obstacle course, computed using an A* search to minimize
distance while avoiding obstacles. This metric is measured
as the average amount of perpendicular distance between
the robot and the optimal path. The fourth metric is the
number of collisions occured during a run. Any contact
with an obstacle or wall counts as a collision. While the
user remained in contact with the same obstacle, this count
would not increase, but if the user broke contact and then
contacted any obstacle, those would count as separate
collisions.

The final metrics relate to the user input. First, total
commands issued by the user via button presses while
navigating the main course. Next, a conflicting command is
defined as an instance where the final command executed
by the robot differs from the user input due to the obstacle
avoidance autonomy. Using this definition, we calculate
the ratio of command conflicts to total commands. This
indicates when the control scheme favors the input of the
computer over the user, which provides insight into how
often the user “disagrees” with the obstacle avoidance.

4. RESULTS

We summarize and compare the data from both groups in
order to understand the impact of the individuals on the
collective results and discuss the consequences of running
smaller versus larger participant groups. These results
show that some trends, especially those relating to user
behavior, require significantly larger participant groups to
conclusively determine any trends from the acquired data.

Table 1 displays the results of both groups of participants.
All data was sorted based on Locus of Control and
autonomy mode. The table groups metrics and compares
all user groups on each metric.

Our objective is to adapt the autonomy as we infer qualities
about a user, thus we are interested in trends suggesting
that one user group performs better on a particular mode
of autonomy based on their locus of control. Following
analysis by Takayama et al. (2011) and Samana et al. (2009),
but observing trends in our data, we divided users into
“Highly Internal,” “Average,” and “Highly External” Locus
of Control categories. We added the “Average” category
due to the relatively large number of users and their unique
performance in the study. In Table 1 and later on in our
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Table 1. Results grouped into the primary metrics, divided by user group. Lower values reflect
better system performance in each category. High values for each metric for each group are

bolded while low values are italicized.

Group 1 Total Commands Command Conflicts Path Length (m) Deviation (m) Time (s)

Highly Internal Exponential 540.2 (SD = 620.2) 189 (SD = 220.7) 13.4 (SD = 3.7) .14 (SD = .04) 258.9 (SD = 145.3)
Highly Internal Linear 647.6 (SD = 756.5) 278 (SD = 397.9) 15 (SD = 3) .12 (SD = .03) 378.5 (SD = 179.6)
Average Exponential 307.1 (SD = 268.4) 77.2 (SD = 63.7) 12 (SD = 1.2) .11 (SD = .02) 245.7 (SD = 87.6)
Average Linear 465 (SD = 504.9) 181.2 (SD = 177.6) 13.2 (SD = 1.8) .12 (SD = .03) 291 (SD = 87.7)
Highly External Exponential 248.7 (SD = 168.3) 75.3 (SD = 41.3) 13.6 (SD = 1.1) .42 (SD = .21) 283 (SD = 80.6)
Highly External Linear 482.7 (SD = 352.7) 161.3 (SD = 90.7) 15.4 (SD = 1.9) .11 (SD = .02) 415.9 (SD = 92.1)

Group 2

Highly Internal Exponential 429.1 (SD = 172.8) 95.3 (SD = 60.7) 13.5 (SD = 2.2) .18 (SD = .17) 264.2 (SD = 80.1)
Highly Internal Linear 647.7 (SD = 375.9) 224.1 (SD = 160.5) 17.3 (SD = 5.7) .14 (SD = .04) 392.4 (SD = 141.5)
Average Exponential 593.4 (SD = 755.7) 188.4 (SD = 255.4) 15.2 (SD = 6.3) .19 (SD = .05) 265.3 (SD = 147.4)
Average Linear 769.8 (SD = 630.6) 285.7 (SD = 270.9) 15.5 (SD = 3.1) .13 (SD = .04) 364.5 (SD = 179.7)
Highly External Exponential 414.3 (SD = 460.7) 141 (SD = 170) 14.9 (SD = 3.7) .12 (SD = .14) 321.4 (SD = 108.8)
Highly External Linear 776 (SD = 715.9) 377.7 (SD = 435.43) 22 (SD = 6.3) .15 (SD = .05) 482.3 (SD = 233.6)

All

Highly Internal Exponential 491.9 (SD = 474.5) 148.3 (SD = 193.9) 13.4 (SD = 3.1) .16 (SD = .11) 261.2 (SD = 118.9)
Highly Internal Linear 647.7 (SD = 608.2) 254.6 (SD = 312.5) 16 (SD = 4.4) .13 (SD = .04) 384.5 (SD = 160.8)
Average Exponential 464.1 (SD = 597.3) 138.2 (SD = 199.3) 13.7 (SD = 4.9) .15 (SD = .11) 256.4 (SD = 122.5)
Average Linear 632.5 (SD = 588.4) 238.5 (SD = 235.8) 14.5 (SD = 2.8) .12 (SD = .04) 331.3 (SD = 148.1)
Highly External Exponential 331.5 (SD = 323.2) 108.2 (SD = 116.3) 14.2 (SD = 2.5) .27 (SD = .21) 302.2 (SD = 88.2)
Highly External Linear 629.3 (SD = 529.7) 269.5 (SD = 305.2) 18.7 (SD = 5.5) .13 (SD = .04) 449.1 (SD = 162.9)

discussion, autonomy modes are abbreviated as “Linear”
and “Exponential” referring to the magnitude profile of
the potential field obstacle avoidance.

