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Highlights
• A high-order WENO finite-difference scheme is presented for a new HJ equation.
• Accuracy and convergence are assessed by direct comparison with an exact solution.
• The scheme is deployed to probe elastomers filled with ferrofluid inclusions.

Abstract

This paper puts forth a high-order weighted essentially non-oscillatory (WENO) finite-difference scheme to numerically
generate the viscosity solution of a new class of Hamilton–Jacobi (HJ) equations that has recently emerged in nonlinear
solid mechanics. The solution W of the prototypical version of the HJ equations considered here corresponds physically to
the homogenized free energy that describes the macroscopic magneto-electro-elastic response of a general class of two-phase
particulate composite materials under arbitrary quasi-static finite deformations, electric fields, and magnetic fields in N = 2, 3
dimensions. An important mathematical implication of its physical meaning is that W – although it may exhibit steep gradients
– is expected to be at least twice continuously differentiable. This is in contrast to the viscosity solutions of the majority of
HJ equations that have appeared in other scientific disciplines, which are merely Lipschitz continuous. Three other defining
mathematical features that differentiate this new class of HJ equations from most of the existing HJ equations in the literature are
that: (i) their “space” variables are defined over non-periodic unbounded or semi-unbounded domains, (i i) their Hamiltonians
depend explicitly on all variables, namely, on the “space” and “time” variables, the “space” derivatives of W , and on the
function W itself, and (i i i) in general, their integration in “time” needs to be carried out over very long “times”. The proposed
WENO scheme addresses all these features by incorporating a high-order accurate treatment of the boundaries of the domains
of computation and by employing a high-order accurate explicit Runge–Kutta “time” integration that remains stable over very
large “time” integration ranges. The accuracy and convergence properties of the proposed scheme are demonstrated by direct
comparison with a simple explicit solution W available for the case when the general HJ equation is specialized to model the
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elastic response of isotropic porous Gaussian elastomers. Finally, for showcasing purposes, the scheme is deployed to probe
the magneto-elastic response of a novel class of magnetorheological elastomers filled with ferrofluid inclusions.
c⃝ 2019 Elsevier B.V. All rights reserved.

Keywords: High-order WENO schemes; Flux numerical methods; Exact Hamilton–Jacobi solutions; Porous elastomers; Electromagnetic
solids

1. Introduction

This paper introduces a numerical scheme to efficiently generate accurate approximations for the viscosity
solution of a novel class of Hamilton–Jacobi (HJ) equations that has recently emerged in nonlinear solid mechanics
[1]. Physically, the solution W of the specific type of HJ partial differential equations (PDEs) considered here
– which, as elaborated below, is a prototypical version of the general mathematical form of this newly emerged
class of equations – corresponds to the homogenized free energy that characterizes the macroscopic nonlinear and
coupled magneto-electro-elastic response of a broad class of two-phase particulate composites under arbitrary finite
deformations, electric fields, and magnetic fields in N = 2, 3 dimensions. Furthermore, the “space” variables1 in
this type of equations correspond physically to the combined N 2

+ 2N components of the deformation gradient
tensor F, Lagrangian electric field E, and Lagrangian magnetic field H describing the applied macroscopic loading,
whereas the “time” variable corresponds to the volume fraction c of the underlying inclusions in the composite.

From a mathematical point of view, because of its physical meaning, the solution W is expected to be at least
twice continuously differentiable, provided that the free-energy functions characterizing the magneto-electro-elastic
behaviors of the matrix material and inclusions making up the composite are sufficiently smooth.2 This high degree
of regularity is of note, as the viscosity solutions of the majority of HJ equations that have appeared in other
disciplines are merely Lipschitz continuous; see [2] as well as, e.g., [3,4], and [5]. In addition, the Hamiltonian
H in the new HJ equations of interest here depends explicitly not only on all the “space” variables F, E, H, and
the associated “space” derivatives ∂W/∂F, ∂W/∂E, ∂W/∂H, but also on the “time” variable c and the solution W
itself. Because of this general functional dependence of the Hamiltonian – which, much like the high regularity of
W , is uncharacteristic of most of the existing HJ equations in the literature – the use of otherwise powerful solution
representations to construct numerical approximations for W seems futile; see, e.g., Chapter II in [6], Chapter 10
in [7], and references therein. In this work, in the footsteps of Crandall and Lions [8] and of Osher and Sethian
[9], we shall pursue a finite-difference scheme combined with a suitably selected numerical Hamiltonian in order
to construct numerical approximations for W at the vertices of a Cartesian grid in “space” and “time”. Aimed
at putting forth a robust and efficient scheme capable of high accuracy, we make use in particular of a WENO
(weighted essentially non-oscillatory) finite-difference scheme of high order to discretize the relevant derivatives in
“space”, together with a high-order explicit Runge–Kutta scheme for the “time” integration.

To put the present contribution into context, we should mention that there are several works in the literature –
starting with Jiang and Peng [10] and Bryson and Levy [11] – that have proposed schemes for multi-dimensional
HJ equations in the same spirit as the one that we propose here. In contrast to the schemes introduced in those
works, because of the physical nature of the HJ equations of interest here, our scheme deals with computational
domains that are not periodic in “space”, thereby requiring a suitable extension of the WENO discretization that
affords a high-order accurate representation of the “space” derivatives of the solution W in the regions close to the
boundaries of the given computational domain. Furthermore, since solutions are desirable for composite materials
with all volume fractions of inclusions in the physical range 0 ≤ c ≤ 1 – or equivalently, as elaborated further
below, for all positive “times” 0 ≤ t = − ln c ≤ +∞ – our scheme must make use of a “time” integration that
remains stable and accurate over very long “times”. One more point of further contrast, already alluded to above,
is the suitability of our scheme to deal with Hamiltonians of general functional dependence. Indeed, the schemes

1 Throughout this paper, we make use of the standard terminology of “space” and “time” employed in the literature to refer to the
independent variables in HJ equations.

2 We emphasize that this expectation is mostly physically based since, by and large, establishing the regularity of homogenized functionals
still remains an open problem. Nevertheless, the few analytical solutions available for W (see, e.g., Section 4) happen to indeed be at least
twice continuously differentiable.
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currently available in the literature have been tested primarily for multi-dimensional HJ equations wherein the
Hamiltonians are independent of the “time” variable and of the unknown function itself; see, e.g., [10–12].

The remainder of the paper is organized as follows. We begin in Section 2 by introducing the class of HJ
equations of interest in this work. In Section 3, we present the scheme to construct numerical approximations for
the viscosity solution W of such a class of PDEs. We devote Section 4 to discussing the accuracy and convergence
properties of the proposed numerical scheme. This is done within the physical context of the elastic response of
isotropic porous Gaussian (or Neo-Hookean) elastomers, for which the relevant HJ equation admits a simple explicit
solution. Finally, for showcasing purposes, we put to use in Section 5 the proposed scheme in order to generate
results for the macroscopic response of a new class of magnetorheological elastomers, those comprising an elastomer
filled with ferrofluid inclusions.

2. A new class of HJ equations in nonlinear solid mechanics

In contrast to their repeated and pervasive appearance in many other scientific disciplines, such as, for instance,
geometrical optics, semi-classical quantum mechanics, control theory, and level-set methods [see, e.g., 4,13–15], HJ
equations have only emerged recently in the field of solid mechanics. They have done so from the combination of
iterated dilute homogenization techniques [16–18] with the celebrated homogenization results for coated laminates
[19,20] in the derivation of the macroscopic nonlinear constitutive properties of composite materials with certain
classes of two-phase particulate microstructures. In point of fact, following the seminal work of deBotton [21], a HJ
equation was first derived by Idiart [22] in the context of small-strain nonlinear elasticity. This HJ equation was later
generalized to finite elasticity by Lopez-Pamies and Idiart [23,24] and Lopez-Pamies et al. [25]. A further generaliza-
tion with deeper conceptual implications was introduced subsequently in [1]. Indeed, beyond revealing its applicabil-
ity to the coupling between balance of momenta and Maxwell’s equations, the derivation presented by Lopez-Pamies
[1] in the context of electroelastostatics served to reveal more generally that the same type of HJ equation would
emerge in the derivation of the macroscopic nonlinear and coupled constitutive response of composite materials –
again, with certain classes of two-phase particulate microstructures – under any number of different (not just me-
chanical and electric) fields, so long as these fields satisfy conservation laws. In this paper, for definiteness, we shall
concern ourselves with such a general type of HJ equation written in the context of magneto-electro-elastostatics.
Precisely, we shall consider the following HJ equation for the function W = W (F, E, H, c):⎧⎨⎩

∂W
∂c

+ H
(

F, E, H, c, W,
∂W
∂F

,
∂W
∂E

,
∂W
∂H

)
= 0, {F, E, H} ∈ S, c ∈ T

W (F, E, H, 1) = Wi(F, E, H), {F, E, H} ∈ S

, (1)

where S = {A ∈ RN×N
: det A > 0} × RN

× RN and T = [c, 1), with Hamiltonian

H = −
1
c

W −
1
c

∫
|ξ |=1

max
α

min
β,γ

[
αi

∂W
∂ Fi j

ξ j + β
∂W
∂ Ei

ξi + γ
∂W
∂ Hi

ξi

−Wm (F + α ⊗ ξ , E + βξ , H + γ ξ)

