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We prove that for generalized dephasing channels, the coherent information and
reverse coherent information coincides. It also implies an alternative approach for
the strong super-additivity and strong converse of generalized dephasing channels
using the operator space technique. Our argument is based on an improved Rényi
relative entropy estimate via analyzing the channel’s Stinespring space. We also
apply this estimate to new examples of quantum channels arising from quantum
group co-representation and Kitave’s quantum computation model. In particular,
we find concrete examples of non-degradable channels that our estimates are tight
and give a formula of nontrivial quantum capacity. Published by AIP Publishing.
https://doi.org/10.1063/1.5058692

I. INTRODUCTION

Quantum Shannon theory extends Shannon’s information theory to the framework of quantum
physics laws. One core topic is to understand the capacity of quantum communication, that is, the
maximal rate of transmitting qubits over a quantum channel. Thanks to the Lloyd-Shor-Devetak
theorem,6,21,27 the quantum capacity Q(N) of a quantum channel N is characterized as follows:

Q(N)= lim
k→∞

Q(1)(N ⊗k)
k

,

Q(1)(N)= sup
φ

H(N(φ)) − H(id ⊗ N(|φ〉〈φ|)). (1)

Here |φ〉〈φ| is a purification of the input state φ, H(φ) = �tr(φ log φ) is the von Neumann entropy, and
the supremum runs over all input φ. Q(1)(N) is called the coherent information of N, and the quantum
capacity Q(N) is an average of Q(1) per use of channel over many uses, so called the regularization of
Q(1). Despite this impressive theoretical success, the quantum capacity is computationally intractable
in general, due to the increasing dimension in the supremum optimization. Devetak and Shor8 proved
that for channels in which the environment can be retrieved from receiver’s output with the help of
another channel, the regularization is trivial and Q = Q(1) gives a “single-letter” formula for quantum
capacity. This class of quantum channels is called degradable. For non-degradable channels, there
are examples that the regularization is essentially necessary to see the ultimate capacity.5,33 Many
different approaches have been introduced to give estimates on quantum capacity for particular or
general quantum channels.15,28,29,31,32 However beyond degradable ones, little is known about the
exact value of quantum capacity.

In our previous work,11 we proved an estimate of quantum capacity via analyzing the Stinespring
space of a channel. Recall that quantum channels mathematically are completely positive trace pre-
serving maps which send density operators (positive and trace 1) to density operators. LetB(H) be the
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operators on a Hilbert space H. A quantum channel N :B(HA)→B(HB) admits a Stinespring dilation

N(ρ)= trE(V ρV ∗),

where V : HA→HB ⊗HE is an Hilbert space isometry and HE is the Hilbert space of the environment.
The range of V, denoted by XN B ran(V ) ⊂ HB ⊗ HE , is called the Stinespring space of N. A channel
and its capacity are determined by its Stinespring space, and more precisely, the operator space
structure by viewing XN ⊂B(HE , HB) �HB ⊗ HE as operators from HE to HB. This perspective was
used (in Ref. 1) to understand Hastings’ counterexamples for additivity of minimal output entropy.
Indeed, XN is isomorphic to the input system HA as Hilbert space, and hence every quantum channel
is the restriction of partial trace on B(XN ). Using the operator structure in B(HE , HB), N can be
rewritten as

N(|x〉〈y|)= x∗y, x, y ∈ XN ⊂B(HE , HB). (2)

Here and following, we use the bra-ket notation “|x〉, 〈y|” for Hilbert vectors (or dual vectors) in XN

and write x, y for the corresponding operators in B(HE , HB). Based on this, we consider the modified
channel of N as follows:

Nf (|x〉〈y|)= x∗fy, x, y ∈ XN ,

where f ∈B(HE) is a positive operator. N f is a channel if and only if for all x, y ∈ XN , tr(yx∗f ) = tr(yx∗).
This modifies the channel via a matrix multiplication on the environment side HE and, in particular,
N = N1 for f = 1 the identity. Let R be the C∗-algebra generated by elements {yx∗ ∈B(HE)|x, y ∈ XN }.
Our main estimate is as follows:

Theorem I.1. Suppose f ∈B(HE) is a positive operator such that tr(af) = tr(a) for all a ∈ R.
Then

Q(N) ≤Q(Nf ) ≤Q(N) + J(f ),

where the correction term J(f) is given by

J(f )B sup
ρ∈R

H(ρ) − H(f
1
2 ρf

1
2 )

and the supremum runs over all density ρ ∈ R.

This generalizes the estimates in Ref. 11 by dropping a stronger assumption that f is independent
of R. An interesting application of Theorem I.1 is that it implies that the reverse coherent information
(see Sec. II) and coherent information coincide for generalized dephasing channels (also called
Schur multiplier channels) and the J(f ) expression gives an alternative formula for the quantum
capacity. Moreover, this also gives an operator space proof of the strong converse and strong super-
additivity of Schur multiplier channels.31,36 Theorem I.1 also applies to channels from quantum
group representations and Kitave’s quantum computation model. In particular, we also construct a
16-dimensional example of a non-degradable channel that our upper bound is tight.

Our method relies upon the interpolation relations of noncommutative vector-valued Lp space
introduced in Refs. 16 and 25. These Lp norms are closely related to the sandwiched Rényi information
measure considered in Refs. 22 and 35. The sandwiched Rényi information measure is recently
found very useful to obtain the strong converse rate.13,31,34,35 Our estimates also give estimates of
strong converse rate as well as private classical capacity using an identical argument from Ref. 11.
Nevertheless, throughout the paper, our discussion will mainly focus on quantum capacity and briefly
mention the parallel results for private capacity and strong converse rate.

We organize this work as follows: Section II gives the proof of the main Theorem I.1. We
show in Sec. III that our estimates are tight for Schur multiplier channels and imply that the reverse
coherent information and coherent information of Schur multiplier coincide. In Sec. IV, we discuss
the quantum group channels constructed in Ref. 17, which includes the group random unitary channel
as a special case. Section V provided the explicit 16-dimensional non-degradable channel for which
our estimates are tight and give a formula. In Sec. VI, we discuss the examples related to toric codes
and Kitaev’s model.
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II. CAPACITY ESTIMATES VIA CONDITIONAL Lp-SPACES

A. Conditional Lp-spaces

We index Hilbert by capital letters such as HA, HB, . . . and write 1A for the identity operator in
B(HA), idA for the identity map, and trA for the trace on B(HA). We restrict our discussion to finite
dimension Hilbert spaces. For 1 ≤ p < ∞, the Schatten p-norm of an operator x in B(H) is

‖x‖pB tr(|x |p)
1
p , 1 ≤ p<∞.

