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Abstract— Users play an integral role in the performance
of many robotic systems, and robotic systems must account
for differences in users to improve collaborative performance.
Much of the work in adapting to users has focused on designing
teleoperation controllers that adjust to extrinsic user indicators
such as force, or intent, but do not adjust to intrinsic user
qualities. In contrast, the Human-Robot Interaction community
has extensively studied intrinsic user qualities, but results
may not rapidly be fed back into autonomy design. Here we
provide foundational evidence for a new strategy that augments
current shared control, and provide a mechanism to directly
feed back results from the HRI community into autonomy
design. Our evidence is based on a study examining the impact
of the user quality “locus of control” on telepresence robot
performance. Our results support our hypothesis that key user
qualities can be inferred from human-robot interactions (such
as through path deviation or time to completion) and that
switching or adaptive autonomies might improve shared control
performance.

I. INTRODUCTION

As we move towards a future in which humans will increas-
ingly be asked to share control with autonomy in interactions
with teleoperated technologies such as telepresence robots,
aerial vehicles, and autonomous cars, the onboard control
may be suboptimal without considering the person on the
other end of the interaction. Through investigating the impact
of personal qualities that can be sensed in interactions
and adapting the autonomy based on that sensing, system
performance can be improved as measured by key metrics
of shared control performance such as time to completion,
distance in transit, error from optimal, and computational
efficiency. Based on these anticipated improvements, this
work is applicable to researchers in human-robot interaction,
cyber-physical systems, control theory, and robot planning
and behavior.

The specific research question being addressed by this work
is Can user qualities be observed through interactions with
a shared autonomy system and can that system adapt based
on these observations? This question is addressed through a
user study on interactions with a Double telepresence robot
(seen in Figure 1) in an obstacle avoidance task with two
distinct obstacle avoidance regimes. The hypotheses in this
work relate to the user performance and behavior under
autonomies that offer tradeoffs between user control versus
collision protection—of particular important to applications of
telepresence robots and autonomous vehicles in the future.

Personality is the determinant of individual’s characteristic
behavior caused by dynamic organization of psychophysical
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systems and differences in personality traits among individuals

lead to differences in their response to similar events [1]. In

this paper, personality traits of users are referred to as user

qualities. The user quality investigated in this paper is locus

of control which is defined as the degree to which people

feel that they have control over the events in their life [2].
Many shared control strategies adapt

to user performance by adapting to

force [3], intent [4], [5], or similar

extrinsic indicators, but do not consider

intrinsic qualities the user may have that

implicitly determine user performance.

In contrast, the human-robot interaction

and human factors communities have

examined user traits [6], [7], qualities .

[8], [9], and the impacts of systems

on user trust [10], presence [11], and

awareness [12]. However, it is often

the case that results from these studies

are left to designers to incorporate into

future designs, leaving a large gap in

feedback of user studies into robot au-

tonomy. In this work we aim to extend

research in shared control and provide -

a mechanism for tighter integration of _ 5

feedback from user studies into robot

autonomy by providing evidence that

user qualities can be inferred from in- ' l

teractions so that future autonomies can

be adjusted to improve shared control

performance. Fig. 1: Double Telep-
This work is novel in its investi- resence Robot.

gation of personal qualities identified

in human-robot interaction work to understand how these

different users may be classified to allow better shared

control strategies and improved system performance. There

were more command conflicts under the restrictive control

regime than under the relaxed control regime for all users,

resulting in wasted computational resources and suboptimal

system performance. On the other hand, users with a high

external locus of control issued fewer commands under the

relaxed control regime but drifted further from the optimal

path and had a higher completion time, resulting in wasted

energy. These results indicate that it might be beneficial to

opportunistically switch modes based on resource scarcity

for users with high external locus of control. This work also

offers methods for researchers to investigate the impact of

user qualities on user interactions and operationalize these

findings in future work to allow systems that adapt to the

(-




current user rather than being designed for an ideal user.
II. RELATED WORK

We briefly summarize work related to user qualities and pref-
erences in shared control in telemanipulation and telepresence.
We then discuss user qualities studies related to our work to
set the stage for our study.

