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Abstract: Most cyber-physical human systems (CPHS) rely on users learning how to interact
with the system. Rather, a collaborative CPHS should learn from the user and adapt
to them in a way that improves holistic system performance. Accomplishing this requires
collaboration between the human-robot/human-computer interaction and the cyber-physical
system communities in order to feed back knowledge about users into the design of the
CPHS. The requisite user studies, however, are difficult, time consuming, and must be carefully
designed. Furthermore, as humans are complex in their interactions with autonomy it is difficult
to know, a priori, how many users must participate to attain conclusive results.

In this paper we elaborate on our work to infer intrinsic user qualities through human-robot
interactions correlated with robot performance in order to adapt the autonomy and improve
holistic CPHS performance. We first demonstrate through a study that this idea is feasible.
Next, we demonstrate that significant differences between groups of users can impact conclusions
particularly where different autonomies are involved. Finally, we also provide our rich, extensive
corpus of user study data to the wider community to aid researchers in designing better CPHS.
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1. INTRODUCTION

Allowing autonomous control to be supervised by and
shared with users can greatly improve performance by
allowing users to complete complex tasks and assure
that all tasks are completed safely. In these cases, most
designs rely on users “learning” or being trained on
how the autonomy behaves and adapting their behavior
accordingly. We contend that this paradigm is backwards.
Collaborative autonomies should infer user qualities and
use this knowledge to adjust autonomy in an effort to
improve the performance of the combined user/autonomy
system. In this way cyber-physical human systems (CPHS)
learn and adapt together.

Accomplishing this objective is very difficult as it requires
a tight feedback loop in which a CPHS learns and infers
intrinsic qualities about a user and adapts to them in a
short period of time using interactions. While the human-
robot interaction (HRI) and human-computer interaction
(HCI) communities have a rich knowledge base, studies,
and data on user qualities and their relationship with
systems, these data may not make their way to designers
of cyber-physical systems (CPS). Moreoever, in the event
tight collaboration is achieved between these communities,
collecting the data to close the design loop on user-
based design is fraught with difficulties. For example, user
studies are time consuming, require institutional review
board (IRB) approval, recruitment of participants, tight
monitoring of the study process to ensure data integrity, etc.

* This work was supported in part by NSF award #1638099

Additionally, humans are complex and
small numbers of users may be inade-
quate to draw conclusions, making it
difficult to identify how many users are
needed to ensure significant results. Even
if the data is collected, designers of CPS
may not consult the data to incorporate
user study information into their designs.

We have been correlating user interac-
tions and robot autonomy and perfor-
mance with intrinsic user qualities with
the goal of building adaptive robot au-
tonomies as reported in Acharya et al.
(2018). We initially conducted a user
study with 28 participants investigating
the impact of the intrinsic quality Locus
of Control as described by Rotter (1966)
on the performance of a Double telep-
resence robot (seen in Figure 1). These
original 28 participants, supplemented
with two more for 30 total, were insuffi-
cient to draw firm conclusions due to the

|

Fig. 1. Doubl

L Telep-
limitations of the platjform and our au- resence
tonomy. We then recruited an additional Robot

30 users to participate in the study allowing us to draw
much stronger conclusions. The differences between these
user groups was pronounced and instructive. This data
was difficult to obtain and required expertise from those in
the HRI and CPS community and represents a large effort
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toward our ultimate objective of a user-adaptive autonomy
for robots.

In this paper, using data from the aforementioned study,
we make three key contributions to address the several
issues elucidated above. First, we showcase data from the
participants that demonstrates that it is possible to infer

intrinsic user qualities from user interactions with a robot.

Second, this data is split into two groups, a first group of
30, and a second group of 30 participants. We compare and
contrast those two groups to demonstrate the differences
in conclusions that can be drawn from different groups of
random users, as well as whether they hold for a larger
group of 60. This helps provide insights to the community
for the circumstances under which more participants may
be needed, but also the variability of data gathered from
groups of users in human subjects studies. Finally, we
provide a corpus of our data® allowing other researchers
to avoid the need to run such time consuming and complex
studies. Our data correlates intrinsic, unchanging user
qualities with robot autonomy principles such that other
researchers can download and mine the data to find answers
for particular design challenges.