We write Sp(H) for the space equipped with Schatten p-norm and identify S∞(H)=B(H).
Let A ⊂B(H) be a unital C∗-subalgebra. The conditional expectation E :B(H)→A is the

completely positive unital trace preserving map such that

tr(ax)= tr(aE(x)), a ∈A, x ∈B(H).

Let 2 ≤ s, r ≤ ∞, 1 ≤ q ≤ ∞ and fix the relation 1
q + 1

s + 1
r =

1
p . For an operator x ∈B(H), we recall

that the conditional Lq
(s,r)(E) norm is defined as

‖x‖Lq
(s,r)(E)B sup{‖axb‖p |a, b ∈A, ‖a‖s=‖b‖r= 1}. (3)

It was proved in Ref. 16 that

(i) (3) are indeed norms (satisfy the triangle inequality) for all 2 ≤ s, r ≤ ∞, 1 ≤ p ≤ ∞.
(ii) Lq

(s,r)(E) spaces satisfy the complex interpolation relation that

[Lq0
(s0,r0)(E), Lq1

(s1,r1)(E)]θ =Lq
(s,r)(E) (4)

isometrically for 0 ≤ θ ≤ 1 and

(1 − θ)/s0 + θ/s1 = 1/s, (1 − θ)/r0 + θ/r1 = 1/r,

(1 − θ)/q0 + θ/q1 = 1/q.

We refer to Ref. 2 for information about complex interpolation. We will mostly use the cases
(s, r, q) = (2p, 2p,∞) and (s, r, q) = (2p,∞,∞) that

‖x‖L∞(2p,2p)(E)= sup{‖axb‖p |a, b ∈A, ‖a‖2p=‖b‖2p= 1},

‖x‖L∞(2p,∞)(E)= sup{‖ax‖2p |a ∈A, ‖a‖2p= 1}.

We will use the short notation L∞p (E)BL∞(2p,2p)(E) for the symmetric conditional Lp-space. It
is clear from the definition that ‖f ‖L∞∞ (E)=‖f ‖∞ and for positive f, ‖f ‖L∞1 (E)=‖E(f )‖∞. It is also
easy to verify that for any x ∈B(H)

‖x‖2L∞(2p,∞)(E)=‖x
∗x‖L∞2p(E) .

B. TROs and TRO channels

Let H, K be two Hilbert spaces. A closed subspace X of B(H, K) is a ternary ring of operators
(TROs) if X is closed under the triple product

x, y, z ∈ X⇒ xy∗z ∈ X .

TROs were first introduced by Hestenes in Ref. 14 and later studied as important classes of operator
Hilbert modules.18,23 Given a TRO X, its left C∗-algebra LX and the right C∗-algebra RX are given
by

LX = span{xy∗ |x, y ∈ X } ⊂B(H),

RX = span{x∗y|x, y ∈ X } ⊂B(K).

X is a natural LX � RX bimodule
LXX =X, XRX =X.

In finite dimensions, a TRO is always given by a direct sum of rectangular matrices with mul-
tiplicity. Namely, X � ⊕i

(
Mni ,mi ⊗ C1li

)
, where Mni ,mi is the ni × mi matrix spaces and li is the

multiplicity of the ith diagonal block ni × mi.
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Definition II.1. We say a quantum channel N :B(HA)→B(HB) is a TRO channel if its Stinespring
space XN ⊂B(HE , HB) is a TRO.

Let N :B(HA)→B(HB) be a TRO channel with Stinespring space XN ⊂B(HE , HB). N is equiv-
alent to a direct sum of partial traces and the range of N is the left algebra LX . Indeed, let
XN � ⊕i

(
Mni ,mi ⊗ 1li

)
. The diagonal blocks Mni ,mi are mutually orthogonal subspaces of HA � (XN ,

‖ · ‖2), and on each subspace, Mni ,mi as a Stingspring space corresponds to a partial trace idni ⊗ trmi .
Then the total map can be decomposed as an orthogonal sum

N(ρ)= ⊕i=1[idni ⊗ trmi (Pi ρPi)] ⊗ πli , (5)

where Pi are projections onto ith block Mni ,mi and πli =
1
li

is the completely mixed state in Mli ,
the dummy state to the multiplicity [see Ref. 11 (Proposition 2.1) for a detailed argument]. The
multiplicity li is irrelevant to channel capacity and we will often omit it. From Refs. 11 (Proposition
3.3) and 10 (Theorem 1), the quantum capacity of (5) is log maxini, the logarithm of the largest size
of the invariant system. Moreover, these channels have strong converse and strong addivitity. One can
see TROs as Stinespring spaces correspond to a special class of quantum channels whose capacity
and related quantities are clear.

C. Perturbative capacity estimates

Let N :B(HA)→B(HB) be a TRO channel with Stinespring space X. As discussed in the
Introduction, we can rewrite N as

N(|x〉〈y|)= xy∗, x, y ∈ X ,

where |x〉, |y〉 are the vectors in the Hilbert space (X, ‖ · ‖2). For any f ∈B(HE), we define the modified
map

Nf (|x〉〈y|)= xfy∗, x, y ∈ X.

Let ER :B(HE)→RX (respectively, EL :B(HB)→LX ) be the conditional expectation onto the right
algebra RX (respectively, the left algebra LX ). It is not hard to verify (Proposition 2.3 of Ref. 11) that
N f is a quantum channel if and only if f is positive and ER(f ) = 1. In this case,

(i) the Stinespring dilation of N f is given by

Vf : (X , ‖·‖2)→HB ⊗ HE , Vf (|x〉)= |xf
1
2〉.

(ii) EL◦N f = N.
The goal is to compare the capacity of N f to the TRO channel N, whose capacity is clear.
We approach this by analysing the sandwiched Rényi relative entropy introduced in Refs. 22
and 35. Let 1 ≤ p ≤ ∞ and 1

p + 1
p′ = 1. For two densities ρ, σ, the relative entropy D and the

sandwiched Rényi relative entropy Dp are defined as follows:

D(ρ| |σ)B tr(ρ log ρ − ρ logσ)= lim
p→1+

Dp(ρ| |σ),

Dp(ρ| |σ)B p′ log ‖σ−
1

2p′ ρσ
− 1

2p′ ‖p .