]
ν(ξ )dξ , (2)

i, j = 1, . . . , N . In these expressions, as mentioned in the Introduction, F, E, and H denote the macroscopic
deformation gradient, macroscopic Lagrangian electric field, and macroscopic Lagrangian magnetic field applied to
a two-phase particulate composite material occupying the open domain Ω0 ⊂ RN (N = 2, 3) in its undeformed,
unpolarized, and unmagnetized configuration, wherein the magneto-electro-elastic response of the matrix and
inclusions are characterized by the “total” free-energy functions Wm and Wi, respectively, and whose microstructure
is characterized by the volume fraction of inclusions c in Ω0 and the variable ν = ν(ξ ). For the case of random3

distributions of inclusions, in terms of the one- and two-point correlation functions p(i)
0 and p(ii)

0 = p(ii)
0 (X),

X ∈ Ω0, describing the spatial distribution of the inclusions in Ω0, we have the explicit connections

c = p(i)
0 and ν(ξ ) =

1
(2π)N

∫
Ω0

∫
∞

0

p(ii)
0 (X) − c2

c(1 − c)
ρN−1eiρξ ·X dρ dX, (3)

3 In this paper, attention is restricted to composite materials wherein the distribution of inclusions is random. For the case of periodic
microstructures, we still have c = p(i)

0 , but the function ν(ξ ) is given in terms of c and p(ii)
0 by expressions other than (3)2; see Appendix

A in [1].
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where i =
√

−1.
The following remarks are in order:

i. Physical meaning of the HJ equation (1)–(2). As already announced in the Introduction, the viscosity
solution W of the HJ equation (1)–(2) corresponds to the homogenized “total” free energy characterizing
the macroscopic magneto-electro-elastic response of a general class of two-phase particulate composites.
The coupled constitutive relation implied by W is simply given by its partial derivatives with respect to its
three first arguments [26,27], namely,

S =
∂W
∂F

(F, E, H, c), D = −
∂W
∂E

(F, E, H, c), and B = −
∂W
∂H

(F, E, H, c), (4)

where S, D, and B stand, respectively, for the macroscopic first Piola–Kirchhoff stress, macroscopic
Lagrangian electric displacement field, and macroscopic Lagrangian magnetic induction.
We emphasize that the result (1)–(2) is valid for any (suitably well behaved) free-energy functions Wm and
W i of choice describing the magneto-electro-elastic behaviors of the underlying matrix and inclusions. These
include an admittedly broad spectrum of materials, ranging from materials with odd electroelastic and/or
magnetoelastic coupling such as piezoelectric, piezomagnetic, or magnetoelectric materials to those with
even electroelastic and/or magnetoelastic coupling such as electrostrictive and magnetostrictive materials.
The result (1)–(2) is also valid for any choice of volume fraction of inclusions in the range c ∈ [0, 1] and
any choice of the two-point correlation function p(ii)

0 describing their distribution. The fact that c ∈ [0, 1]
brings into view that the result (1)–(2) corresponds to composite materials with particulate microstructures
wherein the inclusions are polydisperse in size. Their possibly anisotropic shape and spatial arrangement are
dictated by the choice of p(ii)

0 .
ii. The use of (1)–(2) as an analytical tool to investigate fundamental problems. In addition to its theoretical

value in providing a rigorous – albeit implicit – homogenization solution for the nonlinear and coupled
response of composite materials with a fairly general class of particulate microstructures, the HJ equation (1)
with (2) provides, by the same token, a formidable practical tool to investigate a wide range of fundamental
phenomena.
For example, in the absence of electric and magnetic fields (i.e., when E = 0 and H = 0), the PDE (1) with
(2) has enabled the construction of a closed-form solution for the homogenization problem of the elastic
response of Gaussian rubber containing a dilute distribution of vacuous cavities, or point defects, which in
turn has led to the formulation of a new framework to determine the onset of cavitation instabilities in rubber
subjected to arbitrary loading conditions [28,29]. It has also enabled the construction of a closed-form solution
for the parallel fundamental homogenization problem of the elastic response of Gaussian rubber filled by a
dilute isotropic distribution of rigid particles under arbitrarily large deformations [30].
In the presence of an electric field but in the absence of a magnetic field (i.e., when E ̸= 0 and H = 0),
the PDE (1)–(2) has also been utilized recently to generate closed-form solutions for the macroscopic
electromechanical response of both piezoelectric composites and ideal elastic dielectric composites in the
“classical” limit of small deformations and moderate electric fields [31,32], as well as in the opposite
limit of infinitely large deformations [33]. Because of the well-known mathematical analogy between
electroelastostatics and magnetoelastostatics (see, e.g., [34]), the analogous fundamental solutions in the
presence of a magnetic field but in the absence of an electric field (i.e., when H ̸= 0 and E = 0) have
also been recently worked out [35].
The above-cited examples have allowed for analytical solutions W of (1)–(2) because they correspond to
limiting cases (either c → 0+, F → I and E → 0, F → I and H → 0, or ∥F∥ → +∞) amenable to
tractable asymptotic analyses. In general, however, the PDE (1)–(2) does not admit analytical solutions and
requires instead a numerical treatment.

iii. The use of (1)–(2) as a numerical tool to investigate a wider range of fundamental problems. In order to
exploit the full potential of the HJ equation (1)–(2) to investigate fundamental and novel problems in the
realm of nonlinear and coupled phenomena, we must be able to generate numerical solutions for it. The main
objective of this paper is precisely to introduce a numerical scheme to efficiently generate such solutions.
Towards this end, it first proves helpful to recognize three of the unique mathematical features of (1)–(2)
when compared to existing HJ equations in the literature:
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• Because of its physical meaning, the solution W of (1)–(2) is expected to be twice continuously
differentiable. Yet, it may exhibit steep gradients, which may prove challenging to resolve numerically;

• While the “space” domain of definition S of the HJ equation (1)–(2) is unbounded or semi-unbounded,
numerical solutions can of course only be generated on a given computational domain Sh

⊂ S of
finite extent, with finite boundary ∂Sh . This poses two significant challenges. The first one is that extra
boundary conditions may need to be provided on the whole or on parts of any given ∂Sh to ensure
well-posedness of the discretized equations to be solved. Given that the HJ equation (1)–(2) is not
periodic in “space”, these extra boundary conditions required on ∂Sh ought to be generated from the
PDE (1)1 itself. The second challenge is that the design of discretization schemes close to ∂Sh requires
invariably especial treatment, more so if one seeks a stable and high-order accurate scheme;

• The initial condition in (1) is given at c = c = 1, which corresponds to the limiting case when the
composite material is actually homogeneous and comprised entirely of the inclusion material. Yet, it
is desirable to have solutions W for composite materials with the entire range of volume fractions of
inclusions c, including dilute volume fractions when c = c = 0+. As elaborated further below, this
effectively requires integrating the PDE (1)–(2) over very long “times”, which in turn requires the use
of robust “time” integration schemes that remain stable and accurate over very large “time” integration
ranges.

iv. The use of (1)–(2) as a testbed to critically assess HJ-equation solvers. Before proceeding with the
presentation of the numerical scheme per se, it is worth remarking that because of the mathematical features
outlined in the preceding remark, together with the general functional dependence of the Hamiltonian (2), the
HJ equation (1)–(2) provides a natural testbed, physically meaningful and mathematically challenging, for
the investigation of the performance of numerical schemes aimed at solving HJ equations. In particular, the
existence of simple explicit solutions W of the HJ equation (1)–(2) for some specific choices of free-energy
functions Wm, Wi and loading conditions F, E, H allows for the straightforward investigation of the accuracy
and convergence properties of these schemes. We carry out such an investigation below in Section 4 for the
numerical scheme that we propose here.

3. The proposed WENO finite-difference scheme for the HJ equation (1)–(2)

At this stage, we are in a position to proceed with the presentation of the scheme to generate numerical
approximations for the viscosity solution W of the HJ equation (1)–(2). In a nutshell, following the footsteps of
Crandall and Lions [8], the scheme consists of the discrete “time” integration of a suitably selected numerical
Hamiltonian, so as to construct at the vertices of a Cartesian grid (in “space”) successive (in “time”) numerical
approximations of W . With the objective of putting forth a scheme that is robust and capable of delivering high
accuracy even when W exhibits steep gradients, combining ideas from the works of Osher and Sethian [9] and of
Jiang and Shu [36], we make use in particular of fifth-order accurate WENO finite-difference approximations of the
“space” derivatives of W , together with a fifth-order accurate explicit Runge–Kutta “time” integration. We begin
in Section 3.1 by introducing some helpful notation, and by outlining the definition and features of the proposed
WENO approximation for a multivariable scalar-valued function, both for “interior” and “boundary” grid points of
any given finite computational domain. In Section 3.2, we lay out the “space” discretization of the HJ equation
(1)–(2) in terms of the WENO approximation introduced in Section 3.1. In turn, in Section 3.3, we spell out the
“time” discretization of the “spatially” discretized equations put forth in Section 3.2. We close in Section 3.4 by
summarizing the whole of the proposed scheme and by recording a number of practical remarks on its numerical
implementation.

