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Abstract— This project seeks to generate small Unmanned
Aerial System (sUAS) flight paths that are broadly understood
by the general population and can communicate states about
both the sUAS and its understanding of the world. Previ-
ous work in sUAS flight paths has sought to communicate
intent, destination, or emotion of the system without focus-
ing on concrete states (e.g., low battery, landing, etc.). This
work leverages biologically-based flight paths and experimental
methodologies from human-human and human-humanoid robot
interactions to assess the understanding of avian flight paths
to communicate sUAS states to novice users. If successful, this
work should inform: the human-robot interaction community
about the perception of flight paths, sUAS manufacturers on
how their systems could communicate with both operators
and bystanders, and end users on ways to communicate with
others when flying systems in public spaces. General design
implications and future directions of work are suggested to
build on the results here, which suggest that novice users
gravitate towards labels they understand (draw attention and
landing) while avoiding more technical labels (lost sensor).

I. INTRODUCTION

Small unmanned aerial systems (sUAS) have sophisticated

control stations and a rich variety of interfaces to commu-

nicate with their operators. Yet, as these vehicles become

part of applications involving stakeholders that are not the

operators, they will increasingly need to establish broader

communication channels in order to be accepted in public

spaces and to create safer interactions.

Consider for example existing public-facing applications,

such as Amazon Prime Air [1] or the Alphabet’s burrito de-

livery [2]. For such applications, the sUAS might be required

to communicate not just with their control base, but also with

the customers expecting a delivery, and bystanders that may

not be fully aware of the intent of the vehicle. These other

stakeholders may not have experience dealing with the sUAS

but they will ultimately render their judgment about the

application in part based on how the vehicle communicates

with them. In other more specialized application contexts,

like that of sUAS supporting fire management activities [3]

as depicted in Fig. 1, communicating dangerous situations to

fire personnel and accidental observers is critical. Alternately,

these gestures could be used in agricultural applications of

UAS, such as those in orchards [4] where most workers are

unlikely to be trained on technologies unrelated to their tasks,

but should be alerted to off-nominal operations.
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Fig. 1. Concept imagery depicting UAV operators at a prescribed fire,
where bystanders work around the fire and may need state information.

Our approach to communicating to such stakeholders is

through sUAS gestures, more specifically flight motions

that convey the sUAS state. This communication medium

is appealing in that it requires no additional equipment

(such as speakers or lights) and can be easily incorporated

into existing systems. If well designed, these motions are

also robust to communication challenges such as partial

occlusion, viewing angle, or ambient lighting (as in [5]).

One of the challenges of using sUAS gestures is identify-

ing those that can be consistently interpreted by stakeholders

that may not have been trained in the technology. In this

work we start investigating this challenge by asking: Do

novice users show broad agreement on the meaning of sUAS

gestures? We investigate this question using Amazon’s Me-

chanical Turk (mTurk) platform to gain access to 64 general

users for a video-based study of sUAS communications.

Leveraging methods from human gesture understanding,

this paper contributes the first study of general commu-

nications by sUAS. It is distinct from previous work on

sUAS gestural communication in that we are attempting to

communicate relevant action information from simple sUAS

gestures to novice users, instead of attempting to mirror

users’ emotions or communicate about only direction of

flight. The results indicate that novice participants are able

to properly label gestures associated with landing or drawing

attention, with less agreement for other gestures. We also

found that, contrary to the findings of previous work, user

attitudes towards robots did not seem to affect their ability

to recognize the meaning of a gesture.



II. RELATED WORK

The human ability to infer intentionality from random

motion has been well established, beginning with Heider’s

work on apparent behavior in 1944 [6], which was later

extended to understand perception of biological motions

from humans and animals [7], [8]. Through studies such as

these, we can begin to understand the intentionality that is

applied to observed motion and the components that make

this intentionality more broadly understood. In this section,

relevant work on human and robot gestural communications

will be presented.

A. Human Gestural Communications

Human gestural communications have been studied for

their communicative ability in order to understand how they

are perceived and what they can be used to communicate.