Here we assume that the support of ρ is dominated by the support of σ; otherwise, D and Dp

are defined as +∞. The following lemma is an improvement of the main technical theorem of
Ref. 11:

Lemma II.2. Let N :B(HA)→B(HB) be a TRO channel with Stinespring space X, and let Nf be
the modified channel defined as above. For any density σ ∈ LX ⊂B(HB) and ρ ∈B(HA),

Dp(N(ρ)| |σ) ≤Dp(Nf (ρ)| |σ) ≤Dp(N(ρ)| |σ) + p′ log ‖f ‖L∞p (ER) . (6)

Proof. By the definition of EL, EL(σ) = σ for σ ∈ LX . Then the lower bound is a direct
consequence of the data processing inequality of Dp (see, e.g., Theorem 6 of Ref. 22)

Dp(Nf (ρ)| |σ) ≥Dp(EL ◦ Nf (ρ)| |EL(σ))=Dp(N(ρ)| |σ).
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The upper bound is equivalent to the following norm inequality:

‖σ
− 1

2p′ Nf (ρ)σ−
1

2p′ ‖p≤‖f ‖L∞p (ER)‖σ
− 1

2p′ N(ρ)σ−
1

2p′ ‖p .

Let V : HA→HB ⊗ HE be the Stinespring dilation of N. For η ∈B(HA), Vη ∈B(HA, HE ⊗HB) and we
write η̂ for the corresponding operator inB(HA⊗HE , HB) via the identification HB⊗HE �B(HE , HB).
Then for ρ = ηη∗

N(ρ)= η̂η̂∗, Nf (ρ)= η̂(1A ⊗ f )η̂∗.

Let X̃ BB(HA,C) ⊗ X be the tensor product of X and a column vector space. X̃ is a TRO in B(HA ⊗

HE , HB), and its left algebra is again L ˜(X) =LX and the right algebra is R ˜(X) =B(HA) ⊗ RX . The
conditional expectation from B(HA ⊗ HE) to B(HA) ⊗ RX is ẼR = idA ⊗ ER.

It is clear that η̂ belongs to X̃ and for σ ∈ LX , σ−
1

2p′ η̂ ∈ X̃ by the left LX -module property.
Therefore for any positive ρ= ηη∗ ∈B(HA),

‖σ
− 1

2p′ Nf (ρ)σ−
1

2p′ ‖p

‖σ
− 1

2p′ N(ρ)σ−
1

2p′ ‖p

=
‖σ
− 1

2p′ η̂(1A ⊗ f
1
2 )‖22p

‖σ
− 1

2p′ η̂‖22p

≤ sup
x∈X̃, | |x | |2p=1

‖x(1A ⊗ f
1
2 )‖22p

= sup
x∈X̃, | |x | |2p=1

‖(1A ⊗ f
1
2 )x∗x(1A ⊗ f

1
2 )‖p

= sup
x∈X̃, | |x | |2p=1

‖(x∗x)
1
2 (1A ⊗ f

1
2 )‖22p

≤ sup
a∈RX̃ , | |a | |2p=1

‖a(1A ⊗ f
1
2 )‖22p .

The first inequality above is because σ−
1

2p′ η̂ ∈ X̃ and the second inequality is because (x∗x)
1
2 is an

element in the right algebra RX̃ =B(HA) ⊗ RX . By the definition of the conditional Lp-norms (3),

‖σ
− 1

2p′ Nf (ρ)σ−
1

2p′ ‖p

‖σ
− 1

2p′ N(ρ)σ−
1

2p′ ‖p

≤‖(1A ⊗ f
1
2 )‖2

L∞(2p,∞)(ẼR)

=‖(1A ⊗ f )‖L∞p (ẼR) .

Moreover, for any 1 ≤ p ≤ ∞, we have

‖(1A ⊗ f )‖L∞p (idA⊗ER)=‖f ‖L∞p (ER) .

Indeed, for p = 1 and p = ∞, this is easily verified and the case for general p follows from
interpolation. ◽

The above lemma gives a comparison of Rényi relative entropy for each single input ρ. Passing
(6) to the limit p→ 1+, we obtain the inequality that for relative entropy

D(Nf (ρ)| |σ) ≤D(N(ρ)| |σ) + lim
p→1+

p
p − 1

log ‖f ‖L∞p (ER) .

Note that for positive f

‖f ‖L∞p (ER)= sup
ω

‖ω
1
2 fω

1
2 ‖p

‖ω‖p
= sup

ω

‖f
1
2ωf

1
2 ‖p

‖ω‖p
,
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where the supremum runs over all density ω ∈ RX . Since ‖f ‖L∞1 (ER)=‖ER(f )‖∞= 1,

lim
p→1+

p log ‖f ‖L∞p (ER)

p − 1

= lim
p→1+

‖f ‖L∞p (ER) −1

p − 1

= lim
p→1+

sup
ω

1
‖ω‖p

‖f
1
2ωf

1
2 ‖p −1

p − 1
−
‖ω‖p −1

p − 1

= sup
ω

H(ω) − H(f
1
2ωf

1
2 ).

This is the maximum entropy difference of the map

Mf : RX→B(HE), Mf (ω)= f
1
2ωf

1
2 .

This map is completely positive trace preserving on RX by the assumption ER(f ) = 1. Define

J(f )B sup
ω∈RX

H(ω) − H(f
1
2ωf

1
2 ).

From the identical argument of Ref. 11 (Corrollaries 3.1 and 3.5), we obtain the following capacity
estimate:

Theorem II.3. Let N :B(HA)→B(HB) be a TRO channel with Stinespring space X. Then for
any f ∈B(HE) and ER(f) = 1,

Q(N) ≤Q(Nf ) ≤Q(N) + J(f ).

Similar estimates were obtained in Ref. 11 that there is a technical assumption that f is indepen-
dent of RX , i.e., there exists a C∗-algebra A such that f ∈A and for any a ∈A, ER(a) = τ(a)1E , where
τ(x)= 1

|E | tr(x) is the normalized trace on B(HE). Here we only need a minimal assumption that N f

is a channel and the estimates are obtained with the new correction term J(f ).

Proposition II.4. Let f ∈B(HE) be a positive operator such that ER(f) = 1. Then J(f)
≤ ‖ER(f log f)‖∞. In particular, J(f) = τ(f log f) if f is independent of RX.