3.1. WENO approximation of the first partial derivatives of a scalar-valued function over a finite domain

Borrowing ideas from the pioneering work of Liu et al. [37] on WENO finite-volume schemes, WENO finite-
difference schemes were first introduced by Jiang and Shu [36] in the context of hyperbolic conservation laws. Over
the last two decades, they have become an increasingly popular method of choice to solve numerically convection
dominated problems. The defining feature of the WENO framework is that it enables a discretized representation of
the (partial) derivatives of a (multi-variable) function with arbitrarily-high accuracy, at least formally, in the smooth
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regions of the function, while it approximates them in a non-oscillatory manner where the function is discontinuous
or exhibits steep gradients. For additional details on WENO schemes, including an overview of their increasing
application to a broad range of physical problems, we refer the interested reader to the comprehensive review of
Shu [38].

3.1.1. WENO approximation of the first derivative of a single-variable function
For clarity of exposition, as a prologue to the “space” discretization of the HJ equation (1)–(2), we begin by

presenting fifth-order accurate left-biased and right-biased WENO approximation formulas for the first derivative
ux (x) = du(x)/dx of a generic single-variable function u(x) in terms of its values ui = u(xi ) at the M + 1
evenly-spaced vertices of a 1D Cartesian grid,4 that is, Sh

= {xi : xi = x0 + ih, 0 ≤ i ≤ M}. These formulas will
then be generalized to the first partial derivatives of a generic multivariable function.

The left-biased WENO approximation. We consider for a given grid point xi , 3 ≤ i ≤ M −2, the four-point stencil
S−

1 = {xi−3, xi−2, xi−1, xi }. The derivative dp−

1 (x)/dx of the unique Lagrange polynomial p−

1 (x) that interpolates
u(x) over the stencil S−

1 is used to approximate the first derivative ux (x) of u(x) on S−

1 ; see, e.g., Chapter 1 in
LeVeque [39]. In particular, assuming that the function u(x) is (sufficiently) smooth in S−

1 , we have at the grid
point x = xi that

ux (xi ) = u−,1
x,i + O(h3),

where

u−,1
x,i =

dp−

1

dx
(xi ) =

1
3
∆+ui−3

h
−

7
6
∆+ui−2

h
+

11
6
∆+ui−1

h
; (5)

here and subsequently, we make use of the notation ∆+vk = vk+1 − vk . Similarly, the interpolating polynomial
p−

2 (x) on the second stencil S−

2 = {xi−2, xi−1, xi , xi+1} results in the approximation

ux (xi ) = u−,2
x,i + O(h3),

where

u−,2
x,i =

dp−

2

dx
(xi ) = −

1
6
∆+ui−2

h
+

5
6
∆+ui−1

h
+

1
3
∆+ui

h
, (6)

granted, again, that the function u(x) is smooth in S−

2 . Considering the third stencil S−

3 = {xi−1, xi , xi+1, xi+2}

involves yet a different interpolating polynomial p−

3 (x) such that

ux (xi ) = u−,3
x,i + O(h3),

where

u−,3
x,i =

dp−

3

dx
(xi ) =

1
3
∆+ui−1

h
+

5
6
∆+ui

h
−

1
6
∆+ui+1

h
, (7)

provided again that the function u(x) is smooth in S−

3 .
Having generated the third-order accurate approximations (5)–(7), the left-biased WENO approximation of ux (xi )

is defined as the following weighted average:

u−

x,i = ω1u−,1
x,i + ω2u−,2

x,i + ω3u−,3
x,i , (8)

where the weights ω1, ω2, ω3, which satisfy the standard condition ω1 + ω2 + ω3 = 1, are to be selected so that:

1. If the function u(x) is smooth in the combined six-point stencil S−
= {xi−3, xi−2, xi−1, xi , xi+1, xi+2}, then

ω1 =
1

10
+ O(h2), ω2 =

3
5

+ O(h2), ω3 =
3
10

+ O(h2).

2. If the function u(x) contains a singularity or a steep gradient in the stencil S−

j , and is smooth in at least one
of the other two stencils, then

ω j = 0 + O(h3).

4 Such grids will later serve as computational domains for the computation of solutions of the HJ equation (1)–(2). We therefore denote
by Sh Cartesian grids and computational domains alike and by ∂Sh their boundaries.
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The above two requirements entail that in regions where the function u(x) is smooth, the left-biased WENO
approximation (8) of ux (xi ) is fifth-order accurate, more specifically,

u−

x,i =
1
30

∆+ui−3

h
−

13
60

∆+ui−2

h
+

47
60

∆+ui−1

h
+

9
20

∆+ui

h
−

1
20

∆+ui+1

h
+ O(h5).

On the other hand, in regions where the function u(x) contains a singularity or a steep gradient, the expression (8)
renders a nonoscillatory (at least) third-order accurate left-biased WENO approximation of ux (xi ).

Sets of weights that are consistent with the above two requirements are not unique. In this work, we shall make
use of weights within the class of those proposed by Jiang and Shu [36] in the context of conservation laws. They
are defined as follows:

ω j =
ω̃ j

ω̃1 + ω̃2 + ω̃3
with ω̃ j =

γ j

(ϵ + S j )2 1 ≤ j ≤ 3, (9)

where

γ1 =
1

10
, γ2 =

3
5
, γ3 =

3
10

, (10)

S j =

3∑
l=2

h2l−1
∫ xi +

1
2 h

xi −
1
2 h

(
dl p−

j

dx l

)2

dx

=
13
12

(
∆−∆+ui+ j−3 − ∆−∆+ui+ j−2

)2
+
[
( j − 2)∆−∆+ui+ j−3 − ( j − 3)∆−∆+ui+ j−2

]2
, (11)

and where the notation ∆−vk = vk − vk−1 has been utilized for subsequent convenience. In (9)2, ϵ is a small real
number which is introduced to avoid vanishingly small denominators; for the PDEs of interest here, numerical tests
indicate that ϵ = 10−12 is an adequate choice.5 The parameters S j defined in (11) are scaled sums of the squared
L2-norms of the second and third derivatives of the interpolating polynomials p−

j , 1 ≤ j ≤ 3 and serve as indicators
of the smoothness of ux (x): the larger the value of S j , the lesser the smoothness of the function ux (x) in the stencil
S−

j . The interested reader is referred to Jiang and Shu [36] and Henrick et al. [40] for further details on the above
and other weights.

Granted the choice of weights (9)–(11), the left-biased WENO approximation (8) of ux (xi ), 3 ≤ i ≤ M − 2, can
be rewritten in the more compact form

u−

x,i = −
1

12
∆+ui−2

h
+

7
12

∆+ui−1

h
+

7
12

∆+ui

h
−

1
12

∆+ui+1

h
−

g
(
∆−∆+ui−2

h
,
∆−∆+ui−1

h
,
∆−∆+ui

h
,
∆−∆+ui+1

h

)
, (12)

where

g(z1, z2, z3, z4) =
1
3
ω̂1 (z1 − 2z2 + z3) +

1
6

(ω̂3 −
1
2

) (z2 − 2z3 + z4) (13)

with

ω̂ j =

γ j

(ϵ + h2Ŝ j )2∑3
k=1

γk

(ϵ + h2Ŝk)2

, Ŝ j =
13
12

(z j − z j+1)2
+
[
( j − 2)z j − ( j − 3)z j+1

]2
, 1 ≤ j ≤ 3, (14)

where the explicit dependence of ω̂ j and Ŝ j on z1, . . . , z4 has been omitted for notational convenience and where
we recall that the constant parameters γ1, γ2, γ3 are given by (10).

Boundary treatment. The WENO approximation (12) of ux (xi ) requires knowledge of the value of u(x) at a number
of grid points adjacent to xi , precisely, the point values u j , i − 3 ≤ j ≤ i + 2. As a result, the WENO expression
(12) is only valid for “interior” grid points sufficiently away from the boundary ∂Sh , precisely, the grid points xi ,
3 ≤ i ≤ M−2. Howbeit, the same construction process presented above can be utilized to construct a corresponding

5 Based on the study of Henrick et al. [40], this value is selected so as to not interfere with the overall convergence rate of the scheme.
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fifth-order accurate left-biased WENO approximation for the “boundary” grid points, that is, the five remaining grid
points x0, x1, x2, xM−1, xM located too close to ∂Sh for (12) to be used. We present next the derivation of such a
WENO approximation for the outermost left grid point x0. The corresponding results for the other four “boundary”
grid points x1, x2, xM−1, xM are placed on record in Appendix A.