A. Shared Control in Telemanipulation

In telemanipulation, force from the user is used to apply force
to the robotic manipulator, or predict intent [13]. A primary
research topic is how well users perform with different shared
control strategies. A few studies have been conducted that
examine how shared control can be improved if user traits
are known. Leeper et al. [14] analyzed the performance of
participants using four different grasping strategies based
on successful grasps, major collisions, and minor collisions
in a ten minute time period. They found that strategies
with increased autonomous control performed better because
the operators were able to grasp more objects and caused
fewer unwanted collisions. You and Hauser [15] ran five
groups of users, each using a different control strategy. They
concluded that users were willing to tolerate loss of control,
slower reaction times, and less predictable motions only for
significant improvements in performance and convenience,
which was provided by one of their control strategies.

In Dragan and Srinivasa [16] users performed robot
manipulation tasks with an aggressive controller and a timid
controller that attempted to predict user behavior based on
current and past trajectories. They found that users generally
preferred the autonomy that provided the best performance.
However, some preferred the timid controller even after
admitting that the aggressive controller was more helpful,
saying they preferred having more control of the robot. The
results suggest that the degree to which users are willing
to adapt to autonomy varies among individuals. Human
adaptability was taken into consideration to design a human-
robot adaptation model in a shared autonomy setting by
Nikolaidis et al. [17] where robots planned their actions
based on the degree to which users were willing to adapt to
the robot’s autonomy. It was observed that mutual adaptation
of users and robots led to a balance between optimized task
performance and user trust. The results of the study highlight
the importance of user adaptive shared autonomy for human-
robot collaboration tasks.

B. Shared Control in Telepresence

In telepresence robotics, some studies have examined the
utility of assisted autonomy and correlated it with improved
performance. Other examined user preferences and their
relation to shared control performance. Several studies have
identified that autonomous navigational assistance is essential
in telepresence robots to provide better control of the robot
and also reduce cognitive load of users [18]-[21]. In a
similar study Bruemmer et. al [22] found that participants
performed better with shared control through reduction in task
completion time, reduction in errors, and increase in number
of items found by users during a search task. Riano et. al [23]
conducted human studies with shared control implemented

on telepresence robot in order to assess the improvement of
user performance with shared control. They observed that
with shared control in obstacle avoidance, people made less
mistakes in navigation, and felt more comfortable to drive
the robot and maintain conversation simultaneously.

The role of shared control has also been evaluated on
Brain Computer Interface (BCI) based telepresence systems
by Tonin et al. [24]. The study used shared control on a
telepresence robot (Robotino) to provide its operators a feeling
of control over the robots while ensuring safe navigation in a
remote environment. It was observed that shared control with
low-level obstacle avoidance enabled operators to complete
the task faster than without shared control.

Even though shared control has been found to improve
user performance with telepresence robots, the performance
has been found to vary with user qualities. Takayama et.
al [25] conducted human studies to evaluate the effectiveness
of shared control implemented on telepresence robots by
comparing performance of users based on system dimensions
(shared control and manual control) and human dimensions
(gaming experience, locus of control, and spatial cognitive
ability). It was observed that even though shared control was
effective over manual control, user performance varied based
on their locus of control. People with more internal locus
of control fought against the autonomy and hence required
more time to complete the tasks in comparison to people
with more external locus of control. The results of their study
suggest that shared control should be adaptive based on the
user qualities to improve performance.

C. User Qualities

Finally, we summarize work related to the specific quality,
locus of control, we study in this work, demonstrating that
locus of control helps define how a person interacts with the
world, and by extension, will interact with a robot. Rotter [2]
divides people into two groups, internal locus of control and
external locus of control. People who perceive that outcomes
are based on one’s own actions are labeled as having internal
locus of control whereas those who believe that outcomes are
dependent on luck, fate or other external forces are labeled
as having external locus of control.