Proof. We first show that for any positive a ∈B(HE), ‖a‖L∞(2p,∞)(ER)≤‖ap‖L∞(2,∞)(ER). Assume that
‖ap‖L∞(2,∞)(ER)= 1. Consider the analytic map

h : {0 ≤ Re(z) ≤ 1}→B(HE), h(z)= apz.

For z = 1 + it,

‖ap(1+it)‖L∞(2p,∞)(ER)=‖a
p‖L∞(2,∞)(ER)= 1.

For z = it,

‖aipt ‖L∞(∞,∞)(ER)=‖a
ipt ‖∞= 1.

By interpolation (4), we know at z= 1
p

‖a‖L∞(2p,∞)(ER)≤ 1.

Choosing a= f
1
2 , we obtain that

‖f ‖L∞(2p,2p)(ER)≤‖f
p‖L∞(2,2)(ER) .
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Take the limit p→ 1+,

lim
p→1+

‖f ‖L∞p (ER) −1

p − 1
≤ lim

p→1+

‖f p‖L∞2 (ER) −1

p − 1

≤ lim
p→1+

‖f p‖L∞2 (ER) − ‖f ‖L∞2 (ER)

p − 1

≤ lim
p→1+

‖ER(
f p − f
p − 1

)‖L∞2 (ER)

=‖ER(f log f )‖L∞2 (ER) .

In addition, if f is independent of RX , we know

‖ER(f log f )‖∞=‖τ(f log f )‖∞= τ(f log f ). �

For discussion of Secs. III–V, we recall here the negative cb-entropy formula in Ref. 11. For
a quantum channel N, the negative cb-entropy (also called the reverse coherent information, see
Refs. 12 and 37 for its operational meaning) is given by

−Scb(N)= sup
φ

H(φ) − H(id ⊗ N(|φ〉〈φ|)),

where the supremum runs over all input states φ and |φ〉 is a purification of φ.

Theorem II.5. Let N be a quantum channel and Nf be a modification of N such that f is indepen-
dent of the right algebra RX. Suppose that the complimentary channel NE :B(HA)→B(HE) is unital
up to a scalar, i.e., NE(1A)= |A |

|E |1E . Then

−Scb(Nf )= log
|A|
|E |

+ τ(f log f ).

III. SCHUR MULTIPLIERS

Schur multipliers, also called generalized dephasing channels, are special cases of Hadamard
channels whose input and output systems are of the same dimension. Let Mn be the algebra of n × n
matrices and eij be the matrix unit at ith-column and jth-row. The Schur multiplier associated with a
matrix (aij)n

i,j=1 is given by
Ma : Mn→Mn, Ma(b)= (aijbij)i,j.

For a = 1 being the identity operator, the Schur multiplier is the conditional expectation onto the
diagonal matrices D

ED(b)=ED(
∑

ij

bij ⊗ eij)=
∑

i

bii ⊗ eii.

It is known that Ma is completely positive if and only if a is positive,23 and moreover, Ma is trace
preserving if and only if aii = 1 for all 1 ≤ i ≤ n. Thus for any positive a such that ED(a) = 1, the
Schur multiplier Ma is a quantum channel. As special cases of Hadamard channels, Ma are known
to be degradable hence the regularization is trivial Q = Q(1). Moreover, they are an important class
of quantum channels which have strong-additive quantum capacity and strong converse.31,34,36

The conditional expectation M1 = ED is a TRO channel, and Ma can be viewed as a modification
of M1 in our setting. Indeed, the Stinespring dilation of ED is

ED(ρ)= idn ⊗ trn(V ρV ),

where V :Cn→Cn ⊗ Cn is
V (|i〉)= |i〉|i〉.

The TRO X = ran(V ) ⊂B(Cn,Cn) �Mn are the diagonal matrices D and a vector |h〉=
∑

i hi |i〉 ∈Cn

corresponds to operator h =
∑

ihieii. The channel M1 = ED and Ma can be written as

ED(|h〉〈h|)= h∗h, Ma(|h〉〈h|)= h∗ah.
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Because ED has a commutative range, ED is entanglement-breaking and Q(ED) = 0. Then by Theorem
II.3,

Q(a) ≤ JD(a), J(a)= sup
ω∈D

H(ω) − H(a
1
2ωa

1
2 ).

The main result of this section is to show that this is indeed an equality. It was observed in Ref. 7 that
the negative cb-entropy is the derivative of S1 → Sp completely bounded norm at p = 1,

−Scb(Ma)= lim
p→1+

1
p − 1

(‖Ma : Sn
1→ Sn

p ‖cb −1).

By Effros-Ruan theorem (see Refs. 9 and 26)

‖Ma : Sn
1→ Sn

p ‖cb=‖ χa‖Mn(Sn
p ),

where χa =
∑

ijaijeij ⊗ eij is the Choi matrix of Ma and for a bipartite matrix y ∈Mn ⊗Mn, the Mn(Sn
p)

norm is
‖y‖Mn(Sn

p )= sup
b1,b2∈Mn, | |b1 | |2p= | |b2 | |2p=1

‖(b1 ⊗ 1)y(b2 ⊗ 1)‖p .

In particular, for p = 1 and positive y,

‖y‖Mn(Sn
1 )=‖tr ⊗ id(y)‖∞ .

Mn(Sn
p) is the noncommutative vector-valued Lp space introduced by Pisier in Ref. 25 which defines

the operator space structure of Sp. It motivates the conditional Lp-norm of subalgebras. Mn(Sp) is a
special case of L∞p (E) with E being the partial trace id ⊗tr: Mn ⊗ Mn → Mn.

Proposition III.1. Let

CB { χa =
∑

ij

aijeij ⊗ eij |a ∈Mn} ⊂Mn ⊗ Mn

be the space of Choi matrices of all n-dimensional Schur multiplier. Then

(i) the map χ: Mn → C, χ(a) = χa is a ∗-isomorphism.
(ii) C is a 1-complemented subspace of Mn(Sn

p) for all 1 ≤ p ≤ ∞, i.e., there exists a projection
map PC from Mn(Mn) onto C such that PC is contractive on Mn(Sn

p).
(iii) For any a ∈ Mn,

‖a‖L∞p (ED)=‖ χa‖Mn(Sn
p ) .

Namely, χ : L∞p (ED)→Mn(Sn
p) is a Banach space isometry.