For the “boundary” grid point x0, we hence consider the unique Lagrange polynomials p−

k (x), 4 ≤ k ≤ 6,
interpolating u(x) on each of the three four-point stencils S−

k = {xk−4, xk−3, xk−2, xk−1}, so that provided that u(x)
is (sufficiently) smooth in S−

k ,

ux (x0) = u−,k
x,0 + O(h3)

with

u−,4
x,0 =

dp−

4

dx
(x0) =

11
6
∆+u0

h
−

7
6
∆+u1

h
+

1
3
∆+u2

h
,

u−,5
x,0 =

dp−

5

dx
(x0) =

13
3
∆+u1

h
−

31
6
∆+u2

h
+

11
6
∆+u3

h
,

u−,6
x,0 =

dp−

6

dx
(x0) =

47
6
∆+u2

h
−

67
6
∆+u3

h
+

13
3
∆+u4

h
. (15)

In contrast to the preceding derivation for the “interior” grid points, we remark here that the interpolating
polynomials p−

k (x), 5 ≤ k ≤ 6 are used to extrapolate the value of the function u(x) at the grid point of interest x0
from its values at grid points xi , 1 ≤ i ≤ 5.

Much like for the “interior” grid points, given the third-order approximations (15), the left-biased WENO
approximation of ux (x0) is then defined as the weighted average

u−

x,0 = ω4,0u−,4
x,0 + ω5,0u−,5

x,0 + ω6,0u−,6
x,0 . (16)

Here, the weights ω4,0, ω5,0, ω6,0 add up to 1 and must be selected so that (16) is accurate up to fifth order if
u(x) is smooth in the combined six-point stencil {x0, . . . , x5}, but still provides a non-oscillatory (at least) third-
order accurate approximation if u(x) contains a discontinuity or exhibits a steep gradient. Consistent with these
requirements, we propose the following set of weights:

ω j,0 =
ω̃ j,0

ω̃4,0 + ω̃5,0 + ω̃6,0
with ω̃ j,0 =

γ j,0

(ϵ + S j,0)2 4 ≤ j ≤ 6, (17)

where

γ4,0 =
137
110

, γ5,0 = −
417

1430
, γ6,0 =

3
65

, (18)

and where the corresponding smoothness indicators are given by

S j,0 =

3∑
l=2

h2l−1
∫ x0+

1
2 h

x0−
1
2 h

(
dl p−

j

dx l

)2

dx

=
13
12

(
∆−∆+u j−3 − ∆−∆+u j−2

)2
+
[
( j − 2)∆−∆+u j−3 − ( j − 3)∆−∆+u j−2

]2
. (19)

It follows from the choice of weights (17)–(19) that the left-biased WENO approximation (16) of ux (x0) can be
rewritten more compactly in the form

u−

x,0 =
13
3
∆+u1

h
−

31
6
∆+u2

h
+

11
6
∆+u3

h
− g0

(
∆−∆+u1

h
,
∆−∆+u2

h
,
∆−∆+u3

h
,
∆−∆+u4

h

)
.

Here

g0(z1, z2, z3, z4) =
11
6

ω̂4,0 (z1 − 2z2 + z3) −
13
3

ω̂6,0 (z2 − 2z3 + z4) , (20)

where

ω̂ j,0 =

γ j,0

(ϵ + h2Ŝ j,0)2∑6
k=4

γk,0

(ϵ + h2Ŝk,0)2

, Ŝ j,0 =
13
12

(
z j−3 − z j−2

)2
+
[
( j − 2)z j−3 − ( j − 3)z j−2

]2
, (21)
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and where the explicit dependence of ω̂ j,0 and Ŝ j,0 on z1, . . . , z4 has been omitted for notational convenience and
the weights γ j,0, 4 ≤ j ≤ 6 are given by (18).

The derivations of the left-biased WENO approximations of ux (x1), ux (x2), ux (xM−1), ux (xM ) follow analogous
steps to those presented above and are therefore not repeated here. Instead, once more, the expressions for these
approximations are directly reported in Appendix A.

The right-biased WENO approximation. Making use of symmetry arguments, given the four-point stencils S+

k =

{xi−k+1, xi−k+2, xi−k+3, xi−k+4}, 1 ≤ k ≤ 3, and the combined six-point stencil S+
= {xi−2, xi−1, xi , xi+1, xi+2, xi+3},

the right-biased WENO approximation u+

x,i of ux (xi ) at a given grid point xi , 2 ≤ i ≤ M − 3, can be written as

u+

x,i = −
1

12
∆+ui+1

h
+

7
12

∆+ui

h
+

7
12

∆+ui−1

h
−

1
12

∆+ui−2

h
+

g
(
∆−∆+ui+2

h
,
∆−∆+ui+1

h
,
∆−∆+ui

h
,
∆−∆+ui−1

h

)
, (22)

where it is recalled that the function g is defined by expression (13) with (10) and (14).

Boundary treatment. Similar to the left-biased WENO approximation (12), the right-biased WENO approximation
(22) is only valid for “interior” grid points sufficiently away from the boundary of the Cartesian grid ∂Sh , that
is, now, grid points xi with 2 ≤ i ≤ M − 3. Making use again of symmetry arguments, the right-biased WENO
approximation at the “boundary” grid point x0 can be readily determined to be given by the formula

u+

x,0 =
13
3
∆+u1

h
−

31
6
∆+u2

h
+

11
6
∆+u3

h
− g0

(
∆−∆+u1

h
,
∆−∆+u2

h
,
∆−∆+u3

h
,
∆−∆+u4

h

)
,

where we recall that the function g0 is given by expression (20) with (18) and (21). The corresponding right-
biased WENO approximations for the remaining “boundary” grid points x1, xM−2, xM−1, and xM are recorded in
Appendix A.

Alternative boundary treatments. At this point, it is fitting to mention that alternative schemes for the left-biased
and right-biased WENO approximations for the “boundary” grid points could also be employed. For instance, a
WENO-type extrapolation could be used to estimate the value of the function u(x) at ghost points located outside
of the computational domain in order to allow the subsequent use of the left-biased and right-biased approximations
(12) and (22) at all grid points in the computational domain; see, e.g., [41]. If the function is expected to be smooth
in the vicinity of the boundaries of the computational domain, a simpler Lagrange extrapolation of the value of
the function u(x) at some ghost points or directly of its first derivative at the grid points close to the boundaries
could also be alternatively employed. As yet another possible approach, in the context of the HJ equation (1)–(2),
the “space” derivatives at the boundaries could be obtained not from neighboring grid points as presented above,
but directly from the “time” derivatives of the boundary conditions through the PDE (1)1 itself; see, e.g., [42]
and references therein. In this work, we favor the boundary treatment spelled out above because of its overall
mathematical consistency with the WENO approximation utilized for the “interior” grid points.

3.1.2. WENO approximation of the first partial derivatives of a multivariable function
The left-biased and right-biased fifth-order WENO approximations of the first partial derivatives of a multivari-

able function u(x (1), x (2), . . . , x (d)) can now be readily generated by repeatedly using the one-dimension procedure
laid out in the previous subsection in a dimension-by-dimension fashion for each variable x (1), x (2), . . . , x (d). For
clarity of presentation, we spell out these approximations for a function of two variables u(x, y), where for further
clarity we employ the variables (x, y) instead of (x (1), x (2)). Consistent with this notation, we denote by (xi , y j ) the
coordinates of the (i, j) vertex in the Cartesian grid Sh

= {(xi , y j ) : xi = x0 + ihx , y j = y0 + jh y, 0 ≤ i ≤ Mx , 0 ≤

j ≤ My} comprising Mx + 1 (My + 1) vertices uniformly spaced by hx (h y) in the x-(y-)direction. The left-biased
WENO approximations of the partial derivatives ∂u(xi , y j )/∂x and ∂u(xi , y j )/∂y are then given, respectively, by
the formulas

u−

x,i, j = −
1
12

∆+
x ui−2, j

hx
+

7
12

∆+
x ui−1, j

hx
+

7
12

∆+
x ui, j

hx
−

1
12

∆+
x ui+1, j

hx
−

g
(
∆−

x ∆
+
x ui−2, j

hx
,
∆−

x ∆
+
x ui−1, j

hx
,
∆−

x ∆
+
x ui, j

hx
,
∆−

x ∆
+
x ui+1, j

hx

)
, 3 ≤ i ≤ Mx − 2, 0 ≤ j ≤ My, (23)
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u−

y,i, j = −
1
12

∆+
y ui, j−2

h y
+

7
12

∆+
y ui, j−1

h y
+

7
12

∆+
y ui, j

h y
−

1
12

∆+
y ui, j+1

h y
−

g

(
∆−

y ∆
+
y ui, j−2

h y
,
∆−

y ∆
+
y ui, j−1

h y
,
∆−

y ∆
+
y ui, j

h y
,
∆−

y ∆
+
y ui, j+1

h y

)
, 0 ≤ i ≤ Mx , 3 ≤ j ≤ My − 2. (24)