2. RELATED WORK

We briefly summarize work related to user qualities and
preferences in shared control in telepresence systems and
then discuss user qualities studies related to our work to
set the stage for our study.

In telepresence robotics, several studies have identified
that autonomous navigational assistance is essential in
telepresence robots to provide better control of the robot
and also reduce the cognitive load of users (Desai et al.,
2011). In a similar study, Bruemmer et al. (2005) found that
participants performed better with shared control through
reduction in task completion time, reduction in errors, and
increase in number of items found by users during a search
task. Riano et al. (2011) conducted human studies with
shared control implemented on telepresence robot in order
to assess the improvement of user performance with shared
control. They observed that with shared control in obstacle
avoidance, people made less mistakes in navigation, and
felt more comfortable to drive the robot and maintain
conversation simultaneously.

The role of shared control has also been evaluated on Brain
Computer Interface (BCI) based telepresence systems by
Tonin et al. (2010). The study used shared control on
a telepresence robot (Robotino) to provide its operators
a feeling of control over the robots while ensuring safe
navigation in a remote environment. It was observed that
shared control with low-level obstacle avoidance enabled
operators to complete the task faster than without shared
control.

Even though shared control has been found to improve
user performance with telepresence robots, the performance
has been found to vary with user qualities. Takayama
et al. (2011) conducted human studies to evaluate the
effectiveness of shared control implemented on telepresence
robots by comparing performance of users based on system
dimensions (shared control and manual control) and human

! https://nimbus.unl.edu/projects/cyphuas/

dimensions (gaming experience, locus of control, and spatial
cognitive ability). It was observed that even though shared
control was effective over manual control, user performance
varied based on their locus of control. People with a more
internal locus of control fought against the autonomy
and hence required more time to complete the tasks in
comparison to people with a more external locus of control.
The results of their study suggest that shared control
should be adaptive based on the user qualities to improve
performance.

Finally, we summarize work related to the specific quality,
locus of control, we study in this work, demonstrating that
locus of control helps define how a person interacts with the
world, and by extension, will interact with a robot. Rotter
(1966) divides people into two groups, internal locus of
control and external locus of control. People who perceive
that outcomes are based on one’s own actions are labeled as
having internal locus of control whereas those who believe
that outcomes are dependent on luck, fate or other external
forces are labeled as having external locus of control.

Studies have shown that people with internal locus of
control believe in their ability to control their life events,
expect their actions to result in outcomes that can be
predicted, and are more satisfied with situations allowing
personal control (Brenders, 1987; Phillips and Gully, 1997)
than people with external locus of control. A study by
Samana et al. (2009) found locus of control to be one of
the better predictors of presence in virtual environments.
With an increased sense of presence in virtual environments
people’s behavior in virtual environments could be similar
to their behavior in the real world (Mestre et al., 2006)
which could lead to improvement in performance. As a
result, we expect that differences in locus of control of
individuals will lead to difference in performance with
different obstacle avoidance settings invoked in shared
control.

Our work here is differentiated from this related research
by leveraging the impacts of a user’s locus of control on
the robot toward development of a shared control strategy.
We show there is high likelihood that locus of control can
be predicted from these interactions, and as a result, an
autonomy could be adapted to that user quality to improve
shared control performance.

3. STUDY DESCRIPTION

In this section we provide a condensed description of our
hypotheses, the autonomy used in the study, and the user
study experiment reported in Acharya et al. (2018).

3.1 Hypotheses

Takayama et al. (2011) found varied performance across
users with different locus of control when operating a
telepresence robot with shared control. Based on that work
we formulated following hypotheses:

Hypothesis 1: Users with a more internal locus of control
will perform better with an autonomy more responsive to
user inputs than a more restrictive autonomy.
Hypothesis 2: Users with different locus of control will
have different performance given a robot autonomy.
Hypothesis 3: Users with different locus of control will
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have different behavior given a robot autonomy.

3.2 Autonomy Description

We created two modes of a static autonomy in order to
explore the effects of locus of control and autonomy on
performance. The results from Takayama et al. (2011) show
that autonomous assistance improved performance, but for
users with highly internal locus of control, the tasks took
longer to complete. They suggest that these users fought
with the autonomy for control of the robot leading to our
Hypothesis #1 above. This also provides the reasoning
for two modes of autonomy tested on users separated into
groups based on their locus of control.