Proof. (i) is easy to verify. For (ii), the projection map is given by

PC(x)=PxP,

where P is the projection from Cn ⊗Cn onto the space span{|i〉|i〉|1 ≤ i ≤ n}. PC is clearly completely
contractive on Mn(Mn). Note that (tr ⊗ id)◦PC(x) = ED◦(tr ⊗ id)(x). Then for a positive x,

‖PC(x)‖Mn(S1)= ‖(tr ⊗ id) ◦ PC(x)‖∞=‖ED ◦ (tr ⊗ id)(x)‖∞
≤ ‖(tr ⊗ id)(x)‖∞=‖x‖Mn(S1) .

For general x, we can write x = x1x2 such that

‖x‖Mn(Sn
1 ) =‖x1x∗1‖

1
2
Mn(Sn

1 )‖x
∗
2x2‖

1
2
Mn(Sn

1 )

≥‖Px1x∗1P‖
1
2
Mn(Sn

1 )‖Px∗2x2P‖
1
2
Mn(Sn

1 )

≥‖Px1x2P‖Mn(Sn
1 ) . (7)

Thus by interpolation, PC is a contraction on Mn(Sp) for all 1 ≤ p ≤ ∞. For (iii), the equality of p =∞
is a consequence of (i). For p = 1, because tr ⊗ id(χa) = ED, so for positive a

‖ χa‖Mn(Sn
1 )=‖ED(a)‖∞=‖a‖L∞1 (ED) .
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The equality in general follows from the similar Cauchy-Schwarz type argument as above (7). Note
that (ii) implies that C equipped with Mn(Sp) norms forms an interpolation family. Then the equality
in general p follows from interpolation, which completes the proof. ◽

Remark III.2. The argument above actually shows that χ is a complete isometry. The space
C equipped with operator space structure Mn(Sp) can be expressed as Haagerup tensor product
l∞p,c ⊗h l∞p,r where l∞p,c is the subspace of diagonal matrices in Cn ⊗h Cn

p and l∞p,r is the subspace of
diagonal matrices in Rn

p ⊗h Rn. Here Cn (respectively, Rn) is the n-dimensional column (row) space
and Cn

p =Rn
p′ = [Cn, Rn] 1

p
is the interpolation space. In particular, for p = 1, we have shown that at

Banach space level L∞2 (ED) is isometric to Grothedieck’s factorization norm ln
2 ⊗γ ln

2 (see Ref. 24).

Our main theorem of this section is as follows:

Theorem III.3. For all Schur multipliers,

−Scb(Ma)=Q(1)(Ma)=Q(Ma)= JD(a).

Proof. Because Schur multipliers Ma are unital, we have H(Ma(ρ)) ≥ H(ρ) and hence

−Scb(Ma)= sup
ρAA′

H(ρA) − H(id ⊗ Ma(ρ))

≤ sup H(Ma(ρA)) − H(id ⊗ Ma(ρ))

≤Q(1)(Ma).

Moreover, from Theorem II.3,
Q(1)(Ma) ≤Q(Ma) ≤ JD(a).

Thus it suffices to show that JD(a) ≤ �Scb(Ma). This follows by taking derivatives to the norms
inequality from Proposition III.1

JD(a)= lim
p→1+

‖a‖L∞2p(ED) −1

p − 1
≤ lim

p→1+

‖ χa‖Mn(Sn
p ) −1

p − 1
=−Scb(Ma). �

This above theorem implies that the coherent information and reverse coherent information
coincides. It also provides an operator space proof for the quantum strong converse and strong
additivity of Q(1) for Schur multiplier channels.

IV. QUANTUM CHANNELS FROM QUANTUM GROUPS

Given a finite group G, two classes of quantum channels constructed from G have been discussed
in Refs. 4 and 11. One is the random unitary channel given by

Nf :B(H)→B(H), Nf (ρ)=
∑
g∈G

f (g)u(g)ρu(g),

where u: G→ B(H) is a unitary representation of G and f is a probability distribution on G. The other
classes are Schur multipliers

Mφ =B(l2(G))→B(l2(G)), Mφ(ρ)= (φ(g−1h)ρgh)g,h,

where l2(G) is the Hilbert space spanned by the orthonormal basis {|g〉}g∈G and φ : G→C is a positive
definite function on G. These two classes of channels are dual to each other in the quantum group
sense. In this section, we introduce a general construction of quantum channels from co-representation
of a quantum group. Both this work and Ref. 4 are inspired by the unpublished notes (Ref. 17).

We recall the basic definition of quantum groups and refer to Refs. 20 and 30 for more information.
A C∗-compact quantum group (G,∆) is a unital C∗-algebra G equipped with a comultiplication ∆,
i.e., a unital ∗-homomorphism from G to G ⊗ G such that
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(i) (∆ ⊗ idG)∆= (idG ⊗ ∆)∆,
(ii) each of the sets ∆(G)(1G ⊗ G) and (1G ⊗ G)∆(G) is linearly dense in G ⊗ G.

A compact quantum group G admits a unique Haar state τ such that

(τ ⊗ id)∆(x)= τ(x)1= (id ⊗ τ)∆(x).

We denote L2(G, τ) for the Hilbert space equipped with the inner product 〈x|y〉τ = τ(x∗y). A co-
representation of G is given by a unitary U ∈B(H) ⊗ G satisfying the identity

(id ⊗ ∆)U =U13U12, (8)

where U12 =U ⊗1 ∈ B(H)⊗G⊗G and U13 = (Σ ⊗ id)(1 ⊗ U) and Σ(x ⊗ y) = y ⊗ x is the flip operator.
A unitary co-representation is irreducible if the commutant {id ⊗ τ((1 ⊗ a)U)|a ∈G}′ =C is trivial.
Let us denote A for the algebra generated by {id ⊗ τ((1 ⊗ a)U)|a ∈G} and A′ for its commutant.

Proposition IV.1. The conditional expectation EA′ :B(H)→A′ is given by

N(ρ)= id ⊗ τ(U(ρ ⊗ 1)U∗).

In particular, N is a TRO channel.

Proof. For any x ∈A′, (x ⊗ 1)U = U(x ⊗ 1) because for any y ∈B(H), a ∈G,

tr ⊗ τ
(
(x ⊗ 1)U(y ⊗ a)

)
= tr

(
x
(
id ⊗ τ

(
U(1 ⊗ a)

)
y
)

= tr
((

id ⊗ τ
(
(1 ⊗ a)U

)
xy

)
= tr ⊗ τ

(
U(x ⊗ 1)(y ⊗ a)

)
.