Similarly, the right-biased WENO approximations of the partial derivatives ∂u(xi , y j )/∂x and ∂u(xi , y j )/∂y are
then given by

u+

x,i, j = −
1
12

∆+
x ui+1, j

hx
+

7
12

∆+
x ui, j

hx
+

7
12

∆+
x ui−1, j

hx
−

1
12

∆+
x ui−2, j

hx
+

g
(
∆−

x ∆
+
x ui+2, j

hx
,
∆−

x ∆
+
x ui+1, j

hx
,
∆−

x ∆
+
x ui, j

hx
,
∆−

x ∆
+
x ui−1, j

hx

)
, 2 ≤ i ≤ Mx − 3, 0 ≤ j ≤ My, (25)

u+

y,i, j = −
1
12

∆+
y ui, j+1

h y
+

7
12

∆+
y ui, j

h y
+

7
12

∆+
y ui, j−1

h y
−

1
12

∆+
y ui, j−2

h y
+

g

(
∆−

y ∆
+
y ui, j+2

h y
,
∆−

y ∆
+
y ui, j+1

h y
,
∆−

y ∆
+
y ui, j

h y
,
∆−

y ∆
+
y ui, j−1

h y

)
, 0 ≤ i ≤ Mx , 2 ≤ j ≤ My − 3, (26)

respectively, where, in complete analogy with the notation employed in the single-variable case, ∆+
x vi, j = vi+1, j −

vi, j , ∆−
x vi, j = vi, j − vi−1, j , ∆+

y vi, j = vi, j+1 − vi, j , ∆−
y vi, j = vi, j − vi, j−1, and where it is recalled that the

function g is defined by expression (13) with (10) and (14). Note that the formulas (23) through (26) are valid
only for “interior” grid points. The corresponding WENO approximations for “boundary” grid points should now
be apparent, as well as the corresponding formulas for functions u(x (1), x (2), . . . , x (d)) of d variables.

3.2. The “space” discretization

Having introduced the left-biased and right-biased WENO approximations of interest here for the first partial
derivatives of scalar-valued functions over arbitrary Cartesian grids of finite extent, we are now equipped to lay
out the discretization of the HJ equation (1)–(2) in its “space” variables F, E, and H. For clarity of exposition, we
shall limit the presentation to the case when the HJ equation (1)–(2) involves only two of their N 2

+ 2N “space”
variables (Fi j , Ei , Hi , i, j = 1, . . . , N ). We denote those by x and y and, with a slight abuse of notation, write⎧⎨⎩

∂W
∂c

+ H
(

x, y, c, W,
∂W
∂x

,
∂W
∂y

)
, (x, y) ∈ S, c ∈ T

W (x, y, 1) = Wi(x, y), (x, y) ∈ S
, (27)

where the Hamiltonian H is given by the appropriate specialization of (2). The corresponding discretization of the
general HJ equation (1)–(2) involving all N 2

+ 2N “space” variables will be apparent from this special case and
thus will not be explicitly formulated.

In their celebrated contribution, Crandall and Lions [8] and Souganidis [43] proved that the so-called first-order
monotone schemes converge to the viscosity solution of HJ equations with the refinement of the grid where the
approximation in the “space” variables is generated. Our first step in the “space” discretization of (27) is thus to
discretize the “space” domain S into a Cartesian grid Sh

= {(xi , y j ) : xi = x0 + ihx , y j = y0 + jh y, 0 ≤ i ≤

Mx , 0 ≤ j ≤ My} comprising Mx + 1 (My + 1) vertices uniformly spaced by hx (h y) in the x-(y-)direction; for
subsequent expediency, we denote by Wi, j = Wi, j (c) the sought after numerical approximation W (xi , y j , c) of the
viscosity solution of (27) at the “space” point (x, y) = (xi , y j ) ∈ Sh and “time” c. In this context, first-order
monotone schemes refer then to numerical schemes of the semi-discrete form⎧⎪⎨⎪⎩

∂Wi, j

∂c
= −Ĥ

(
xi , y j , c, Wi, j ,

∆+
x Wi, j

hx
,
∆−

x Wi, j

hx
,
∆+

y Wi, j

h y
,
∆−

y Wi, j

h y

)
, c ∈ T

Wi, j (1) = Wi(xi , y j )
, (28)
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where the so-called numerical Hamiltonian Ĥ (also termed numerical flux) is any Lipschitz continuous function
that is consistent with the Hamiltonian H in the sense that

Ĥ(x, y, c, W, p, p, q, q) = H(x, y, c, W, p, q),

and is monotone in the sense that it is nonincreasing in its fifth and seventh arguments and nondecreasing in its
sixth and eighth arguments, symbolically,

Ĥ(x, y, c, W, ↓, ↑, ↓, ↑).

The above conditions on Ĥ ensure convergence of Wi, j to the viscosity solution W of (27) in the limit as hx , h y → 0.
Now, with the objective of formulating a scheme that is robust and capable of delivering high accuracy, the second

and last step in the “space” discretization of (27) is to replace in the numerical Hamiltonian Ĥ in (28) the first-order
approximations ∆+

x Wi, j/hx , ∆−
x Wi, j/hx , ∆+

y Wi, j/h y , ∆−
y Wi, j/h y of the partial derivatives of W by higher-order

approximations.6 In particular, we replace these left-biased and right-biased first-order approximations with the
corresponding left-biased and right-biased fifth-order WENO approximations presented in the previous subsection,
as given, in the present case of two “space” variables x and y, by the expressions (23)–(26) for the “interior” grid
points and by the corresponding extensions of the expressions reported in Appendix A for the “boundary” grid
points.

The choice of numerical Hamiltonian Ĥ. There is a number of monotone numerical Hamiltonians that have been
proposed in the literature over the years; see, e.g., [44] and [45]. In this work, we make use of the so-called Roe
flux with local Lax–Friedrich (LLF) entropy correction [44]. Omitting the explicit dependence on x , y, c, and W
to ease notation, this numerical Hamiltonian reads as

Ĥ(p+, p−, q+, q−)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H (p∗, q∗) if H1(p, q) and H2(p, q) do not change
signs in p ∈ I (p−, p+), q ∈ I (q−, q+);

H
(

p+
+ p−

2
, q∗

)
− ν1(p+, p−)

p+
− p−

2
otherwise and if H2(p, q) does not

change sign in A ≤ p ≤ B, q ∈ I (q−, q+);

H
(

p∗,
q+

+ q−

2

)
− ν2(q+, q−)

q+
− q−

2
otherwise and if H1(p, q) does not

change sign in p ∈ I (p−, p+), C ≤ q ≤ D;

ĤL L F
(

p+, p−, q+, q−
)

otherwise

(29)

where p∗ and q∗ are defined by

p∗
=

{
p+ if H1(p, q) ≤ 0
p− if H1(p, q) ≥ 0 , q∗

=

{
q+ if H2(p, q) ≤ 0
q− if H2(p, q) ≥ 0 ,

ν1 and ν2 are defined by

ν1(p+, p−) = max
p∈I (p−,p+)

C≤q≤D

|H1(p, q)|, ν2(q+, q−) = max
q∈I (q−,q+)

A≤p≤B

|H2(p, q)|,

and

ĤL L F (p+, p−, q+, q−
)

= H
(

p+
+ p−

2
,

q+
+ q−

2

)
− ν1(p+, p−)

p+
− p−

2
− ν2(q+, q−)

q+
− q−

2
.

In the above expressions, H1 = ∂H(p, q)/∂p, H2 = ∂H(p, q)/∂q , [A, B] ([C, D]) denotes the range of values
taken by p± (q±) over the entire “space” (x, y) considered, and I (a, b) = [min(a, b), max(a, b)]. The rationale
behind this choice of numerical Hamiltonian is threefold. It has been successfully utilized in a variety of hyperbolic
conservation laws and HJ equations alike and exhibits fairly low numerical dissipation (see, e.g., Chapter 5 in [4]).
Further, its implementation for any number of “space” variables in a computer code is fairly straightforward.

6 While the approach, originally introduced by Osher and Sethian [9], of replacing the first-order approximations of the “space” partial
derivatives in (28) by higher-order approximations is yet to be shown rigorously to lead to schemes that are convergent to the viscosity
solution, it has been repeatedly shown numerically to do just so.
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3.3. The “time” discretization

The final step in the construction of the numerical scheme is to carry out the discretization of the semi-discrete
HJ equation (28) in the “time” variable c. Based on an initial assessment of a plurality of explicit and implicit
“time” integration methods, we select in this work a fifth-order explicit Runge–Kutta scheme due to Lawson [46].
The reasons behind this choice are that this method proved to remain stable and accurate over very long “times”
in all of our numerical experiments, while, at the same time, it also outperformed in terms of computational cost
all of the various implicit methods that we examined.