Autonomy Owverview  We studied the navigation of a
telepresence robot through an obstacle course, similar to
Takayama et al. (2011). Our goal is for the autonomy to aid
the user in traversing the course while avoiding obstacles.
To acheive this goal, we focus on an autonomy that works
together with user commands (i.e., “shared control”).

We used a Double telpresence robot and made changes to
the hardware and software to create a customized shared
control mechanism. The user interacted with our i0OS
application that provided telepresence capabilities such
as a live video feed, and command input. We added a laser
range finder to the robot to detect obstacles, which sent
information back to an obstacle avoidance algorithm. The
obstacle avoidance algorithm then combined the user input
with sensor data and sent commands through a vendor
provided software development kit (SDK)? to command
the robot under a shared control scheme.

Obstacle Avoidance System  In recent years advances have
been made in deliberative and reactive planning (Ingrand
and Ghallab, 2014; Kortenkamp et al., 2016) and obstacle
avoidance (Minguez et al., 2016; Kim and Chwa, 2015)
for robots. Limitations of potential fields are well known
(Koren and Borenstein, 1991), although they are still an
active area of research (Sharma et al., 2017). Our objective
is a shared autonomy that can be later designed to adapt
to user qualities entirely founded on interactions between
the user and the robot. Due to these requirements, we want
an obstacle avoidance strategy that allows combination of
user commands with autonomy, is easy to implement, and
has common algorithmic adaptations that can be employed
for users with different locus of control.

Artificial potential fields fill all of the stated conditions.
They are a reactive planner comprised of forces both attrac-
tive and repulsive that are represented by vectors giving
the magnitude and direction of the force (Murphy, 2000).
Undesirable locations correspond to repulsive vectors, while
desirable locations are represented by attractive vectors.
The autonomy sums the forces at the robot’s location to
determine direction and velocity of the next movement.
In our particular shared control scheme, we rely on user
input (rather than attractive forces) to provide the goal
seeking behavior while obstacles detected by the laser
scanner generate repulsive vectors. Repulsive vectors are

2 Double Robotics: Basic-Control-SDK-iOS (https://github.com/
doublerobotics/Basic-Control-SDK-1i08S)

then combined to take into account both user input and
computer control.

In each phase of our experiment, one of two potential
field strategies is chosen. One strategy was designed with
a repulsive force that scales linearly with distance from
an obstacle. We hypothesize this strategy will: 1) keep
users further from obstacles despite a desire to approach
them and 2) more quickly lead the user to the end goal
by following more closely with an optimal path — if they
allow the autonomy to guide them. These factors make
the linear repulsive force more appealing to users with an
external locus of control who should be less resistive to
sharing control with the robot.

The other strategy was designed with a potential field
scaling exponentially with decreasing distance from the
obstacle. This strategy will 1) give users more control by
allowing them to get closer to obstacles and 2) provide
better insight on the user’s capability because the user is
almost entirely responsible for staying on the optimal path.
This makes the exponential repulsive force more suitable
for users with an internal locus of control.

To implement this strategy, obstacles in front of the robot
are detected using a laser scanner. For each obstacle
detected, repulsive forces are calculated based upon the
angle to the obstacle and the distance to the obstacle. The
force can be modeled by a “magnitude profile” function
within a “sphere of influence” around the robot (Murphy,
2000).

Obstacle avoidance is only activated when at least one
obstacle is within the sphere of influence of the robot. In
our control scheme, the sphere of influence was tuned to a
diameter of D = 1 m based on robot capabilities and the
size of our obstacle course.