For any x ∈A′, y ∈B(H)

tr(N(y)x)= tr ⊗ τ
(
U(y ⊗ 1)U∗(x ⊗ 1)

)
= tr ⊗ τ

(
U(yx ⊗ 1)U∗

)
= tr ⊗ τ

(
yx ⊗ 1

)
= tr(yx),

which implies N(y)=EA′(y). Hence N is a TRO channel because N =EA′ is a conditional
expectation. ◽

In finite dimensions, the unitary co-representation U can be decomposed as

U = ⊕iUi ⊗ 1li ,

where for each i, U i is an irreducible co-representation on some finite dimensional Hilbert space Cni

and li is the multiplicity. In this situation,

A �Mni ⊗ C1li , A
′ �C1ni ⊗ Mli ,

and the quantum capacity of N is log(maxili), the logarithm of the largest multiplicity.
For each density f ∈G (positive and τ(f ) = 1), the modification of N is

Nf :B(H)→B(H), Nf (ρ)= id ⊗ τ(U(ρ ⊗ f )U∗). (9)

Assume that U =
∑
i

xi ⊗ ai for some xi ∈B(H), ai ∈G. N f is a completely positive trace preserving

map with Stinespring dilation

Vf : H→H ⊗ L2(G), Vf |h〉=
∑

i

xi |h〉 ⊗ |ai〉.

From Theorem II.3 and Proposition II.4, we have
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Theorem IV.2. Let U ∈B(H) ⊗ G be finite dimensional co-representation of G and Nf be the
quantum group channel defined in (9). Then for any density f ∈G

Q(N) ≤Q(Nf ) ≤Q(N) + τ(f log f ),

and Q(N) is the logarithm of the largest multiplicity of the irreducible decomposition of U.

Example IV.3 (Left regular co-representation). Finite dimensional quantum groups admit a
multiplicative unitary W ∈ B(L2(G)) ⊗ G which implements the co-multiplication as follows:

∆(a)=W∗(a ⊗ 1)W .

Here G is identified with its GNS representation in B(L2(G)). The dual quantum group Ĝ is given by

Ĝ= {id ⊗ τ(1 ⊗ aW )|a ∈G}.

The co-representation given by W is called the left regular co-representation ofG. From the Peter-Weyl
theorem for compact quantum group, the regular co-representation

W = ⊕iUi ⊗ 1ni

is the direct sum of all finite dimensional irreducible representation Ui ∈Mni (G) (up to unitary equiv-
alent) and the multiplicity ni equals to the dimension of the co-representation. For a density f ∈ Ĝ,
the quantum channels constructed from W are

Nf (ρ)= id ⊗ τ(W (ρ ⊗ f )W∗).

For f = 1, the range of N is given by Ĝ′, the commutant of the dual quantum group Ĝ. Note that for
all f ∈ Ĝ,

tr(Nf (ρ))= tr ⊗ τ(W (ρ ⊗ f )W∗)= tr(ρ)τ(f ).

Then any f ∈G is independent to the right algebra of the TRO channel N. Denote dG =maxi ni as
the largest dimension of co-representation of G. We obtain from Theorem II.3, Proposition II.4, and
Theorem II.5 that

max{log dG, τ(f log f )}≤Q(1)(Nf ) ≤Q(Nf ) ≤ τ(f log f ) + ln dG.

The upper and lower bounds differ up to a factor of 2. This extends the estimates for group left regular
representation in Ref. 11 to quantum groups.

V. A NON-DEGRADABLE EXAMPLE

In this section, we present a concrete 16-dimensional channel which is non-degradable and satu-
rates our upper bound. Let H =C4⊗C4 be the 16-dimensional Hilbert space and {|j〉|k〉|1 ≤ j ≤ 4, 1 ≤ k
≤ 4}give a tensor product basis. Let Pj be the projection onto Hj =C|j〉 ⊗ C4 = span{|j〉 ⊗ |h〉| |h〉 ∈C4}.
Consider the following TRO space X:

X = span{
4∑

j=1

|j〉 ⊗ 〈hj | | |hj〉 ∈Hj} ⊂ B(C16,C4).

More explicitly, in standard basis, X are the rectangle matrices as follows:



h1 0 0 0
0 h2 0 0
0 0 h3 0
0 0 0 h4



,
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where for each i, hi is a row vector in H i and 0’s are 4-dimensional row vectors. Then the left
algebra LX = l4

∞ ⊂M4 as diagonal matrices and RX = l4
∞ ⊗ M4 ⊂M16 as block diagonal matrices. The

corresponding TRO channel N is an orthogonal sum of traces

N(ρ)=



tr(P1ρ) 0 0 0
0 tr(P2ρ) 0 0
0 0 tr(P3ρ) 0
0 0 0 tr(P4ρ)



,

which has zero quantum capacity. Recall the Pauli matrices

σ0 =

[
1 0
0 1

]
,σ1 =

[
0 1
1 0

]
,

σ3 =

[
1 0
0 −1

]
,σ2 = iσ1σ3.

We have the following representation of M2 into M2 ⊗ M2 ⊗ M2 ⊗ M2 � M16:

π(σ1)=σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1, π(σ3)=σ3 ⊗ σ1 ⊗ σ3 ⊗ σ3,

π(σ2)=−σ2 ⊗ 1 ⊗ σ2 ⊗ σ2.

Its range A= π(M2) is a subalgebra of M16 independent of RX . Indeed, let a= ⊕4
j=1aj in M16 and

f =
3∑

l=0

αlσl ∈M2

tr(aπ(f ))=
∑

j

tr(ajPjπ(f )Pj)= α0

∑
j

tr(aj)= τ(π(f ))tr(a)= τ(f )tr(a)

because Pjπ(σ1)Pj = Pjπ(σ2)Pj = Pjπ(σ3)Pj = 0 for all j. Note that f =
3∑

l=0

αlσl ∈M2 and π(f ) ∈

M16 are normalized densities if and only if α1, α2, α3 are real and |α1|2 + |α2|2 + |α3|2 ≤ 1, which is
the Bloch sphere. Write |α | =

√
|α1 |

2 + |α2 |
2 + |α3 |

2. The normalized entropy of f and π(f ) is given
by

τ(f log f )= τ(π(f ) log π(f ))= 1 − h(
1 + |α |

2
).