We thus proceed with the “time” discretization of (28) by first discretizing the “time” domain T into a Cartesian
grid Tδ

= {ck
: ck

= 1 − kδ, 1 ≤ k ≤ T, T δ = c} with a constant “time” increment ∆c = δ. We denote by W k
i, j the

numerical approximation of the solution Wi, j (ck) of (28) at the “space” point (x, y) = (xi , y j ) ∈ Sh and “time”
c = ck

∈ Tδ . The next step is to lay out an algorithm to compute W k+1
i, j in terms of W k

i, j using appropriate estimates
W (l)

i, j of the solution at certain intermediate “times” between ck and ck+1. To this end, it proves helpful to introduce
the notation

L (l)
i, j {c} = − Ĥ

(
xi , y j , c, W (l)

i, j , W (l)+
x,i, j , W (l)−

x,i, j , W (l)+
y,i, j , W (l)−

y,i, j

)
, (30)

where we emphasize that the numerical Hamiltonian Ĥ is given by the Roe flux (29) and that W (l)±
x,i, j , W (l)±

y,i, j stand
for the fifth-order WENO approximations of the partial derivatives of W (l)

i, j worked out in Section 3.1. Then, for the
specific choice of fifth-order Runge–Kutta scheme summoned here, the solution W k+1

i, j is given in terms of W k
i, j by

following the procedure

W (1)
i, j = W k

i, j , k(1)
i, j = L (1)

i, j

{
ck} ,

W (2)
i, j = W (1)

i, j +
1
2
∆ck(1)

i, j , k(2)
i, j = L (2)

i, j

{
ck

+
1
2
∆c

}
,

W (3)
i, j = W (1)

i, j +
1

16
∆c(3k(1)

i, j + k(2)
i, j ), k(3)

i, j = L (3)
i, j

{
ck

+
1
4
∆c

}

W (4)
i, j = W (1)

i, j +
1
2
∆ck(3)

i, j , k(4)
i, j = L (4)

i, j

{
ck

+
1
2
∆c

}
,

W (5)
i, j = W (1)

i, j +
3

16
∆c(−k(2)

i, j + 2k(3)
i, j + 3k(4)

i, j ), k(5)
i, j = L (5)

i, j

{
ck

+
3
4
∆c

}
,

W (6)
i, j = W (1)

i, j +
1
7
∆c(k(1)

i, j + 4k(2)
i, j + 6k(3)

i, j − 12k(4)
i, j + 8k(5)

i, j ), k(6)
i, j = L (6)

i, j

{
ck

+ ∆c
}
,

W k+1
i, j = W k

i, j +
1

90
∆c

(
7k(1)

i, j + 32k(3)
i, j + 12k(4)

i, j + 32k(5)
i, j + 7k(6)

i, j

)
. (31)

It is plain from this sequential set of steps that this is an explicit integration scheme, that is, W k+1
i, j is computed

from knowledge W k
i, j via the sequential evaluations of the quantities k(l)

i, j , 1 ≤ l ≤ 6. From an implementation point
of view it is thus simple and efficient. Theoretically, it has the merit to exhibit an extended region of stability when
applied to linear differential equations of the form du(t)/dt = λu(t), λ ∈ C; see [46]. Moreover, within the related
context of hyperbolic conservation laws, the integration scheme (31) has the further merit to be strong stability
preserving (SSP) under the Courant–Friedrichs–Levy (CFL) condition

|∆c| ≤
7

30
|∆cF E |

if the first-order forward and backward Euler time discretizations W k+1
i, j = W k

i, j ± ∆cLk
i, j

{
ck
}

are SSP under the
CFL condition

|∆c| ≤ |∆cF E |;
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see Section II in [47] and Lemma 2.2 in [48]. This latter feature suggests the heuristic CFL condition

|∆c| max
{

|H1(p, q)|
hx

+
|H2(p, q)|

h y

}
≤

7
30

(32)

for the Runge–Kutta time discretization (31) of the semi-discrete HJ equation (28) under investigation here; see,
e.g., Chapter 5 in [4]. In practice, we make use of a different CFL condition, which is discussed in the next
subsection. Finally, we note that the corresponding “time” discretization of the semi-discrete form (28) resulting
from the general HJ equation (1)–(2) involving all N 2

+ 2N “space” variables immediately follows from the
corresponding trivial extension of the numerical Hamiltonian in (30).

3.4. The scheme

The whole of the scheme laid out in the three preceding subsections can be readily implemented into a computer
code and deployed to efficiently generate accurate approximations for the viscosity solution W of the HJ equation
(1)–(2). In the sequel, we walk through the entire algorithmic process and make a number of important practical
remarks on its implementation along the way.

The specification of the composite material of interest. The first step in the algorithmic process of the scheme is, of
course, the selection of specific free-energy functions Wm and Wi describing the magneto-electro-elastic behaviors
of the underlying matrix and inclusions, and of the volume fraction c and two-point correlation p(ii)

0 (X) describing
the content, shape, and spatial arrangement of inclusions.

The choice of “space” discretization. The second step is the selection of a specific discretization Sh of the “space”
domain S describing the range of deformation gradient tensors F, electric fields E, and magnetic fields H of interest
for the problem at hand. In general, it suffices to employ the same grid spacing h for all the “space” variables
involved.

More critically, since Sh is necessarily of finite extent, one has to examine each part of its boundary ∂Sh to
check whether characteristics “enter” or “exit” through them. For the “space” discretized problem to be well posed,
the value of the sought-after function W must be prescribed as a boundary condition on the parts of the boundary
∂Sh where the characteristics “enter” the domain of computation, while no boundary data needs to be prescribed
on the complementary parts of ∂Sh where the characteristics “exit” Sh ; see, e.g., Chapter 8 in [49] and Chapter 10
in [39] for a general discussion of this important point. Since the viscosity solution W of the HJ equation (1)–(2) is
expected to be at least twice continuously differentiable, we propose to carry out the identification and computation
of such “inflow” boundary conditions on ∂Sh via the method of characteristics. We provide the relevant details in
Appendix B.

Another important point that can affect the specific selection of “space” discretization is that, because of the
choice of matrix and inclusion free-energy functions Wm and Wi, the viscosity solution W of the HJ equation
(1)–(2) may satisfy certain constraints in the sense that it may become unbounded (from above and/or from below)
at certain sets of known finite values of F, E, and/or H. These sets may not be conforming with the Cartesian grids
that we employ here for Sh , and hence they may be difficult to resolve numerically. One straightforward way to
resolve this problem7 is to identify an appropriate change of “space” variables F, E, and/or H so as to “straighten”
the “curved” boundaries associated with the constraints, and carry out the “space” discretization of (1)–(2) in those
new “space” variables. An example of this is presented in the next section.

The choice of “time” discretization. The third step in the algorithm process is the selection of a specific
discretization Tδ of the “time” domain T and, by the same token, a specific CFL condition. In this regard, we remark
that the Hamiltonian (2) depends explicitly on the “time” variable c through the common multiplicative factor of
1/c. This dependence causes a severe computational problem of convergence when constructing approximations
of viscosity solutions W featuring small-to-moderate volume fractions of inclusions, partly because it effectively
forces the “time” increments ∆c to be proportional to the “time” c itself. A simple approach that circumvents this
issue is to make use of the change of “time” variable t = − ln c, under which the resulting HJ equation (1)–(2)
no longer depends explicitly on “time”. Under this change of variable we also note that the “time” domain T takes

7 Alternatively, one could use simplicial meshes; see, e.g., [50].
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the more standard form T = (0, t] with t = − ln c. Furthermore, our numerical experiments for a variety of cases
indicate that in terms of the “time” variable t a simple constant CFL condition, typically in the range

1
50

≤
∆t

h
≤ 1,

suffices to achieve optical convergence rates. For these reasons, in practice, we favor the use of t instead of c as
the “time” variable.

In summary, for given choices of material and microstructure inputs, Wm, Wi, c, p(ii)
0 (X), and given choices

of “space” and “time” discretizations, Sh and Tδ , the approximation of the viscosity solution W is constructed at
“space” grid points in Sh , all at once, starting at the initial “time” t = − ln 1 = 0, when W = Wi, and progressing
in “time” along the grid points in Tδ by following the (appropriate extended version of the) integration procedure
(31) until the desired volume fraction of inclusions c, as parametrized by t = − ln c, is reached.