Linear Magnitude Profile Let dpyy;, = 0.15m be the
minimum obstacle detection distance of the laser scanner,
and D be the sphere of influence, inside of which obstacles
will apply a repulsive force. The magnitude of the repulsive
force exerted by an obstacle is calculated to be

D—d

Min
where d is the distance from the obstacle and 7, is a
normalizing factor that represents the maximum repulsive
force, which would occur at d,,;,.

m =

Linear
(restrictive)

LY
o
©
=
w
0
(@)

Exponential
(relaxed)

Level of control user feels

Distance of robot from obstacle

Fig. 2. Linear and Exponential Magnitude Profiles as a
Function of Distance
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Fig. 3. Operator’s User Interface with four blue buttons
for forward, backward, left, and right controls

Ezponential Magnitude Profile  Using the previously
defined parameters from the linear magnitude profile,
the repulsive exerted by an obstace in the exponential
magnitude profile is calculated as

(1) - (5)"

Nexp
where 7¢.p is a normalizing factor and a = 0.18 is a
parameter that is tuned based on testing with the robot in

the experimental environment and creates the curvature of
the exponential function. Both magnitude profiles can be

m =

seen as a function of distance from an obstacle in Figure 2.

Shared Control In both magnitude profiles, all repulsive
vectors from obstacles within the sphere of influence are
averaged to make one total repulsive vector with a direction,
Dtotal, and magnitude, myota, Which is passed through the
supplied SDK to the robot where it is combined with user
input to determine the final movement.

3.8 Ezxperiment

We designed the experiment to test performance with the
shared control as well as to gain insight into key user
traits. This section describes our setup, participants, and
methodology for the user study.

Setup  We conducted a two part study with a Double
telepresence robot (Figure 1) with a weight of 6.8 kg and
a constant height of 1.32m. The robot is comprised of a
mobile base and a vertical pole. At the top of the robot
there is an iPad that is connected to the robot and acts as
an interface. The video of the environment visible through
the iPad’s camera is streamed back to the operator in a

similar manner to a standard videoconferencing application.

The robot has a microphone and directional speaker on
board that allow the operator to communicate in the remote
environment. The robot has a box attached to the vertical
pole near the base of the robot that houses the Hokuyo
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Fig. 5. Main Course

laser rangefinder, which sits approximately 7.62 cm above
the mobile base and 35.56 cm above the floor. To give the
operator control of the robot in the remote environment
we built a custom iOS application and interface (seen in
Figure 3) using the vendor supplied SDK. The interface has
a live stream of the remote environment and has forward,
backward, left, and right buttons to allow the operator to
command the robot.

A T-shaped obstacle course (shown in Figure 4) was created
in a 2.79m by 4.19 m area made up of 0.85m tall cardboard
boxes. This training course was used for participants
to practice driving the robot with a particular obstacle
avoidance profile before being tested on the main obstacle
course. The main obstacle course (seen in Figure 3.3.1)
filled a 3.65m by 3.74 m experiment room dedicated to the
user study. This obstacle course was based on the study
from Takayama et al. (2011) with modifications due to
differences in room size, robot size, and sensor limitations.
These included replacement of chairs with cardboard boxes
and table leg coverings to provide a smooth continuous
surface for the laser range finder. We computed an optimal
path from start to end using an A* search to minimize
distance traveled. A simplified version of this path is plotted
on the figure using a dashed blue line. The start and end
positions of the path are marked by thick black lines. The
start and end positions will changed on a per trial basis,
determined by the direction of movement (i.e., clockwise
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or counterclockwise). The robot’s position was tracked
with Vicon motion capture cameras through the obstacle
course. This data was used to calculate metrics, such as
the deviation of the user’s path from the optimal path,
velocity, and the number of collisions with obstacles.

Participants 60 participants (30 male, 30 female) with
ages ranging from 19-74 were recruited through emails
to campus mailing lists, and advertisements on- and off-
campus. The first 30 participants were paid $10 and the
remaining 30 were paid $20 as compensation for their time.
Based on the value of locus of control, 23 participants were
found to be “Highly Internal,” six participants were found
to be “Highly External,” and 31 participants were found
to be “Average.”

Methodology  This describes the questionnaires, perfor-
mance metrics, and procedure used in the study.
Questionnaires:

(1) Demographics Questionnaire: This questionnaire con-
sisted of questions regarding gender, age, handedness,
computer experience, and robot experience.

(2) Locus of Control Questionnaire: An abbreviated ver-
sion of the Locus of Control Questionnaire (LoCQ)
(Valecha and Ostrom, 1974) with 11 items, each
consisting of options for internal and external attribu-
tion was used in the study. This was used to group
participants into three categories: strong internal locus
of control (“Highly Internal”, 0-3), mid-range locus of
control (“Average”, 4-7), and strong external locus of
control (“Highly External”, 8-11).