Krauss, Morrel-Samuels, and Colasante [9] conducted a

set of studies to understand how co-speech hand gestures

are understood and found that while hand gestures convey

some information, they do not communicate as well as

speech. Prati and Pietrantoni [10] investigated the use of

hand gestures when verbal communication would be diffi-

cult to understand differences in communicative ability of

different gesture types. Their participants watched videos of

firefighters performing ten gestures and labeled them using

free response. In both studies, these gestures had meanings

that were similar to gestures participants had previously seen.

B. Robot Gestural Communications

Gestural communications in robots can be split into ground

robot gestural communications and sUAS gestural commu-

nications. While gestures have been examined in humanoid

robots, this has been limited to social gestures and collabo-

rative gestures. The current state of the art with sUAS has

been to communicate high-level state information or to use

gestures for control of a vehicle.

1) Ground Robot Gestural Communications: Social ges-

tures have been investigated in HRI in much the same way

that was described above for communicative hand gestures.

Salem et al. [11] investigated the ability for co-speech

gestures to enhance humanoid robot communications. Huang

and Mutlu [12] evaluated the use of gestures to improve

recall in humanoid robot interactions. Ng, Luo, and Okita

[13] developed a gesture model to produce gestures from

text input and tested the modification of parameters to convey

excitement or expressiveness. Riek et al. [14] tested cooper-

ative social gestures on a humanoid robot to understand the

impact of speed and viewing angle, and found that negative

attitudes towards robots correlated with a decreased ability

to understand the gestures in the study. Overall, these works

have assessed understanding of gestures, but they are focused

on leveraging the existing understanding of participants from

interacting with other people in order to improve humanoid

robot communications.

Of more interest to this work are the collaborative gestures

that have been developed primarily for industrial applications

as in [15], [16], but one limitation of the work in this area

is the assumed presence of a visible goal as reported in

[17]. Dragan and Srinivasa [15] tested the integration of an

observer into motion planning for an industrial robot. Glee-

son et al. [16] observed gestural communications between

humans, derived terms and gestures for use by the robot, and

implemented them on a robot to observe their communicative

ability. Both of these studies indicated that gestures were

more effective when they conveyed context and goal, which

is a challenge for the sUAS gestures to overcome.

2) sUAS Gestural Communications: Communications

with sUAS can be split into communication from the sUAS

and communication to the sUAS.

a) Communication from sUAS: Communicative flight

paths have been investigated for ability to communicate

affective state [18], [19], intended destination [20], and

intended direction of flight [5]. These flight paths would en-

hance interaction with sUAS in collocated environments, but

do not communicate actions or states that might be necessary

in uses with more bystanders or broader application.

Sharma et al. [18] investigated the ability to communicate

affect via flight path with collocated users and found that

to increase valence or arousal communication, space should

be used more indirectly and the motions should be faster.

Cauchard et al. [19] explored personality models for the

sUAS to increase interest in interaction and possibly allow

them to mirror the personality of their users in the future.

Findings from both studies were operationalized by keeping

these parameters as constant as possible across flight paths.

Szafir, Mutlu, and Fong [20] used both mTurk and in-

person interactions to explore the perception of animation

principles applied to sUAS flight paths to increase the

communication of intent. Szafir, Mutlu, and Fong [5] next

assessed the ability of a light ring to communicate the

direction of sUAS flight through in-person testing where

the participants would predict the end state of the vehicle.

This work considered: viewing angles, movement in multiple

dimensions, occlusion, and ambient lighting. While very

informative to the field at large, this work is better applied

to close interactions in more controlled environments so we

primarily focused on possible problems in communication.

b) Communication to sUAS: Gestural communication

to sUAS for commanded control has been investigated [21],

[22], [23], but this work is not directly relevant to the work

described here.