We chose “Total Commands,” “Command Conflicts,”
“Path Length (m),” and “Deviation (m)(from optimal path)”
as the categories to focus on as they provide the most
compelling data and could generally be sensed in real-time
or through a short interaction lending themselves to in-
situ autonomy adaptation. Of additional interest is the
number of collisions in each trial, however, we found that
collisions were consistent across all users in each of Linear
and Exponential modes. Each of the categories provides a
measure by which we will be able to switch the autonomy
in future studies to improve performance. We now discuss
each Locus of Control group across both user study groups.

Average. In Group 1, we found users in the Average
group to be of primary interest. They performed better
under Exponential control in all categories, except path
length (as shown on the two middle bars for each metric in
Table 1). A paired-samples t-test was conducted to compare
total commands and conflicting commands under Linear
and Exponential control schemes. There was significant dif-
ference in command conflicts for Linear (M=189, SD=170)
and Exponential (M=77, SD=64) conditions; t(13)=2.83,
p=0.015, two-tailed. Number of commands approached
significance for Linear (M=465, SD=505) and Exponential
(M=307, SD=268) conditions; t(13)=1.86, p=0.087, two-
tailed. The Average participants drove shorter paths in
both Linear (M=13.2m) and Exponential (M=12m) when
compared to to the External participants (M=15.4m and
13.6m, respectively).

However, in Group 2, the Average user group sent more
commands and had more command conflicts. When looking
at command conflicts in the Linear condition, an Average
user still has more conflicts (M=286 compared to M=188
in Exponential) and an increased number of commands
(M=770 compared to M=593). There also appear to be
some trends in this group that did not show up in the
first group. In the Exponential condition, an Average

or Highly Internal deviates the most. Highly Internal
and Average have shorter Path Length using the Linear
autonomy (M=17.3m and 15.5m, respectively, compared
to M=22m for Highly External), but while using the
Exponential autonomy, Average and Highly External
users drive greater Path Lengths (M=15.2m and 14.9m
compared to M=13.5m from Highly Internal).

Some conclusions have been consistent across the data.
For example, from the first group of users, we correctly
identified an important trend in command conflicts showing
trends to be roughly the same across all groups. This
suggests that some conclusions were sound with only 30
participants. However, other data have turned out to be
significantly different. For example, in the first user group
Internal and External users had similar total distances in
Exponential mode but which were completely different in
the second group.

Highly External. In Group 1, the Highly External group is
clearly differentiable, among all user groups, because they
have the largest deviation from an optimal path (M=0.42m)
and the fewest total number of commands (M=249) under
the Exponential autonomy mode. They also have a much
lower average error (M=.11m) in the Linear mode but take
the longest of all users (M=416 s) and travel the furthest
(M=15.4m), while having the fewest command conflicts
(M=161) of any user group in that autonomy mode. Of
note is that this group sent the lowest total number of
commands in Exponential (M=249) of all groups suggesting
their patience with autonomy.

In the second part of the study, the Highly External group
is distinguishable in similar ways. Consistent with the first
group, they take the longest to complete the course in
both autonomy modes. However, in Exponential mode they
switch from the highest deviation from the optimal path
to the lowest (M= .42m and .12m, respectively). Unlike
the first part of the study, in Linear mode, External users
send the most commands (M=776), but in Exponential
mode, they still send slightly fewer (M=414). In the Linear
profile, Highly External users have the highest percentage
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of conflicts (48%) rather than being similar to other
participants in the first part of the study (33%).

After just one group, the trends in the performance of these
users seemed clear. However, without the second group of
users, we would have come to false conclusions about these
users’ behavior. As shown in the differences between path
deviations in the two parts of the study, the small number
of users in this group causes the data to be highly variable.

Highly Internal. Finally, in the first group of users,
the Highly Internal group has the highest percentage of
command conflicts for both Linear (43%) and Exponential
(35%) mode amongst all users (compared to Exponential
Average 25% and Highly External 30%) in the first part
of the study. Further, they also send the most commands
to the robot (Exponential M=540, Linear M=678). As a
group, they have a shorter total distance and duration,
but higher error from optimal in the Exponential mode
compared to Linear.