For π(f ) ∈ π(M2) and ρ ∈M16, we write π(f ) =
∑

1≤j,k≤4
|j〉〈k| ⊗ f jk and ρ =

∑
1≤j,k≤4

|j〉〈k| ⊗ ρjk according

to the tensor decomposition M16 = M4 ⊗ M4. The modified channel with symbol π(f ) is given by

Nf (ρ)=
∑

1≤j,k≤4

tr(ρjk fjk)|j〉〈k |,

where f ik are 4 × 4 matrices as follows:

f11 = f22 = f33 = f44 = 1,

f41 = f32 = f23 = f14 = α1σ1 ⊗ σ1,

f31 = f42 =−f13 =−f24 = iα2σ2 ⊗ σ2,

f12 = f21 =−f34 =−f43 = α3σ3 ⊗ σ3.

The complementary channel of N f is given by NE
f (|h〉〈h|)=

π(f
1
2 )



P1 |h〉〈h|P1 0 0 0
0 P2 |h〉〈h|P2 0 0
0 0 P3 |h〉〈h|P3 0
0 0 0 P4 |h〉〈h|P4



π(f
1
2 ).

Proposition V.1. For any f, Q(NE
f )= log 4. Hence Nf is not degradable.
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Proof. Note that, for |h〉 ∈ P1H

NE
f (|h〉〈h|)=π(f )

1
2 |h〉〈h|π(f )

1
2 ,

π(f )
1
2 |h〉=λ1 |h〉 ⊕

(
λ2σ1 ⊗ σ1 |h〉

)
⊕

(
λ3σ2 ⊗ σ2 |h〉

)
⊕

(
λ4σ3 ⊗ σ3 |h〉

)
.

The input |h〉 can be recovered from π(f )
1
2 |h〉 by a unitary operation. Hence NE

f can faithfully transmit

a 4 × 4 matrix space, which implies Q(NE
f ) ≥ log 4. On the other hand, Q(NE

f ) is at most log 4 because
it factors through the conditional expectation onto M4 ⊕ M4 ⊕ M4 ⊕ M4. ◽

Theorem V.2. For any density f = 1 + α1σ1 + α2σ2 + α3σ3,

Q(Nf )= τ(f log f )= 1 − h(
1 + |α |

2
).

Proof. The upper bound

Q(Nf ) ≤ τ(f log f )= 1 − h(
1 + |α |

2
)

follows from Theorem II.3 and Proposition II.4. Then it suffices to show that this upper bound is
achievable. Consider the vector

|ξ〉=
1
4

(1 + σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3)|h〉 ∈C4,

where |h〉 is an arbitrary unit vector in C4. |ξ〉 satisfies that

〈ξ |σ1 ⊗ σ1 |ξ〉=−〈ξ |σ2 ⊗ σ2 |ξ〉= 〈ξ |σ3 ⊗ σ3 |ξ〉= 1.

Then the restriction of N f on M4 ⊗ |ξ〉〈ξ | is a Schur multiplier

Ñf (ρ)=Nf (ρ ⊗ |ξ〉〈ξ |)=
∑
j,k

ρjk f̃jk |j〉〈k |, ρ= (ρjk) ∈M4,

where f̃ = 1 + α1σ1 ⊗ σ1 + α2σ2 ⊗ 1 + α3σ3 ⊗ σ1. Note that

˜A= {α01 + α1σ1 ⊗ σ1 + α2σ2 ⊗ 1 + α3σ3 ⊗ σ1 |αi ∈C}

is a C∗-algebra independent to the diagonal matrices D ⊂ M4. Then from Theorem II.5 and the fact
Ñf is unital, we obtain the lower estimate

1 − h(
1 + |α |

2
)= τ(f̃ log f̃ )=−Scb(Ñf ) ≤Q(1)(Ñf ) ≤Q(1)(Nf ),

which completes the proof. ◽

The above estimates also imply strong converse and strong-additivity of Q(N). The construction
can be easily generalized to higher dimensions by using generalized n-dimensional Pauli matrices

X |j〉= |j + 1〉, Z |j〉= e
2π ij

n |j〉.

They provide new examples of quantum channels which are non-degradable but have computable
quantum capacity.

VI. QUANTUM CHANNEL MAPS ARISED FROM ERROR CORRECTION

Many codes in quantum information are designed for quantum computing rather than commu-
nication. We should not expect these codes to be optimal in the communication. Rather, these codes
protect a particular subspace of logical qubits from possible errors, providing the abstraction of ideal
quantum circuits within that subspace. Yet the notion of a protected subspace fits our formalism of
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conditional expectation exceedingly well. Codes that protect a given subspace are optimal in commu-
nication for channels given by the conditional expectation that preserve the protected subspace. Our
perturbative estimates then bound the suboptimality of subspace protection for channels that deviate
from that conditional expectation.

A. Toric code

In this section, we discuss how the toric code19 considered by Kitaev fits into the TRO formalism
and when it is good for quantum communication and storage. Let us first briefly recall the toric code
construction.

Suppose we are given a 2-dimensional crystalline lattice with periodic boundary conditions (a
torus). We index the vertex by its coordinate v = (v1, v2). Qubits (or spins) live on the edge between
adjacent vertices, and we index them via vertex pairs (v, w). We may also consider the plaquettes,
which are the unit squares with a vertex on each corner, indexed by the coordinate p = (p1, p2). For
each vertex v and plaquette p, the local syndrome observables (also called stabilizer operators) are

Av =Xv,v+(0,1)Xv,v+(0,−1)Xv,v+(1,0)Xv,v+(−1,0),

Bp =Zp,p+(0,1)Zp+(0,1),p+(1,1)Zp,p+(1,0)Zp+(1,0),p+(1,1),

where X and Z are the Pauli matrices on the corresponding edge. The protected subspace is the
invariant subspace for all the syndrome operators. For a lattice of side length L, there are L2

�

1 vertices and L2
� 1 plaquettes and hence 2(L2

� 1) independent syndrome operators. Then the
protected space contains two logical 2 qubits. In the active error correction scheme, a device would
constantly measure each of these local observables, applying correction operations that maintain the
+1 eigenvalue for all vertices and plaquettes. The logical code space is formed by strings of Pauli
operators which create loops of excitations passing through the boundary, e.g.,

Z̄1 =

L∏
i=1

Zv+(0,i),v+(0,i+1), X̄1 =

L∏
i=1

Xv+(i,0),v+(i+1,0),

Z̄2 =

L∏
i=1

Zv+(i,0),v+(i+1,0), X̄2 =

L∏
i=1

Xv+(0,i),v+(0,i+1)

(10)

for any fixed vertex v. These operators commute with all Av and Bp. They are not unique, and in fact,
Z̄1 can be any contiguous loops of Pauli Z operators passing through the corresponding boundary. It
is the presence or absence of loops that form the logical space, and hence the codes are topologically
protected due to their resistance to local errors.