Procedure: The experiment was run in two parts with an
identical procedure. Initially, the study was run with 30
participants, but after collecting and viewing the data, 30
more participants were recruited to verify and strengthen
our findings. The procedure below was consistent for all
participants in the study.

An experimenter welcomed the participants and provided
them with consent forms, standard options to leave without
penalty, and a pre-questionnaire collecting demographic
information and assess their Locus of Control. Subsequently,
the iPad interface was explained and the study was divided
into two phases. Each phase would be conducted with either
linear or exponential obstacle avoidance profiles in either a
clockwise or counterclockwise direction. Both the direction
and obstacle avoidance profile were randomly selected and
counterbalanced to assure an equal number of males and
an equal number of females in each configuration.

At the beginning of each phase, participants complete two
laps on the training course (shown in Figure 4) in the
direction and obstacle avoidance profile that they will use
on the main course. Then, the participant completes one
lap on the main obstacle course and their performance is
tracked. Once the participant has completed the training
and main obstacle courses, the first phase is complete,
and they are asked to complete a questionnaire to gather
feedback and insight into their experience with the robot.
After the 2"¢ phase, the participant completed a post-
questionnaire to gather the same information as the
questionnaire. The study was then wrapped up with a
closing interview, again for feedback and a more personal
discussion of their interaction with the robot.

Performance Metrics: We developed metrics to analyze
user and robot performance in the shared control scheme.
All metrics were computed from the time the robot crossed
the start line to the time the robot crossed the finish line.
To compile the data, we computed means across all six
combinations of our defined locus of control categories
and obstacle avoidance profile. For example, to measure
the average duration of the “Exponential/Highly External”
category, we took a mean of the duration of all runs from
users having a highly external locus of control using the
exponential obstacle avoidance magnitude profile.

We computed metrics to assess holistic CPHS performance.
First, total duration, in seconds, to complete the main
obstacle course. Next, total distance driven, in meters,
during traversal of the main obstacle course. Both metrics
give an overview of general task performance. The third
metric is error from a optimal path through the main
obstacle course, computed using an A* search to minimize
distance while avoiding obstacles. This metric is measured
as the average amount of perpendicular distance between
the robot and the optimal path. The fourth metric is the
number of collisions occured during a run. Any contact
with an obstacle or wall counts as a collision. While the
user remained in contact with the same obstacle, this count
would not increase, but if the user broke contact and then
contacted any obstacle, those would count as separate
collisions.

The final metrics relate to the user input. First, total
commands issued by the user via button presses while
navigating the main course. Next, a conflicting command is
defined as an instance where the final command executed
by the robot differs from the user input due to the obstacle
avoidance autonomy. Using this definition, we calculate
the ratio of command conflicts to total commands. This
indicates when the control scheme favors the input of the
computer over the user, which provides insight into how
often the user “disagrees” with the obstacle avoidance.

4. RESULTS

We summarize and compare the data from both groups in
order to understand the impact of the individuals on the
collective results and discuss the consequences of running
smaller versus larger participant groups. These results
show that some trends, especially those relating to user
behavior, require significantly larger participant groups to
conclusively determine any trends from the acquired data.

Table 1 displays the results of both groups of participants.
All data was sorted based on Locus of Control and
autonomy mode. The table groups metrics and compares
all user groups on each metric.

Our objective is to adapt the autonomy as we infer qualities
about a user, thus we are interested in trends suggesting
that one user group performs better on a particular mode
of autonomy based on their locus of control. Following
analysis by Takayama et al. (2011) and Samana et al. (2009),
but observing trends in our data, we divided users into
“Highly Internal,” “Average,” and “Highly External” Locus
of Control categories. We added the “Average” category
due to the relatively large number of users and their unique
performance in the study. In Table 1 and later on in our
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Table 1. Results grouped into the primary metrics, divided by user group. Lower values reflect
better system performance in each category. High values for each metric for each group are
bolded while low values are italicized.