Studies have shown that people with internal locus of
control believe in their ability to control their life events [26],
expect their actions to result in outcomes that can be predicted,
and are more satisfied with situations allowing personal
control [27] than people with external locus of control.
Similarly, a study by Klein [28] which examined the effect
of user control and media richness in virtual telepresence
suggested that user qualities such as locus of control or
desire to control may have an impact on an individual’s use
of control. A study by Samana et. al [11] found locus of
control to be one of the better predictors of presence in virtual
environments. With an increased sense of presence in virtual
environments people’s behavior in virtual environments could
be similar to their behavior in the real world [29] which could
lead to improvement in performance. As a result, we expect
that differences in locus of control of individuals will lead to
difference in performance with different obstacle avoidance



settings invoked in shared control.

Our work here is differentiated from this related research
by leveraging the different behavior based on a user’s locus
of control and the impact that has on a user’s performance
with a robot to draw correlation between interactions and
system performance. We show there is high likelihood that
locus of control can be predicted from these interactions, and
as a result, an autonomy could be adapted to that user quality
to improve shared control performance.

III. HYPOTHESES

Based on Takayama’s previous work [25] which found varied
performance across users with different locus of control
when operating a telepresence robot with shared control, we
formulated following hypotheses:

Hypothesis 1: Users with more internal locus of control
will perform better with an autonomy more responsive to
user inputs than a more restrictive autonomy.

Hypothesis 2: Users with different locus of control will
have different performance given a robot autonomy.
Hypothesis 3: Users with different locus of control will
have different behavior given a robot autonomy.

IV. AUTONOMY DESCRIPTION

We desire a static autonomy to investigate the ability to adapt
to what is best for an individual’s locus of control. The results
in [25] demonstrate that although autonomous assistance helps
improve performance, users with a high internal locus of
control took longer to complete tasks suggesting they wrestled
with the autonomy for control of the robot. This gives rise
to our Hypothesis #1 above, and motivates the testing of
autonomies for users based on their locus of control.

A. Autonomy Overview

Following a similar experimental setup to [25] we investigate
the use of a telepresence robot on an obstacle course. The
goal of the autonomy is to aid the user in getting to the end
of the course without hitting obstacles. Hence we focus on
autonomy that mixes with user commands with the objective
of avoiding obstacles (i.e. “shared control”).

We made hardware and software modifications for a
customized shared control mechanism on a Double telep-
resence robot. An iOS application was developed to provide
telepresence capabilities (i.e. provide video, send commands)
to the user, and a vendor provided SDK [30] was used to
introduce a layer of autonomy onboard the robot. A laser
range finder was added to the robot to detect obstacles
providing information to an obstacle avoidance algorithm.
Commands from this algorithm and the user were then
combined by the autonomy providing a shared control scheme.
B. Obstacle Avoidance System
Many advances in deliberative and reactive planning [31],
[32] and obstacle avoidance [33]—[35] in robots have been
made in recent years, and the limitations of potential fields
are well known [36], though they are still in an active
research area [37]. Our objective is a proof-of-concept shared
autonomy that can be designed to adapt to user qualities
inferred solely from interactions between the user and robot.

As a result, we seek an obstacle avoidance strategy that is easy
to implement, conducive to combining with user commands,
and has common algorithmic adaptations that can be adopted
for users with either internal or external locus of control.

Artificial potential fields are a reactive planner comprised
of repulsive and attractive forces, represented by vectors with
magnitude and direction [38]. Repulsive vectors represent
undesirable locations or obstacles, and attractive vectors
represent goal locations or rewards. At the robot’s current
location the forces are summed to determine travel direction
and velocity. As part of our shared control scheme, we do
not employ attractive forces relying on the user to provide
goal seeking behavior. This leaves repulsive forces generated
by nearby obstacles which push the robot away.

We design two potential field strategies, and in each
complete trial one of these two strategies is chosen for the
duration. First, a potential field with a repulsive force linear
in distance from an obstacle is designed. We hypothesize
this repulsive force will: 1) keep users further away from
obstacles despite their desire to get close to them, and 2)
lead the user to the destination more quickly by following
a path closer to the optimal path - if they allow it to guide
them. This makes the linear repulsive force more amenable
to users with more external locus of control who should be
willing to share more control with the autonomy.

Second, we design a potential field with a repulsive force
exponential in distance from an obstacle. This repulsive force
will: 1) allow users to get closer to obstacles giving them more
control, and 2) be a better reflection of the users capabilities as
ability to follow the optimal path is primarily under the user’s
control. Conversely, this makes the exponential repulsive force
likely to work better for those with a high internal locus of
control - users wanting more control over the robot. We now
describe the main parts of our strategy below.