III. DEFINING SUAS COMMUNICATIVE FLIGHT

PATHS

This paper presents an initial study to address the question:

Do novice users show broad agreement on the meaning of

sUAS gestures? From a methodology perspective we start

exploring this question by following established protocols

used to investigate human gestures [9], which seek to un-

derstand the level of agreement by exposing participants to

a limited gesture set and then requesting those participants

to apply a label from a limited set. From the sUAS gesture

perspective, we start by adopting flight paths used in nature,

which are robust to viewing angle or occlusion, oscillatory



in nature to allow looping, and adapted from biological

inspiration to explore any templates that might exist. Given

the formative stage of the work, we limit the impact of

environmental factors (through being performed in an indoor

space), constrain the labels (to understand agreement rather

than generation), and do not introduce a visible goal state

(to assess understanding rather than inference). Further de-

scription of the motions and labels are described in Section

IV and the methodology details appear in Section V.

IV. SUAS FLIGHT PATH DESIGN

The initial paths created from this work were developed

from flight patterns used by birds in order to leverage the

advantages inherent in biologically inspired behaviors, as

described in [24], [25]. This section will describe the avaiable

labels, flight path selection, programming environment, and

video creation for the experiments described later in this

work.

A. Possible Flight Path Labels

The current labels were chosen based on likelihood that

they would be encountered in flights and generally would

require redirection or intervention from the operator, or

awareness from bystanders. It was also anticipated that

these states would be understood by novice users due to

the widespread use of hobbyist systems or observations of

other aircraft (e.g., Landing, Low Battery, Draw Attention),

commonality with other taskable systems (e.g., Missed Goal,

Change Position), and potential similarities to states encoun-

tered in smart phone technology (e.g., Lost Sensor, Lost

Signal). Another consideration was to choose states that

were domain independent rather than focusing on possible

applications of the technology (e.g., not Deploying Sensors

nor Taking Pictures).

B. Flight Path Selection

The avian flight paths we selected were originally iden-

tified by Davis [7] as oscillatory motions (those with a

steady periodic motion and which could be created from

sinusoid functions). More details on their inclusion/exclusion

criteria can be found in the original work, but these motions

were of interest to this work because they are biologically

inspired, can be created in a replicable way, offer the ability

to scale and loop as needed, and can generally be perceived

in the presence of occlusion or multiple viewing angles. The

requirement for biologically inspired behaviors also takes

into consideration the requirements for deployment of these

motions, such as the need to be observable against a natural

background, able to contend with energy constraints, and

understandable by other animals (or in this case humans).

The eight cyclic motions used by birds and identified in

[7] are: Circle, Figure-8, Left-Right, Loop, Spiral, Swoop,

Undulate, and Up-Down

When designing the labels for this study, we considered

states that may impact and may need to be communicated

to bystanders. The states we chose were: lost signal, lost

sensor, draw attention, landing, missed goal, change position,

and low battery. We then performed an initial assignment of

those labels to the motions to later gauge whether participants

would confirm these assignments or realize alternative ones.

The initial assignments with a brief description of the thought

behind these assignments follows:

• Circle: lost signal, in which the movement could help

the sUAS regain signal

• Figure-8: lost sensor, which looks like the motion used

to recalibrate your phone’s magnetometer

• Left-Right: missed goal, which looks like shaking head

• Loop: draw attention, which might be reminiscent of a

ferris wheel

• Spiral: landing, which could be used in indicating a

position of landing

• Swoop: draw attention, since this is eye catching

• Undulate: change position, since this motion could be

performed while starting in the direction

• Up-Down: change position, which looks like nodding

to acknowledge the command

C. Flight Path Programming

To perform each gesture, the Ascending Technologies

Firefly hexcopter (weighing less than 1.6 kg and 60.5x66.5

cm) would take-off, hover at the starting point of the gesture,

perform the flight path representing the gesture for 30

seconds, and then land.

To create the flight paths, the sUAS autonomously flew

along pre-programmed paths. A Vicon motion capture sys-

tem tracked reflective markers attached to the sUAS and mea-

sured its position and orientation to a high degree of accuracy

(submillimeter error and 200Hz). The sUAS performed each

gesture by following a target position that was continuously

moved through a three dimensional space, using a PID pose

controller to have the sUAS chase the target. The target’s x,

y, and z coordinates were coded as mathematical functions

of time, as described next, thus yielding a parametric path

for the gesture. Each gesture was programmed to move the

sUAS at approximately 1 meter per second.