Group 1 Total Commands Command Conflicts  Path Length (m) Deviation (m) Time (s)

Highly Internal Exponential  540.2 (SD = 620.2) 189 (SD = 220.7) 13.4 (SD = 3.7) 14 (SD = .04) 2580 (SD = 145.3)
Highly Internal Linear 647.6 (SD = 756.5) 278 (SD = 397.9) 15 (SD = 3) .12 (SD = .03) 378.5 (SD = 179.6)
Average Exponential 307.1 (SD = 268.4) 77.2 (SD = 63.7) 12 (SD = 1.2) .11 (SD = .02) 245.7 (SD = 87.6)
Average Linear 465 (SD = 504.9) 181.2 (SD = 177.6) 13.2 (SD = 1.8) 12 (SD =.03) 291 (SD = 87.7)
Highly External Exponential — 248.7 (SD = 168.3) 75.8 (SD = 41.8) 13.6 (SD = 1.1) .42 (SD = .21) 283 (SD = 80.6)
Highly External Linear 482.7 (SD = 352.7) 161.3 (SD = 90.7) 15.4 (SD = 1.9) .11 (SD = .02)  415.9 (SD = 92.1)
Group 2

Highly Internal Exponential ~ 429.1 (SD = 172.8) 95.8 (SD = 60.7) 13.5 (SD = 2.2) .18 (SD = .17) 264.2 (SD = 80.1)
Highly Internal Linear 647.7 (SD = 375.9) 224.1 (SD = 160.5) 17.3 (SD = 5.7) 14 (SD =.04)  392.4 (SD = 141.5)
Average Exponential 593.4 (SD = 755.7) 188.4 (SD = 255.4) 15.2 (SD = 6.3) .19 (SD = .05) 265.3 (SD = 147.4)
Average Linear 769.8 (SD = 630.6) 285.7 (SD = 270.9) 15.5 (SD = 3.1) 13 (SD = .04)  364.5 (SD = 179.7)
Highly External Exponential  414.3 (SD = 460.7) 141 (SD = 170) 14.9 (SD = 3.7) .12 (SD = .14) 321.4 (SD = 108.8)
Highly External Linear 776 (SD = 715.9)  377.7 (SD = 435.43) 22 (SD = 6.3) 15 (SD = .05)  482.3 (SD = 233.6)
All

Highly Internal Exponential 491.9 (SD = 474.5) 148.3 (SD = 193.9) 13.4 (SD = 3.1) .16 (SD = .11) 261.2 (SD = 118.9)
Highly Internal Linear 647.7 (SD = 608.2) 254.6 (SD = 312.5) 16 (SD = 4.4) 13 (SD = .04)  384.5 (SD = 160.8)
Average Exponential 464.1 (SD = 597.3) 138.2 (SD = 199.3) 13.7 (SD = 4.9) .15 (SD = .11) 256.4 (SD = 122.5)
Average Linear 632.5 (SD = 588.4) 238.5 (SD = 235.8) 14.5 (SD = 2.8) 12 (SD = .04)  331.3 (SD = 148.1)
Highly External Exponential = 3381.5 (SD = 323.2) 108.2 (SD = 116.3) 14.2 (SD = 2.5) .27 (SD = .21) 302.2 (SD = 88.2)
Highly External Linear 629.3 (SD = 529.7) 269.5 (SD = 305.2) 18.7 (SD = 5.5) .13 (SD = .04) 449.1 (SD = 162.9)

discussion, autonomy modes are abbreviated as “Linear”
and “Exponential” referring to the magnitude profile of
the potential field obstacle avoidance.

“Command Conflicts,”

kM

We chose “Total Commands,”
“Path Length (m),” and “Deviation (m)(from optimal path)
as the categories to focus on as they provide the most
compelling data and could generally be sensed in real-time
or through a short interaction lending themselves to in-
situ autonomy adaptation. Of additional interest is the
number of collisions in each trial, however, we found that
collisions were consistent across all users in each of Linear
and Exponential modes. Each of the categories provides a
measure by which we will be able to switch the autonomy
in future studies to improve performance. We now discuss
each Locus of Control group across both user study groups.