We use a laser scanner to detect obstacles within the
robot’s field of view. The direction of each repulsive force
is determined by the angle the obstacle makes with a line
extending straight out of the sensor on the robot. The
magnitude of the force depends on the robot’s distance
from the obstacle and can be modeled by a function called
a “magnitude profile” and, within a “sphere of influence,”
increases with decreasing distance [38].

The obstacle avoidance behavior is only activated when
the robot is within a predefined sphere of influence of at least
one obstacle. In our design, a sphere of influence of diameter
D = 1m was tuned to meet the objectives in our obstacle
course given the size and movement capabilities of the robot.

a) Linear Magnitude Profile

Let dpin = 0.15m be the minimum distance from which
an obstacle can be detected by the laser scanner, and D be
the sphere of influence within which an obstacle exerts a
repulsive force. We calculate the repulsive force magnitude
for the i*" obstacle as

D—d

m; =
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where d is the distance to the obstacle returned from the
laser scanner, and 7;;, is a normalizing factor representing
the maximum repulsive force (which would occur at d ;).
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Fig. 2: Linear and Exponential Magnitude Profiles as a Function of Distance

b) Exponential Magnitude Profile

With parameters similar to the linear magnitude profile, we
calculate the exponential repulsive force magnitude for the
ith obstacle as (1) = (L)

d

m; = D
nezp
where 7.4, is a normalizing factor, and o = 0.18 is a tuned

parameter defining the curvature of the exponential function

and determined by testing with the robot in the environment.

Both the linear and exponential magnitude profiles can be
seen in Figure 2.
c) Shared Control

Regardless of which potential profile is chosen for a particular
run, all the repulsive vectors from obstacles within the sphere
of influence are averaged to create a total repulsive vector
with a magnitude, myota1, and direction @yora; Which is then
passed along to the robot via the vendor supplied SDK.

V. EXPERIMENT

We have designed the experiment to track shared control
performance metrics as well as learn key user qualities. Here
we describe our setup, participants, and methodology for the
user portion of the study.
A. Setup
The study was conducted using a Double telepresence robot
(shown in Figure 1) weighing 6.8 kg and, for this study, had
a fixed height of 1.32 m. The screen of the robot consists of
an iPad attached to the pole which in turn is attached to the
mobile base of the robot. The interface on the iPad transmits
the video stream of the robot’s environment to the operator
(similar to a standard videoconferencing application). The
robot is also equipped with a microphone and a directional
speaker enabling communication of the operator in the remote
environment. To implement obstacle avoidance, a Hokuyo
laser rangefinder was attached to the robot at approximately
7.62 cm above the mobile base (35.56cm above the floor).
The robot was controlled using a custom built iOS
application on an iPad Air 2 utilizing a vendor supplied
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Fig. 3: Operator’s User Interface with four blue buttons for forward, backward,
left, and right controls.

SDK [30]. The user interface of the application (shown
in Figure 3) allows the operator to drive the robot in the
remote environment. The interface streams video of the remote
environment and allows the operator to drive the robot using
buttons for forward, backward, left, and right.

A T-shaped training obstacle course (seen in Figure 4a)
was constructed in an area 2.79 m by 4.19 m using cardboard
boxes of height 0.85 m. It was used to train the participants
to drive the robot with the specific obstacle avoidance profile
prior to navigating the main obstacle course.

The main obstacle course (shown in Figure 4b) 3.65 m by
3.74m was created inside an experiment room for the main
study. The obstacle course in this study was inspired from a
study by Takayama et al. [25] with some modifications due
to limitations of sensors, size of the robot, and dimensions of
the room. The modifications involved replacement of chairs
by cardboard boxes and covering of the legs of the table by
sheets of paper due to limitations of range finding sensors.
As shown in the figure, the obstacle course consisted of
trash cans, cardboard boxes, tables, and cardboard walls.
A shortest distance optimal path was computed using a
search strategy and is represented by the dotted blue line.
Start and end positions of the path are represented by solid
black lines connected to the optimal path. The start and end
positions alternate based on the direction of movement (i.e
clockwise/counterclockwise).