In the second group of users, this trend was reversed,
with the Highly Internal participants having the lowest
percentage of command conflicts in both Linear (35%)
and Exponential (22%) amongst all users (compared to
Exponential Average 34% and Highly External 32%). It is
interesting to note in this comparison that the number of
conflicts by Internal users were almost halved between the
studies (M=189 in the first compared to 95 in the second)
while the number of commands stayed roughly consistent
(M=540 compared to 429). We also see that Highly Internal
users take significantly less time to complete the course
under the Exponential profile than the Linear (M=264 s
and 392 s, respectively), and drive about 10–20% less than
their External counterparts under the same conditions.

From the results of the Highly Internal group, we see large
variability in the conflicts between the first user group and
the second. These users, by far, are the most inconsistent
between groups. Their trends, especially total commands
and conflicts, vary between the two groups. This shows that
this group of users would need more study and perhaps
even more users run before anything conclusive can be
drawn even though this group is larger than the External
group (with 10 participants compared to 3 in the second
study).

5. DISCUSSION

The fusion of HRI/HCI directly into the design of robot au-
tonomy by inferring user qualities and adjusting algorithms
at run-time has the potential to transform robot autonomy
design. But as the results here demonstrate, this process is
fraught with difficulties in generalizing from small datasets.

5.1 CPHS Design Implications and Recommendations

These findings provide insight into the design of CPHS
in which users are directly involved in control: user
qualities can be inferred from a combination of system
and user performance, and suggests that autonomy could
be designed to switch or adapt to users on-the-fly based
on observations made in real-time. It also means that
such a strategy can augment the less explored adaptation
mechanisms (Ranatunga et al., 2015) that supplement

“human-in-the-loop” controllers such as impedance and
admittance manipulation (Hogan, 1984). Despite these
promises, the differences between the users in the first
and second groups also highlights the fragility of designing
to inherently noisy systems (such as those composed of
individual humans with their own ideas and preferences).
Due to these differences, it is likely that a third group
would also produce different conclusions and researchers
should be careful when drawing conclusions from small
user studies.

We anticipate the largest gains will come when autonomy
adapts to novice users and improves performance of the
CPHS to make it comparable to performance with highly
trained users. However, as these data show, these systems
are unlikely to be seeded with data from a small number
of participants. Recommendations for study design can be
found in the HRI community (Bethel and Murphy, 2010)
and can inform how many users it would likely take to
support the amount of data required for training. But these
guidelines can impart high costs for participant recruitment
and payment, as well as student time for running studies.
To do our part to mitigate this, and help the community
build a shared repository for CPHS data, we offer our
corpus of data of the user study described herein to aid
researchers in furthering CPHS community goals 3 .

In addition to sharing user-study data within the CPHS
community, a recommendation moving forward would be
to consider large, distributed studies collecting data from
international locations that could inform some of the more
basic adaptations of interest to the community. This would
allow a magnification of efforts and would generally allow
multiple research directions to be explored at once, if
carefully designed.

5.2 Limitations

The Double telepresence robot used in the study is an
inverted pendulum design. As a result, the robot oscillates
to maintain balance resulting in non-smooth motion. This
can affect user perception of what the robot is doing, and
incidental collisions if the robot is near an obstacle and
needs to balance. The platform also limits the rate and
duration of a command to the robot. This means users must
tap the command button for each command as opposed to
holding the button down. This is due to limited access
provided by the official SDK, and transmission of the
commands through several systems, algorithms, and the
network before reaching the robot base.

When looking at the results from both groups of users, one
important note is the lack of significant differences between
the Average and the Highly Internal groups. These groups
are similar in all of the behaviors and metrics we tracked
in this study, indicating not that Takayama et al. (2011)
was wrong, but that there are likely other user qualities
which are overriding the impact of LoC. As a result, a
natural extension of this work would be to investigate
other user qualities that might allow a differentiation
between these groups. While the lack of participants in
the Highly External group (only 10% of our population)
could be a concern, we actually had a similar percentage

3 https://nimbus.unl.edu/projects/cyphuas/
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of the most extreme Highly Internal participants (7%)
represented in this study when compared to findings by
Valecha and Ostrom (1974) in a large population (5%).
These distributions suggest that we should investigate how
to further differentiate the >80% of people in the other
groups.

From a study design perspective, because error, duration,
and total distance do not always correlate, additional
metrics such as idle time, thrashing, and additional optimal
path metrics could augment our conclusions.

5.3 Next Steps

Based on our findings, two important next steps arise. First,
studies similar to this one need to be conducted to establish
1) which other intrinsic user qualities can be inferred
from user interactions, and 2) which ones are sufficiently
predictive to allow for reliable categorization of a user to
allow an autonomy to switch or adapt. We specifically
plan to conduct a similar study focused on immersive
tendencies and empathy as suggested by Samana et al.
(2009) and spatial reasoning as suggested by Takayama et al.
(2011). Second, of immediate interest is the development
and implementation of a switching autonomy based on the
larger set of both groups of participants, thereby smoothing
the differences reported here. This will demonstrate that
an autonomy that can infer user qualities and adapt
accordingly will result in improved performance and user
behavior.
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