1) Flight Path Parameters: Table I shows the equations

used to generate the eight paths. The x, y, and z positions

are evaluated based on a specified range of time, t, starting at

zero. In addition, the table shows the typical displacements

observed during the sUAS flights for each motion.

2) Flight Path Visualizations: Fig. 2 shows a visualization

of some of the flight paths reproduced from logged pose data.

The red path shows the actual sUAS path, each square is 1

meter wide, and the gesture primarily took place over the

center of the grid. Some gestures (e.g., swoop) are shown

from an off-angle so that the path can be better viewed.

D. Flight Path Video Creation

Each flight was filmed by a video camera, and the video

was later trimmed to include only the gesture and to ensure

that all gesture videos were the same length and size. The

camera’s view was orthogonal to the gestures’ width and

height displacements, and its height centered the gestures

within its view. Each video was uploaded to Youtube.com



Fig. 2. Visualizations of the Spiral, Loop, Undulate, and Figure-8 paths from the flight log. Each square is 1m wide.

TABLE I

MOTIONS’ EQUATIONS AND TYPICAL DISPLACEMENTS OBSERVED.

Motion Equations Displacement (m)

Circle

for 0 ≤ t ≤ 30:
x = 2.5cos(t)
y = 2.5sin(t)
z = 1.5

x : 2.5m
y : 2.5m
z : 0.0m

Figure-8

for 0 ≤ t < 2PI:
x = 0.75 − 0.75cos(t)
y = 0.75sin(t)
z = 1.5

for 2PI ≤ t ≤ 4PI:
x = −0.75 + 0.75cos(t)
y = 0.75sin(t)
z = 1.5

x : 4.0m
y : 2.0m
z : 0.0m

Left-Right

for 0 ≤ t ≤ 30:
x = 1.5sin(1.5t)
y = 0
z = 1.5

x : 2.5m
y : 0.0m
z : 0.0m

Loop

for 0 ≤ t ≤ 30:
x = 0.75sin(0.75t)
y = 0
z = 1.25

+0.9 × 0.75cos(0.75t)
+0.4 × 0.75sin(0.75t)

x : 2.0m
y : 0.0m
z : 1.5m

Spiral

for 0 ≤ t ≤ 30:
x = cos(t) × (30 − t)/20
y = sin(t) × (30 − t)/20
z = 2 − t/20

x : 2.0m
y : 2.0m
z : 1.5m

Swoop

for 0 ≤ t < 2.4:
x = 0.5t
y = 0
z = 0.5 + ((t − 1.2)2)

for 2.4 ≤ t ≤ 4.8:
x = 1.2 − 0.5t
y = 0
z = 0.5 + ((t − 1.2)2)

x : 1.5m
y : 0.0m
z : 1.5m

Undulate

for 0 ≤ t ≤ 6:
x = −1.5 + t/2
y = 0
z = 1.5 + 0.5sin(3.14 ∗ t)

for 6 ≤ t ≤ 12:
x = 1.5 − t/2
y = 0
z = 1.5 + 0.5sin(3.14 ∗ t)

x : 3.0m
y : 0.0m
z : 0.8m

Up-Down

for 0 ≤ t ≤ 15:
x = 0
y = 0
z = 1.25 + 0.4sin(4t)

x : 0.0m
y : 0.0m
z : 0.5m

with dimensions of 854 by 480 pixels and sound was

included in each video. Original videos can be found at

https://unl.box.com/v/ICRA-duncan-videos and a summary

of representative videos is included in the media attachment

to this paper.

V. FORCED CHOICE LABELING STUDY

This study investigates the ability of novice users to dis-

cern possible intent of gestures. We employ the n-alternative

forced-choice technique, which has been used in psychology

[26], [27], [28], human-robot interactions [29], [30], and

human gesture recognition in [9], [10]. More specifically, we

conduct two studies. The first one employs a two-alternative

forced-choice (2AFC) model to test the recognition of a ges-

ture from two labels (one chosen by us and one distractor).