The ceiling of the main obstacle course was equipped with
seven Vicon Bonita motion capture cameras in order to track
the position of the robot throughout the obstacle course. The
data from the motion capture system was used to determine
the path of the robot, evaluate its deviation from the optimal
path, and also to detect collisions with obstacles.

B. Participants
28 participants (fourteen male, fourteen female) with ages
ranging from 19 to 68 (mean (M) = 29.18, standard deviation
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(SD) = 12.67) were recruited through emails to campus
mailing lists, and advertisements on- and off-campus. The
participants were paid $10 as compensation for their par-
ticipation. Based on the value of locus of control, eleven
participants (six male, five female) were found to be “High
Internal,” three participants (one male, two female) were
found to be “High External,” and fourteen participants (seven
male, seven female) were found to be “Average.”

C. Methodology

Questionnaires

1) Demographics Questionnaire: This questionnaire con-
sisted of questions regarding gender, age, handedness,
computer experience, and robot experience.

2) Locus of Control Questionnaire: An abbreviated version
of the Locus of Control Questionnaire (LoCQ) [39]
with 11 items, each consisting of options for internal
and external attribution was used in the study. This
was used to group participants into three categories:
strong internal locus of control (“High Internal”, 0-3),
mid-range locus of control (“Average”, 4-7), and strong
external locus of control (“High External”, 8-11).

Procedure

Participants were greeted by an experimenter and were
provided a consent form which informed them of the
objectives of the study and their rights as a participant. They
were also informed that they would not be penalized if they
decided to leave the study at any point and would receive full
compensation. After signing the consent form, the participants
were asked to fill out a pre-questionnaire which consisted of

the demographics and Locus of Control questionnaires.

After the pre-questionnaire, the participants were intro-
duced to the interface that they would use throughout the
study to drive the robot. The study was divided into two
phases, where each phase was conducted with either linear
or exponential obstacle avoidance profiles. In both phases,
participants could drive the robot in either a clockwise
or counterclockwise direction. Both the obstacle avoidance
profile and the direction to drive the robot were based on
random selection and were counterbalanced.

In each phase, participants completed two laps in the
training obstacle course (shown in Figure 4a) in the given
direction with an assigned obstacle avoidance profile after
which they completed one lap in the main obstacle course
(shown in Figure 4b) with the same direction and obstacle
avoidance profile as in the training phase. After completion
of each phase (i.e. training and main obstacle course),
participants were asked to complete a questionnaire to collect
their experience and feedback. After both phases, the study
was concluded with a short interview.

Performance Metrics

We devised metrics to measure both user and robot
performance in the shared control scheme. All metrics were
analyzed from when the robot crossed the start line to when
the robot crossed the finish line of the main obstacle course.
To compile the data we computed averages across each of
the six combinations of locus of control categories (i.e. High
Internal, Average, and High External) for each shared control
scheme. For example, to measure average duration for the
category ‘“Linear/High Internal” we averaged across all runs
with users having a high internal locus of control using the
linear magnitude profile shared control scheme.

The first metric is duration, which is the total time, in
seconds, spent on the obstacle course. Second, we measured
the robot’s total distance traveled, in meters, during their
navigation through the obstacle course. Both of these metrics
can give a general idea of task accomplishment. Related
to these, we computed an error measure to determine how
close a user matched an optimal path. The optimal path was
generated using an A* pathfinding algorithm that minimized
the distance driven while still avoiding obstacles. Our metric
is the average perpendicular distance that the robot was from
this optimal path during their navigation through the course.

Next, we count the number of collisions that occurred
during a run. A collision was counted as any contact with
an obstacle or a wall. If the user remained in contact for an
extended duration, this would only count as one collision,
but if a user broke contact and then contacted the obstacle
or wall again, these would be counted as separate collisions.

Finally, we count the number of total commands and
conflicting commands from the user for each run. Each
button press on the iPad corresponds to one command and
the total is the sum of all of these commands during the
run. A conflicting command is an instance where the final
command after executing the obstacle avoidance algorithm
does not match the command that the user sent. Using these
we also calculate our conflict metric, which is a measure



of the conflicting commands as a percentage of the total
commands. This gives a good indicator for how often the
obstacle avoidance takes control, and therefore, how often
the user “disagrees” with the obstacle avoidance.