The conditional expectation onto the protected subspace naturally provides a TRO channel. Let
V and P be binary words of length L2

� 1. Each bit V (v) (respectively, P(p)) specifies the inclusion or
exclusion of the vertex v (respectively, plaquette p). Since {Av, Bp} generate a commutative unitary
group, then the conditional expectation onto the protected space is given by

N(ρ)=
1

22L2−2

∑
V ,P

(∏
v,p

AV (v)
v BP(p)

p

)
ρ
(∏

v,p

AV (v)
v BP(p)

p

)
, (11)

where the summation is on the set of all word pairs V, P. Q(N) is the size of the protected subspace,
2 qubits. The modification of N is

Nf (ρ)=
∑
V ,P

fV ,P

(∏
v,p

AV (v)
v BP(p)

p

)
ρ
(∏

v,p

AV (v)
v BP(p)

p

)
, (12)

where (f V ,P) is a probability measure. Applying Theorem II.3 and Proposition II.4,

Q(N) ≤Q(Nf ) ≤Q(N) + 2L2 − 2 + H(f ). (13)

Here H(f ) =
∑
� f log f is the Shannon entropy of f. These channels characterize randomized local

errors in which the protected subspace is immune. If we assume errors are relegated to bit flips X
and phase flips Z, respectively (bit flip error and phase flip error, each only happen at one place), the
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Kraus operators correspond to only the length one words V and P, which significantly enlarges the
protected subspace.

Applying the full set of syndrome operators is equivalent to taking the conditional expectation
onto the protected subspace, in essence the channel N. Assume that errors on the protected logical
qubits are negligibly rare and that the overall error probability is below the threshold for scalable
error correction. Then as L becomes large, the ratio between typical erroneous states and syndrome
operator approaches 1 (see Ref. 3, p. 43). Consequently, N f starts to characterize all probable errors.
In particular, for a single error (f is concentrated as a pair (v, p)), Q(N f ) � Q(N) approaches the
difference between the size of the physical underlying system and the actual capacity of the code.
The toric code is a simple model for Sec. VI B on more general instances of Kitaev’s computation
model.

B. Drinfel’d double

The toric code generalizes to a theory of non-commutative anyons. For a finite group G, we
consider a family of operators {Ag, Bh|g, h ∈ G} satisfying the following commutation relations:

AhAg =Ahg , BgBh = δg,hBg , AgBh =Bghg−1 Ag,∀g, h ∈G. (14)

In Kitaev’s formalism, these are considered to be local operators. An application of these operators
to a ground state creates a pair of anyons, quasiparticles with highly non-trivial exchange relations.
Since Ag and Bh are no longer commutative, this system no longer has the simple interpretation of
a stabilizer code, but instead corresponds to a more general and powerful model that is capable of
non-trivial quantum computation. This model of computation is beyond the scope of this paper, so
we refer the readers to Ref. 19.

A particular representation of the relation (14) is given by the crossed product. Consider the
commutative algebra l∞(G) ⊂B(l2(G)) as diagonal matrices. We denote eg,h, g, h ∈ G as the matrix
entry in B(l2(G)) which maps the basis vector |h〉 to |g〉. We define the action α of G on l∞(G) as the
automorphism

αg(eh,h)=Wgeh,hW∗(g)= eghg−1,ghg−1 , (15)

where Wg(eh,h)= eghg−1,ghg−1 are unitary matrices in B(l2(G)). The (reduced) crossed product M =
l∞(G) oαG is defined to be the algebra generated by the range of the following two representations
on l2(G, l2(G)) � l2(G) ⊗ l2(G):

π :l∞(G)→B(l2(G) ⊗ l2(G)), π(x)= 1 ⊗ x ,

λ̃ :G →B(l2(G) ⊗ l2(G)), λ̃(g)= λ(g) ⊗ Wg,

where λ(g)|h〉 = |gh〉 is the left shift unitary on G. Then we can choose

Ag = λ(g) ⊗ Wg, Bh = 1 ⊗ eh,h

as explicit forms of Kitaev’s operators satisfying the relations (14). Consider the unitary

U =
∑
g,h

(AgBh) ⊗ (ehg,g) ∈B(l2(G) ⊗ l2(G) ⊗ l2(G))

and the channel N :B(l2(G) ⊗ l2(G))→B(l2(G) ⊗ l2(G)),

N(ρ)= id ⊗ tr(U(ρ ⊗
1
|G|

)U∗)=
1
|G|

∑
g,h

AgBhρ(AgBh)∗.

N is the conditional expectation from B(l2(G) ⊗ l2(G)) onto the commutant of l∞(G) oαG. Indeed,
for any g0, h0 ∈ G,
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Ag0 Bh0 N(ρ)=Ag0 Bh0

( 1
|G|

∑
g,h

AgBhρBhAg−1

)
=

1
|G|

∑
g

Ag0gBg−1h0gρBg−1h0gAg−1

=
1
|G|

∑
g

Ag0gBg−1h0gρBg−1h0gA(g0g)−1 Ag0

=
1
|G|

∑
g

Ag0gBg−1h0gρBg−1h0gA(g0g)−1 Ag0 Bh0

=
1
|G|

(∑
g,h

Ag0gBg−1hgρBg−1hgA(g0g)−1

)
Ag0 Bh0

=N(g)Ag0 Bh0 .

For f ∈ B(l2(G)), the modification of N is given by

Nf (ρ)=
∑

g,g′,h,h′
τ(ehg,gfeg′,h′g′)(AgBh)ρ(Ag′Bh′)

∗. (16)

Then Theorem II.3 and Proposition II.4 imply here

Q(N) ≤Q(Nf ) ≤Q(N) + τ(f log f ).

As described in the example in Sec. V, such N f are mixtures of random unitary and generalized
dephasing channels, hence not degradable or anti-degradable channels. The practical applications of
the Kiteav’s model as a communication channel are admittedly unclear, though the connection to
anyons does suggest a possible physical realization.
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