The second one, a seven-alternative forced-choice (7AFC),

is meant to test the recognition of a gesture among seven

labels, to assess broad agreement.

A. Approach

As in [9], it was expected that for the 2AFC condition

users would be able to select the preferred label (chosen

by the experimenters) more often than chance. One major

difference in this work than in the work on co-speech

gestures by [9], [10], [12], [11], [13] is that the gestures

tested here do not have an inherent meaning within speech;

instead we are assessing whether they map to concepts

assumed to be already understood by the users.

We also wanted to take this experiment a step further to see

if there was convergence from participants on label assign-

ment by testing all labels and all gestures in the 7AFC task.

Here, it was expected that gestures with high recognition

in the 2AFC task would also show high convergence in the

7AFC condition.

B. Participants

Participants were a convenience group recruited from

mTurk and paid $2.00 dollars for their participation in the

experiment. All participants were required to have a 95%

task approval rate with a minimum of 10000 tasks and with a

Master rating. To prevent participants from working in more

than one posting (condition) of this study, the experimenter

assigned an ID to all workers who completed a task, which

prevented them from accepting another.

In the 2AFC, thirty-two participants (22 male, 10 fe-

male) with an age range of 26-49 (mean=34.75, standard

deviation=6.97) were involved in this study. Sixteen partici-

pants reported prior robot experience with seven participants

reporting robot ownership. Thirteen participants reported

prior piloting experience with remote controlled or manned

aircraft. Twenty-one participants had completed a bachelor’s

degree or higher, four completed some college, three had an

associate’s degree, and four completed high school.

The 7AFC had thirty-two participants (21 male, 11 fe-

male) with an age range of 21-61 (mean=33.88, standard

deviation=9.06). Seven participants reported prior robot ex-

perience with four reporting robot ownership. Thirteen par-

ticipants reported prior experience piloting a remote con-

trolled or manned aircraft. Fifteen participants completed a

bachelor’s degree or higher, eleven had some college, two

had an associate’s degree, and four completed high school.





TABLE II

AVAILABLE LABELS FOR EACH CONDITION.

2AFC 7AFC

Motion Label Distractor Label
Circle Lost Signal Draw Attention Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Figure-8 Lost Sensor Landing Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Left-Right Missed Goal Lost Sensor Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Loop Draw Attention Low Battery Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Spiral Landing Missed Goal Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Swoop Draw Attention Low Battery Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Undulate Change Position Low Battery Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery
Up-Down Change Position Lost Signal Lost Signal, Change Position, Landing, Missed Goal, Draw Attention, Lost Sensor, Low Battery

TABLE III

RESULTS FROM A PRELIMINARY TEST WITH 64 PARTICIPANTS (32 IN EACH CONDITION), WITH ONLY P <0.01 SHOWN.

2AFC 7AFC

Motion Percent Chosen Label Percent Chosen Label
Circle 40.6% Draw Attention
Figure-8 84.38% Lost Sensor 40.6% Change Position
Left-Right
Loop 34.4% Landing
Spiral 87.5% Landing 59.4% Landing
Swoop 75% Draw Attention
Undulate 34.4% Draw Attention
Up-Down

Sensor, 84.38%), Spiral (Landing, 87.5%), and Swoop (Draw

Attention, 75%). To further explore these results, a 7AFC

test was run with all labels available for each motion. These

results suggest that 5 motions (3 unique from the first set)

could be discriminated at a p <0.01, these are: Circle (Draw

Attention, 40.6%), Figure-8 (Change Position, 40.6%), Loop

(Landing, 34.4%), Spiral (Landing, 59.4%), and Undulate

(Draw Attention, 34.4%). These results are also shown in

Table III.

VI. DISCUSSION

We now discuss the results found in the studies presented

above before remarking upon the manipulation consider-

ations, limitations, research and design implications, and

future work related to these studies.