VI. RESULTS

Our results include traditional HRI community interests such
as user preferences, spatial presence, and locus of control,
as well as interests in autonomy in the robotics community
such as system performance, reactive planning, and obstacle
avoidance. Here, we focus exclusively on performance of the
holistic system (i.e. combined user and robot).

Figure 5 illustrates the results related to autonomy per-
formance. Data from all runs were sorted into categories
based on locus of control and autonomy mode. The graph is
grouped into five metrics and compares all user groups for
each metric. On a per metric basis, each locus of control user
group was normalized for consistency, yielding a percentage.
Our objective is to eventually switch or adapt the autonomy as
we infer a specific user quality. As a result, we are interested
in trends that suggest that one autonomy mode is better
for a particular user based on their locus of control. In
keeping with the analysis in [11], [25], and adding some
additional nuance, we divided users into “High Internal,”
“Average,” and ‘“High External” locus of control categories.
This adds to previous results by treating those with scores
near the halfpoint of the locus of control scale as their own
category. Our results suggest this is an improved strategy
given the relatively large number of users in that category,
as well as their rather unique performance in the study. In
our results we have abbreviated our modes of autonomy as
“Linear” and “Exponential” referring to the magnitude profile
of the potential field obstacle avoidance, and will utilize this
abbreviation in our discussion.

We have chosen ‘“Duration,” “Total Distance,” “Total
Commands,” “Command Conflicts,” and “Error from Optimal”
as the categories to focus on as they provide the most
compelling data. Of additional interest is the number of
collisions in each trial, however, we found that collisions were
consistent across all users in each of Linear and Exponential
modes. As expected, since Exponential allows more user
control closer to obstacles, users in Exponential mode hit
more obstacles. Each of the categories provides a measure
by which we will be able to switch the autonomy in future
studies to improve performance.

Of primary interest is the users in the Average group, who
performed better in the Exponential mode in all categories,
except total distance (as shown on the two middle bars for
each metric in Figure 5). To understand the user behavior,
a paired-samples t-test was conducted to compare each of
total commands sent and number of conflicting commands in
Linear and Exponential conditions. There was a significant
difference in command conflicts for Linear (M=190, SD=182)
and Exponential (M=78, SD=66) conditions; t(12)=2.83,
p=0.015, two-tailed. Number of commands approached sig-
nificance for Linear (M=490, SD=516.89) and Exponential
(M=320, SD=275) conditions; t(12)=1.86, p=0.088, two-tailed.

As a result of the improved performance and reduced demand
on computational resources, upon inferring a user’s locus of
control to be in the Average category, a switch to Exponential
autonomy (i.e. an autonomy allowing more control) will result
in improved performance. This could be assessed through
looking at the number of commands sent, which would narrow
the participants to those in either Average or High Internal.

Users in the High External group, among all user groups,
have the largest deviation from an optimal path (M=0.42 m)
and the fewest total number of commands (M=249) under the
Exponential autonomy mode, though they also have a much
lower average error (M=.11 m) in the Linear mode. However,
in Linear mode, also amongst all users, they take the longest
(M=416 seconds) and travel the furthest (M=15.4 m), while
having the fewest command conflicts (M=161) of any user
group in that autonomy mode. Of note is that this group sent
~ 1/2 the total number of commands in Exponential (M=249)
of all groups suggesting their patience with autonomy. These
results suggest neither mode suits this group of users all the
time, and we recommend switching autonomy between the
modes based on performance and commands sent.

Finally, the High Internal group has the highest percent-
age of command conflicts for both Linear (M=39%) and
Exponential (M=34%) mode amongst all users (compared to
Exponential Average 25% and High External 30%) . Further,
they also send the most commands to the robot (Exponential
mean=475, Linear mean=482). These results suggest this
group may seek more control and grow frustrated with the
robot’s response. As a self-contained group, they have smaller
total distance and duration, but more error from optimal in the
Exponential mode compared to Linear. Overall performance
for this group, however, does not justify an autonomy allowing
more control. Rather, we suggest preference for Exponential
to reduce computational overhead (and differentiate from
Average users), which would likely be augmented by short
stints in Linear to improve system performance.