4. Accuracy and convergence assessment

By construction, the scheme proposed in the preceding section is expected to be accurate and feature a high-
order rate of convergence, specifically, an overall rate of convergence between third and fifth order, depending on
the gradients exhibited by the solution W in its “space” variables F, E, and H. In this section, we assess this
expectation by investigating the actual performance of the scheme. We do so by directly confronting the numerical
solution generated by the scheme with a simple explicit solution available for the HJ equation (1)–(2) for the case
when it takes the particular form [23]⎧⎪⎨⎪⎩

∂W
∂c

+ H
(

λ1, λ2, c, W,
∂W
∂λ1

,
∂W
∂λ2

)
= 0, (λ1, λ2) ∈ S, c ∈ T

W (λ1, λ2, 1) = 0, (λ1, λ2) ∈ S

, (33)

where S = {λ1 ∈ R+, λ2 ∈ R+
: λ1λ2 > 1 − c} and T = [c, 1), with Hamiltonian

H = −
1
c

W +
2 + λ1λ2

(
λ 2

1 + λ 2
2 − 4

)
4cλ1λ2

G +
λ 2

1 + λ1λ2 − 2
2c(λ1 + λ2)

∂W
∂λ1

+
λ 2

2 + λ1λ2 − 2
2c(λ1 + λ2)

∂W
∂λ2

+

λ1λ2

2cG(λ1 + λ2)2

(
∂W
∂λ1

)(
∂W
∂λ2

)
−

λ2
1

4cG(λ1 + λ2)2

(
∂W
∂λ1

)2

−
λ2

2

4cG(λ1 + λ2)2

(
∂W
∂λ2

)2

. (34)

The HJ equation (33)–(34) corresponds to the specialization of the general HJ equation (1)–(2) to the N = 2
dimensional case when the applied deformation gradient, electric field, and magnetic field are set to

F = diag(λ1, λ2), E = 0, H = 0,

the constitutive behavior of the matrix material is characterized by the Neo-Hookean stored-energy function

Wm(F, 0, 0) =

⎧⎨⎩
G
2

[ F · F − 2] if det F = 1

+∞ otherwise
,

with G denoting its initial shear modulus, the inclusions are vacuous, so that Wi(F, 0, 0) = 0, their initial volume
fraction is c and their spatial distribution is isotropic, so that ν(ξ ) = 1/2π . Physically, the viscosity solution
W of (33)–(34) corresponds hence to the homogenized free energy that characterizes the macroscopic elastic
response of an isotropic porous elastomer comprised of Gaussian rubber embedding an isotropic distribution of
closed-cell vacuous pores with initial volume fraction, or initial porosity, c. Fig. 1 shows a schematic of this
physical significance with the various quantities of interest indicated. From a mathematical point of view, we should
also remark that the “space” domain S in (33) is semi-unbounded and features a “curved” boundary, namely,
λ1λ2 = 1 − c, at which W = +∞. This is nothing more than the manifestation of the fact that the current porosity
in any deforming porous elastomer with incompressible elastomeric matrix vanishes, that is, complete closure of the
underlying pores ensues, whenever the determinant of the macroscopic deformation gradient F reaches the critical
value det F = 1 − c, at which point the porous elastomer behaves as an incompressible solid for loadings with any
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Fig. 1. Schematic representation of the physical meaning of the viscosity solution W of the HJ equation (33)–(34).

further volumetric compression; see, e.g., Sections 2 and 4.1 in [25].

The exact analytical solution. In spite of its strong nonlinearity and of the full dependence on the Hamiltonian
(34) on the “space” variables λ1, λ2, the “space” derivatives ∂W/∂λ1, ∂W/∂λ2, the “time” variable c, and on the
solution W itself, the viscosity solution of the HJ equation (33)–(34) can be worked out in a simple closed form
for any value of initial volume fraction of pores c ∈ (0, 1]. The result reads as [23]

W (λ1, λ2, c) =
G
2

1 − c
1 + c

[
λ 2

1 + λ 2
2 − 2

]
+

G
2

(λ1λ2 − 1)
[

ln
(

λ1λ2 + c − 1
cλ1λ2

)
− 2

1 − c
1 + c

]
. (35)

4.1. An expedient change of variables

In preparation to construct the WENO finite-difference solution of (33)–(34) and compare it with the exact
solution (35), as pointed out in Section 3.4, it is convenient first to make a change of “space” variables to straighten
the “curved” boundary λ1λ2 = 1 − c in the “space” domain S so as to make it conforming with any Cartesian grid
selected for the discretized “space” domain Sh . Likewise, it is convenient to make a change of “time” variable to
circumvent dealing with the numerical problems associated with the factor 1/c in the Hamiltonian (34). Accordingly,
for definiteness and consistency between the “space” and “time” variables, we shall make use of the following
change of
variables:

x = ln
(

λ1

λ2

)
, y = ln(λ1λ2), and t = − ln c.

In this new set of “space” and “time” variables, the HJ equation (33)–(34) takes the form⎧⎪⎨⎪⎩
∂W
∂t

+ H
(

x, y, W,
∂W
∂x

,
∂W
∂y

)
= 0, (x, y) ∈ S, t ∈ T

W (x, y, 0) = 0, (x, y) ∈ S

(36)

where now S = {x ∈ R, y ∈ R : y > ln(1 − e−t )} and T = (0, t], with Hamiltonian

H = W −
G
2

[
ey cosh x + e−y

− 2
]
− e−y tanh

( x
2

) ∂W
∂x

−
[
1 − e−y] ∂W

∂y
+

e−y

4G cosh2(x/2)

(
∂W
∂x

)2

; (37)

in this expression, with a slight abuse of notation, we still write W = W (x, y, t) and recall that t = − ln c.
Furthermore, in this new set of variables, the viscosity solution (35) reads as

W (x, y, t) = 2Gey sinh2
( x

2

)
tanh

(
t
2

)
+

G
2

(
ey

− 1
)

ln
(
e−y

+ et
− et−y) . (38)
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Fig. 2. Comparisons between the WENO finite-difference solution W k
i, j and the exact solution W for the HJ equation (36)–(37) at four

different “times”, tk
= 0, 1.75, 3.5, 7.

4.2. The WENO finite-difference solution

We now proceed with the construction of the WENO finite-difference solution for the HJ equation (36)–(37).
For definiteness,8 we consider the following computational domains

Sh
= {(xi , y j ) : xi = ih, y j = jh, 0 ≤ i ≤ M, 0 ≤ j ≤ M, Mh = 2} (39)

and

Tδ
= {tk

: tk
= k∆t, 1 ≤ k ≤ T, T∆t = 7}.

Physically, these correspond to stretches in the set {λ1 ∈ R+, λ2 ∈ R+
: 1 ≤ λ1/λ2 ≤ 7.38, 1 ≤ λ1λ2 ≤ 7.38} and

to initial volume fractions of pores in the range c ∈ [0.001, 1).
Granted the above specific selection of “space” discretization (39), as elaborated in Section 3.4, the next step is

to identify the parts of its boundary where the value of the function W needs to be prescribed in order to render
a well-posed discrete problem. To avoid loss of continuity, the relevant calculations are presented in Appendix B.
With those results at hand, the rest of the implementation of the scheme continues to follow the steps outlined in the
preceding section. In these, we note that the heuristic result (32) suggests the use of the CFL condition ∆t ≤ 0.15h.
However, numerical experiments indicate that the choice of “time” increment ∆t = h yields appropriate numerical
solutions and, moreover, that “time” increments smaller than ∆t = h do not lead to additional accuracy for a given
grid size h. Accordingly, all the results that are reported below correspond to computations with the CFL condition
∆t = h.

We begin by examining the accuracy of the scheme in a qualitative manner. Fig. 2 shows comparisons between
the exact solution W given by (38) and the numerical solution W k

i, j generated by the proposed scheme over the
entire discretized “space” domain (39) for the relatively coarse grid size h = 0.05; recall that ∆t = h. The solutions
are presented normalized by the initial shear modulus G of the matrix material in terms of the “space” variables
x and y for four different values of “time”, tk

= 0, 1.75, 3.5, 7. The main observation from this figure is that the
numerical solution is virtually indistinguishable from the exact one for all considered “times”, which points to the
accuracy of the proposed scheme.

In order to gain more precise quantitative insight into the accuracy and convergence properties of the scheme,
we compute ek

1,h and ek
∞,h , the global relative errors in the discrete L1 and L∞ norms between the exact solution

W , again, given by (38), and the numerical solution W k
i, j at the discrete time tk and for a given grid size h. They

are defined by

ek
1,h =

∥W k
i, j − W (xi , y j , t

k)∥1

∥W (xi , y j , tk)∥1
and ek

∞,h =
∥W k

i, j − W (xi , y j , t
k)∥∞

∥W (xi , y j , tk)∥∞

in terms of the discrete norms

∥uk
i, j∥1 = h2

M∑
i, j=0

|uk
i, j | and ∥uk

i, j∥∞ = max
0≤i, j≤M

|uk
i, j |.

8 We emphasize that in addition to the results reported here on the computational domain (39) we have generated analogous results on
a number of different discretized “space” domains Sh , all of which exhibit the same accuracy and convergence properties.
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Fig. 3. Global error measures ek
1,h and ek

∞,h between the numerical solution of the HJ equation (36)–(37) generated by the proposed scheme
and the exact solution. The results are plotted as functions of: (a)–(b) the “time” tk for fixed grid spacings h = 0.2, 0.1, 0.05, 0.025, 0.0125,
and (c)–(d) the grid spacing h for fixed “times” tk

= 0.2, 3.6, 7.