A. Use of Avian Flight Paths to Convey sUAS State Infor-

mation

The primary finding in this work was that sUAS flight

paths can be used to communicate information about the

sUAS and its understanding of the world to diverse par-

ticipants. Participants broadly agreed that a Spiral could be

used to indicate landing and participants in the 7AFC also

suggested that Undulate could be used to draw attention, and

we believe these gestures could likely be used by developers

now to indicate these states in public facing interactions. It

was also interesting that there was significant agreement in

2AFC for the use of Figure-8 for lost sensor and Swoop for

draw attention, but that Figure-8 was more recognized for

change position in the 7AFC. This suggests that users may

understand in the presence of suggestion but might be less

likely to apply these labels without prompting.

The states proposed in this work were based on a de-

veloper’s understanding of states that would be helpful to

communicate and which might align with participants’ prior

experiences in the world. Also of interest is that the as-

sumptions about the participants’ likely mental models were

largely unconfirmed in the 2AFC study, but the 7AFC study

should provide insight into the ability for participants to

engage with labels for future studies. When less constrained

in their choices, the participants largely agreed about gestures

to draw attention and to land, which might be due to the

ability of novice users to better understand these states.

Participants without experience in working with sUAS may

not understand the impact and standard responses to states

such as lost signal or lost sensor. This was thought to be

a benefit when designing the study, but may have led to a

reluctance to use these labels or a less principled application

of their use. Draw attention and landing were both used at

least 20% of the time, while the others were used 15% or

less of the time and lost sensor was only used in 10% of

responses across both conditions. A recommendation would

be to follow these studies up with an open-ended study,

but this would be largely dependent upon the instructions

given to the participants and the ability to create meaningful

categories from the unconstrained data. On the other hand,

it would provide a richer data set from which to generalize

states to communicate.

B. Impact of Negative Attitudes towards Robots

Riek et. al [14] found that people with negative attitudes

towards robots, as assessed by the Negative Attitudes towards

Robots (NARS) scale [31] had more difficulty in recognizing

robot gestures when interacting with a humanoid robot. We

also examined our data to assess whether this finding was

supported with sUAS and the results are presented in Table

IV. There were 17 participants with positive attitudes towards

robots (8 in 7AFC and 9 in 2AFC with means below 2) and



TABLE IV

RESULTS FROM A PRELIMINARY TEST WITH 64 PARTICIPANTS (32 IN EACH CONDITION) COMPARING BROAD AGREEMENT OF PARTICIPANTS WITH

NEGATIVE ATTITUDES TOWARDS ROBOTS VERSUS THOSE WITH POSITIVE ATTITUDES TOWARDS ROBOTS.

2FAC 7FAC

Motion Positive Attitude Negative Attitude Label Positive Attitude Negative Attitude Label
Circle 77.8% 50% Draw Attention 50% Draw Attention
Figure 8 77.8% 100% Lost Sensor 50% Draw Attention 50% Change Position
Left-Right 66.7% 100% Lost Sensor 50% Missed Goal
Loop 77.8% 50% Draw Attention
Spiral 88.9% 83.3% Landing 50% 66.7% Landing
Swoop 88.9 % 66.7% Draw Attention 50% 50% Low Battery
Undulate 55.6% 50% Change Position
Up-Down 66.7% 50% Change Position 50% Lost Signal

12 participants with negative attitudes towards robots (6 in

each 2AFC and 7AFC with means above 3).

This data does not seem to support the Riek finding,

which could be due to multiple factors such as the lack

of a clear meaning for prejudice against robots to interfere

with, lack of mapping from humainoid or ground robots to

aerial vehicles, and too small samples for those with extreme

opinions about robots. Note when viewing the table that 50%

was the expected agreement in the 2AFC, which was shown 4

times in the negative attitudes conditions, but the two highest

agreements also appeared in the negative attitude conditions.

Across all attitudes and conditions, the recognition of spiral

relating to landing was shown.