When comparing between the groups, a Mann-Whitney
test for central tendencies was conducted to compare each
group (High Internal, Average, and High External) for each
condition (Linear and Exponential) for each metric and the
results are shown in Table I. Path deviation from optimal in
Exponential was significantly different when comparing High
Internal and High External groups and also when comparing
High External and Average groups. In Exponential, High
External and Average groups were significantly different on
total distance travelled. When comparing time for Linear con-
ditions, Average and High External groups were significantly
different.

VII. DISCUSSION
This work has the potential to transform robot autonomy
design by integrating ideas from human-robot interaction
directly into the design of robot autonomy by inferring user
qualities and adjusting algorithms at run-time.

A. Robot Design Implications and Recommendations

These findings provide insight into the design of robotic
systems in which users are directly involved in control: user
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qualities can be inferred from a combination of robot and
user performance, and suggests that robot autonomy could
be designed to switch or adapt to users on-the-fly based on
observations made in real-time. It also means that such a
strategy can augment the less explored adaptation mecha-
nisms [13] that supplement “human-in-the-loop” controllers
such as impedance and admittance manipulation [40].

As a first step this adaptation could be the result of precisely
timed switches between types of planning or control strategies
that could be categorized according to robot performance with
users having a specific quality. In this work we have provided
one example of two obstacle avoidance algorithms that could
be used as part of an intelligent switching algorithm that
switches according to inferred user locus of control and certain
performance conditions. Alternately, schemes can be designed
where key portions of the autonomy (e.g. planner, controller)
adapt to performance objectives that stem from specific user
qualities. While arguably more flexible, such a strategy will
require a deeper understanding of how user qualities impact
system performance and how users respond to the system and

its performance. It also requires improvements in adaptive
algorithms that: 1) model performance based on user qualities
and can improve performance with long-term interactions,
and 2) provide feedback to the user that helps them adjust
behavior and expectations given current conditions.

We anticipate the largest gains will come when autonomy
adapts to novice users and improves performance of the
human-robot system to make it comparable to the system
performance with highly trained users.

B. Limitations

The Double Telepresence Robot used in the study is an
inverted pendulum design. As a result, the robot oscillates
to maintain balance resulting in non-smooth motion. This
can affect user perception of what the robot is doing, and
incidental collisions if the robot is near an obstacle and needs
to balance. The platform also limits the rate and duration
of a command to the robot. This means users must tap the
command button for each command as opposed to holding
the button down. This is due to limited access provided by
the official SDK, and transmission of the commands through
several systems, algorithms, and the network before reaching
the robot base.

When looking at the between groups results, one important
note is the lack of significant differences between the Average
and the High Internal groups. These groups are similar in all
of the behaviors and metrics we tracked in this study, so a
natural extension of this work would be to investigate other
user qualities that might allow a differentiation between these
groups. While the lack of participants in the High External
group (only 10% of our population) could be a concern, we
actually had a similar percentage of the most extreme High
Internal participants (7%) represented in this study when
compared to findings by [39] in a large population (5%).
These distributions suggest that we should investigate how to
further differentiate the >80% of people in the other groups.

From a study design perspective, because error, duration,



and total distance do not always correlate, additional metrics
such as idle time, thrashing, and additional optimal path
metrics could augment our conclusions.

C. Next Steps

Based on our findings, two important next steps arise. First, of
immediate interest is the development and implementation of
a switching autonomy to demonstrate that an autonomy that
can infer user qualities and adapt accordingly will result in
improved performance and user behavior. Second, differences
between the Average and High Internal groups were not as
well defined as between High Internal and High External
groups. More studies similar to this one need to be conducted
to establish which other intrinsic user qualities can be inferred
from human-robot interactions, and which ones are sufficiently
predictive to allow for reliable categorizaton of a user in
order to switch or adapt the autonomy. We specifically plan
to conduct a similar study focused on immersive tendencies
and empathy as suggested by [11] and spatial reasoning as
suggested by [25].
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