Average. In Group 1, we found users in the Average
group to be of primary interest. They performed better
under Exponential control in all categories, except path
length (as shown on the two middle bars for each metric in
Table 1). A paired-samples t-test was conducted to compare
total commands and conflicting commands under Linear
and Exponential control schemes. There was significant dif-
ference in command conflicts for Linear (M=189, SD=170)
and Exponential (M=77, SD=64) conditions; t(13)=2.83,
p=0.015, two-tailed. Number of commands approached
significance for Linear (M=465, SD=505) and Exponential
(M=307, SD=268) conditions; t(13)=1.86, p=0.087, two-
tailed. The Average participants drove shorter paths in
both Linear (M=13.2m) and Exponential (M=12m) when
compared to to the External participants (M=15.4m and
13.6 m, respectively).

However, in Group 2, the Average user group sent more
commands and had more command conflicts. When looking
at command conflicts in the Linear condition, an Average
user still has more conflicts (M=286 compared to M=188
in Exponential) and an increased number of commands
(M=770 compared to M=593). There also appear to be
some trends in this group that did not show up in the
first group. In the Exponential condition, an Average

or Highly Internal deviates the most. Highly Internal
and Average have shorter Path Length using the Linear
autonomy (M=17.3m and 15.5 m, respectively, compared
to M=22m for Highly External), but while using the
Exponential autonomy, Average and Highly External
users drive greater Path Lengths (M=15.2m and 14.9m
compared to M=13.5m from Highly Internal).

Some conclusions have been consistent across the data.
For example, from the first group of users, we correctly
identified an important trend in command conflicts showing
trends to be roughly the same across all groups. This
suggests that some conclusions were sound with only 30
participants. However, other data have turned out to be
significantly different. For example, in the first user group
Internal and External users had similar total distances in
Exponential mode but which were completely different in
the second group.

Highly External.  In Group 1, the Highly External group is
clearly differentiable, among all user groups, because they
have the largest deviation from an optimal path (M=0.42 m)
and the fewest total number of commands (M=249) under
the Exponential autonomy mode. They also have a much
lower average error (M=.11m) in the Linear mode but take
the longest of all users (M=416s) and travel the furthest
(M=15.4m), while having the fewest command conflicts
(M=161) of any user group in that autonomy mode. Of
note is that this group sent the lowest total number of
commands in Exponential (M=249) of all groups suggesting
their patience with autonomy.

In the second part of the study, the Highly External group
is distinguishable in similar ways. Consistent with the first
group, they take the longest to complete the course in
both autonomy modes. However, in Exponential mode they
switch from the highest deviation from the optimal path
to the lowest (M= .42m and .12m, respectively). Unlike
the first part of the study, in Linear mode, External users
send the most commands (M=776), but in Exponential
mode, they still send slightly fewer (M=414). In the Linear
profile, Highly External users have the highest percentage
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of conflicts (48%) rather than being similar to other
participants in the first part of the study (33%).

After just one group, the trends in the performance of these
users seemed clear. However, without the second group of
users, we would have come to false conclusions about these
users’ behavior. As shown in the differences between path
deviations in the two parts of the study, the small number
of users in this group causes the data to be highly variable.

Highly Internal.  Finally, in the first group of users,
the Highly Internal group has the highest percentage of
command conflicts for both Linear (43%) and Exponential
(35%) mode amongst all users (compared to Exponential
Average 25% and Highly External 30%) in the first part
of the study. Further, they also send the most commands
to the robot (Exponential M=540, Linear M=678). As a
group, they have a shorter total distance and duration,
but higher error from optimal in the Exponential mode
compared to Linear.

In the second group of users, this trend was reversed,
with the Highly Internal participants having the lowest
percentage of command conflicts in both Linear (35%)
and Exponential (22%) amongst all users (compared to
Exponential Average 34% and Highly External 32%). It is
interesting to note in this comparison that the number of
conflicts by Internal users were almost halved between the
studies (M=189 in the first compared to 95 in the second)
while the number of commands stayed roughly consistent
(M=540 compared to 429). We also see that Highly Internal
users take significantly less time to complete the course
under the Exponential profile than the Linear (M=264s
and 392 s, respectively), and drive about 10-20% less than
their External counterparts under the same conditions.

From the results of the Highly Internal group, we see large
variability in the conflicts between the first user group and
the second. These users, by far, are the most inconsistent
between groups. Their trends, especially total commands
and conflicts, vary between the two groups. This shows that
this group of users would need more study and perhaps
even more users run before anything conclusive can be
drawn even though this group is larger than the External
group (with 10 participants compared to 3 in the second
study).