C. Manipulation Considerations

To confirm that users were able to play the videos and

follow directions, each task had two test tasks, which said

“Watch the video above and type the word shown.” Each of

these videos displayed words on the screen and participants

were required to type those words into a text box to have

their tasks approved. These test tasks were displayed at the

beginning of the task and again halfway through the labeling

task.

One manipulation that we did not assess, but should be

considered in future work, is whether the users have sound

enabled on their computer. This task did not require sound

to be enabled, but also did not remove the sound from

the videos, which may have resulted in different sensory

interactions from different participants. Some participants

mentioned the sound in their post-experiment feedback on

the robot, for example:

• P14, 2AFC: “It’s very loud. I can see how the noise can

become grating soon enough.”

• P11, 7AFC: “Never realized just how loud they are.”

• P15, 7AFC: “It is an excessively loud robot. ”

D. Limitations

At this formative stage, we attempted to control several

factors to gain an understanding of communicative ability

with limited complexity. The work is replicable and also a

valuable starting point that has been successfully used in

human-human communication studies [10], [9]. The design

choices we made, however, limit the generalization of our

findings, and we intend to relax them in the next studies.

Among those are moving from indoor flights to outdoor

flights and from video to live flights, adding goal states, and

enriching both the response set and the whole context.

From a population perspective, since the participants were

recruited from mTurk, they did have more diversity in age

and education than we would generally see on a college

campus, but they were overwhelmingly American which

could limit the application of these results in other cultures,

as suggested by [32].

One final limitation of note is the idea that the gestures

could interfere with other tasks being undertaken by the

sUAS. While this is a possible drawback from the visual

communication, it is anticipated that the states proposed for

communication would necessitate the pausing of a task. For

example, if a sUAS is taking pictures or videos of a farm and

finds something important then the sensed information would

potentially override the value of the other mission. The states

presented here are targeted for generality, but some such as

attract attention, may less valuable to communicate in hobby

domains and essential in applied domains.

E. Research and Design Implications

A major implication of this work is to suggest investiga-

tions into how naive users understand sUAS problem states

when compared to users with experience in piloting these

vehicles. The communication of more technical states will

be predicated upon a user base that can understand them,

which may result in recommendations for team training prior

to implementing use. This training will be unlikely with

general novice users, but may be resolved through a more

participatory design process or through communication of

the states they do understand. For example, it may be less

important that bystanders understand the “lost sensor” signal

if it is followed by a spiral landing, which they can generally

understand and predict the final state.

Another path for exploration is the idea of a “guessability”

study as conducted by [33], [16], [23] to have a small set

of participants design gestures and then test them with a

larger pool in order to see if there are understood methods

for conveying these ideas. An interesting aspect of these tests

is that the users may converge on any number of parameters,

such as height change indicating attention drawing and

combine these ideas into a richer gesture set than the one

that we applied here. This approach has limitations which



were considered to make it an inappropriate starting point

(such as the limitation to the culture that created the gestures

as seen in [10]) while the labeling study here was deemed

to be a sanity check to understand whether opinions could

converge on given flight paths. With the information here,

it is expected that a “guessability study” would be a valid

method for refinement, allowing a comparison against the

baseline described here and is recommended for additional

study.

Additionally, it is recommended that the Negative Atti-

tudes towards Robots scale [31] be investigated for applica-

bility to sUAS research. This recommendation is based on

the inconclusive support for Riek’s [14] humanoid findings

to the sUAS gestures.

VII. CONCLUSIONS

This paper presents an initial study on the ability for

novice users to understand communicative flight paths from

an sUAS to increase safety in future interactions in public

spaces. Results indicate a strong understanding across users

for a spiraling path to communicate “landing”, but users

primarily gravitated towards well understood states (draw

attention and landing) while avoiding more technical states

(lost sensor). Recommendations for future work include:

outdoor tests, visible goal state, open-ended responses, and

user generated flight paths. An initial finding questions

whether the findings from humanoid robots that negative

attitudes towards robots decrease understanding of gestures

also applies to sUAS, and leaves a more broad question

on whether a version of NARS should be revised to apply

specifically to sUAS.
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