5. DISCUSSION

The fusion of HRI/HCI directly into the design of robot au-
tonomy by inferring user qualities and adjusting algorithms
at run-time has the potential to transform robot autonomy
design. But as the results here demonstrate, this process is
fraught with difficulties in generalizing from small datasets.

5.1 CPHS Design Implications and Recommendations

These findings provide insight into the design of CPHS
in which users are directly involved in control: user
qualities can be inferred from a combination of system
and user performance, and suggests that autonomy could
be designed to switch or adapt to users on-the-fly based
on observations made in real-time. It also means that
such a strategy can augment the less explored adaptation
mechanisms (Ranatunga et al., 2015) that supplement

)

“human-in-the-loop” controllers such as impedance and
admittance manipulation (Hogan, 1984). Despite these
promises, the differences between the users in the first
and second groups also highlights the fragility of designing
to inherently noisy systems (such as those composed of
individual humans with their own ideas and preferences).
Due to these differences, it is likely that a third group
would also produce different conclusions and researchers
should be careful when drawing conclusions from small
user studies.

We anticipate the largest gains will come when autonomy
adapts to novice users and improves performance of the
CPHS to make it comparable to performance with highly
trained users. However, as these data show, these systems
are unlikely to be seeded with data from a small number
of participants. Recommendations for study design can be
found in the HRI community (Bethel and Murphy, 2010)
and can inform how many users it would likely take to
support the amount of data required for training. But these
guidelines can impart high costs for participant recruitment
and payment, as well as student time for running studies.
To do our part to mitigate this, and help the community
build a shared repository for CPHS data, we offer our
corpus of data of the user study described herein to aid
researchers in furthering CPHS community goals? .

In addition to sharing user-study data within the CPHS
community, a recommendation moving forward would be
to consider large, distributed studies collecting data from
international locations that could inform some of the more
basic adaptations of interest to the community. This would
allow a magnification of efforts and would generally allow
multiple research directions to be explored at once, if
carefully designed.

5.2 Limitations

The Double telepresence robot used in the study is an
inverted pendulum design. As a result, the robot oscillates
to maintain balance resulting in non-smooth motion. This
can affect user perception of what the robot is doing, and
incidental collisions if the robot is near an obstacle and
needs to balance. The platform also limits the rate and
duration of a command to the robot. This means users must
tap the command button for each command as opposed to
holding the button down. This is due to limited access
provided by the official SDK, and transmission of the
commands through several systems, algorithms, and the
network before reaching the robot base.

When looking at the results from both groups of users, one
important note is the lack of significant differences between
the Average and the Highly Internal groups. These groups
are similar in all of the behaviors and metrics we tracked
in this study, indicating not that Takayama et al. (2011)
was wrong, but that there are likely other user qualities
which are overriding the impact of LoC. As a result, a
natural extension of this work would be to investigate
other user qualities that might allow a differentiation
between these groups. While the lack of participants in
the Highly External group (only 10% of our population)
could be a concern, we actually had a similar percentage

3 https://nimbus.unl.edu/projects/cyphuas/
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of the most extreme Highly Internal participants (7%)
represented in this study when compared to findings by
Valecha and Ostrom (1974) in a large population (5%).
These distributions suggest that we should investigate how
to further differentiate the >80% of people in the other
groups.

From a study design perspective, because error, duration,
and total distance do not always correlate, additional
metrics such as idle time, thrashing, and additional optimal
path metrics could augment our conclusions.

5.8 Next Steps

Based on our findings, two important next steps arise. First,
studies similar to this one need to be conducted to establish
1) which other intrinsic user qualities can be inferred
from user interactions, and 2) which ones are sufficiently
predictive to allow for reliable categorization of a user to
allow an autonomy to switch or adapt. We specifically
plan to conduct a similar study focused on immersive
tendencies and empathy as suggested by Samana et al.
(2009) and spatial reasoning as suggested by Takayama et al.
(2011). Second, of immediate interest is the development
and implementation of a switching autonomy based on the
larger set of both groups of participants, thereby smoothing
the differences reported here. This will demonstrate that
an autonomy that can infer user qualities and adapt
accordingly will result in improved performance and user
behavior.
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