These error measures are plotted in Fig. 3(a)–(b) for fixed grid sizes h = 0.2, 0.1, 0.05, 0.025, 0.0125 at all times
tk

∈ Tδ . As already brought into view by Fig. 2, the values taken by ek
1,h and ek

∞,h , namely, ek
1,h ≤ 3.0 × 10−5 and

ek
∞,h ≤ 4.0 × 10−5, for all the grids considered confirm that the proposed scheme does indeed generate accurate

numerical solutions. More specifically, for a given grid size h, both errors increase monotonically up to tk
≈ 4.0

before leveling off or, in some cases, slightly decreasing for larger “times”. On the other hand, for a given fixed
“time” tk , both error measures decrease monotonically with the reduction of the grid size h. This point is better
illustrated by Fig. 3(c)–(d), where ek

1,h and ek
∞,h are plotted for the three fixed “times” tk

= 0.2, 3.6, 7 as functions
of h. Fig. 3(c)–(d) also reveal that both errors exhibit roughly a fifth-order rate of convergence, at least for small
“times”. For larger “times”, the rate of convergence decreases to third order in the error measure ek

1,h and to second
order in ek

∞,h . This decrease in the convergence rates might be the signature of the stiffness of the HJ equation
(36)–(37); see, e.g., Chapters 6 and 7 in [51] for a general discussion on this topic. It might also be due to the
presence of critical points along the boundary x = 0 where ∂W (0, y, t)/∂x = 0; see [40]. Whatever the cause, the
overall rate of convergence remains within the formally expected range.9

9 Here, we should emphasize that when applied to simpler type of HJ equations, the proposed scheme does deliver an overall rate of
convergence of fifth order for all “times”. This was verified to be indeed the case for a number of HJ equations, such as for instance, the
simple linear advection equation ∂u/∂t = ∂u/∂x with u(x, 0) = sin(πx), u(1, t) = sin(π (1 + t)) for x ∈ [0, 1) and t ∈ R+.
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Fig. 4. Comparisons of the “space” derivative (physically, the first Piola–Kirchhoff stress) S11 = ∂W/∂λ1 computed from the proposed scheme
(solid lines) and the corresponding exact solution (dashed lines) for two loading conditions: (a) uniaxial tension when S22 = ∂W/∂λ2 = 0
and (b) uniaxial stretch when λ2 = 1. The results, which are normalized with respect to the initial shear modulus G of the matrix material,
correspond to three different initial volume fractions of pores, c = 0.05, 0.15, 0.25, and are plotted in terms of the “space” variable (physically,
the applied stretch) λ1.

We close by reporting a further comparison between the “space” derivatives of W generated numerically by
the proposed scheme and the corresponding exact solutions. As noted in remark i of Section 2, the first partial
derivatives of W with respect to the original “space” variables F, E, H correspond to the constitutive relations (4)
that describe the macroscopic response of the composite material at hand and hence are of primary importance for
applications. In the present physical context of isotropic porous Gaussian elastomers, for definiteness, we consider
the macroscopic stress–stretch response of the composite material under the following two loading conditions:

• Uniaxial tension when S22 =
∂W
∂λ2

(λ1, λ2, c) = 0 with prescribed λ1 ≥ 1;

• Uniaxial stretch when λ2 = 1 with prescribed λ1 ≥ 1.

Note that here we have reverted to the original – and therefore physical – “space” and “time” variables λ1, λ2,
c. Fig. 4 shows comparisons between the “space” derivative S11 = ∂W/∂λ1 computed from the proposed scheme
(h = 0.05, ∆t = h) and the corresponding exact solution for the two loading conditions spelled out above. The
results are presented for three different values of the initial volume fraction of pores, c = 0.05, 0.15, 0.25, as
functions of the “space” variable λ1. It is plain from both parts of the figure that the proposed scheme delivers
accurate approximations not only for W but for its “space” derivatives as well.

5. Application to magnetorheological elastomers filled with ferrofluid inclusions

Having demonstrated the accuracy and convergence capabilities of the proposed scheme to generate solutions for
the HJ equation (1)–(2), in this section, we showcase its potential to aid in the investigation of novel nonlinear and
coupled phenomena. We do so by solving the boundary-value problem of a cylindrical specimen, made up of an
elastomer filled with an isotropic distribution of ferrofluid inclusions, that, as in a typical experimental setup (see,
e.g., [52,53]), is subjected to a remotely applied uniaxial magnetic field; see Fig. 5. To this end, the homogenized
free-energy function W that characterizes the macroscopic magneto-elastic material response of the specimen is
first generated numerically by solving the appropriate specialization of the HJ equation (1)–(2) via the proposed
scheme. This numerical free energy is then utilized in the context of a macroscopic finite-element (FE) formulation10

to solve for the deformation and magnetic fields within the cylindrical specimen and the surrounding air, which are

10 Here, it is fitting to mention that some authors have recently proposed to investigate this same type of two-scale boundary-value problems
with a FE2 scheme; see, e.g., [54–56].
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Fig. 5. Schematic of the boundary-value problem under investigation: a cylindrical specimen, made up of an elastomer filled with ferrofluid
inclusions, is immersed in air and subjected to a remotely applied uniaxial magnetic field H∞. The homogenized free-energy function W
characterizing the macroscopic magneto-elastic material response of the specimen is determined by solving the appropriate specialization of
the HJ equation (1)–(2) via the proposed WENO scheme. This numerical free energy is then used in a FE formulation to solve for the
deformation and magnetic fields within the cylindrical specimen and surrounding air.

expected to be non-uniform [35,57]. In the sequel, we outline the basic details involved in the computation of
W and report representative FE results for the macroscopic deformation and magnetic fields within the specimen.
From a physical point of view, we remark that elastomers filled with ferrofluid inclusions constitute a new class of
magnetorheological elastomers that has been recently identified in [35] as a promising pathway to circumvent the
shortcomings of classical magnetorheological elastomers, in particular, elastomers filled with iron particles. Most
notably, this new class of materials – as opposed to classical magnetorheological elastomers – can undergo relatively
large deformations when exposed to a magnetic field of low intensity.

The WENO computation of the homogenized free energy W . To work out the appropriate specialization of the HJ
equation (1)–(2), we begin by setting the dimension to N = 3 and the electric field to E = 0. We model the matrix
material as Gaussian rubber so that

Wm(F, 0, H) =

⎧⎨⎩
G
2

[ I1 − 3] −
µ0

2
I5 if J = 1

+∞ otherwise
, (40)

where I1 = F · F, I5 = F−T H · F−T H, J = det F and where G and µ0 = 4π × 10−7 H/m stand for the initial shear
modulus of the rubber and the permeability of vacuum, respectively. On the other hand, we model the ferrofluid
inclusions with the Langevin-type free-energy function

Wi(F, 0, H) =

⎧⎪⎨⎪⎩ −S(I5) = −
µ0

2
I5 −

µ2
0m2

s

3(µi − µ0)
ln

[
sinh

[
3(µi − µ0)

√
I5/(µ0ms)

]
3(µi − µ0)

√
I5/(µ0ms)

]
if J = 1

+∞ otherwise
, (41)

where µi denotes the initial magnetic permeability of the inclusions, while ms stands for the saturated value of
their magnetization mi = [2S ′(I5)/µ0 − 1]F−T H at large magnetic fields. Given that the spatial distribution of
inclusions is isotropic, we also have that

ν(ξ ) =
1

4π
.

Upon substituting the above constitutive and microstructural inputs in the general HJ equation (1)–(2), it is not
difficult to deduce that its viscosity solution W = +∞ for deformations with J ̸= 1, while for isochoric
deformations when J = 1, with a slight abuse of notation, it can be written rather compactly in the form

W (F, 0, H, c) = 2G V (λ1, λ2, H1, H2, H3, c)+
G
2

[
λ2

1 + λ2
2 +

1
λ2

1λ
2
2

− 3
]
−

µ0

2

[
H 2

1

λ2
1

+
H 2

2

λ2
2

+ λ2
1λ

2
2 H 2

3

]
. (42)
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Table 1
Material parameters and volume fraction of ferrofluid inclusions.

G (kPa) µi/µ0 ms (MA/m) c

0.025 10 0.3 0.15

Here, λ1 and λ2 stand for two of the singular values of the deformation gradient tensor F (in view of the condition
that J = 1, the third singular value is such that λ3 = 1/(λ1λ2)), H1, H2, H3 denote the three components of the
Lagrangian magnetic field H with respect to the Lagrangian principal axes (that is, the principal axes of FT F), while
V = V (λ1, λ2, H1, H2, H3, c) stands for the viscosity solution of the following HJ equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V
∂c

+ H
(

λ1, λ2, H1, H2, H3, c, V,
∂V
∂λ1

,
∂V
∂λ2

,
∂V
∂ H1

,
∂V
∂ H2

,
∂V
∂ H3

)
= 0,

{λ1, λ2, H1, H2, H3} ∈ S, c ∈ T

V (λ1, λ2, H1, H2, H3, 1) = −
1
4

[
λ2

1 + λ2
2 +

1
λ2

1λ
2
2

− 3
]

+
µ0

4G

[
H 2

1

λ2
1

+
H 2

2

λ2
2

+ λ2
1λ

2
2 H 2

3

]
−

1
2G

S
(

H 2
1

λ2
1

+
H 2

2

λ2
2

+ λ2
1λ

2
2 H 2

3

) ,

{λ1, λ2, H1, H2, H3} ∈ S

(43)

where S = {λ1 ∈ R+, λ2 ∈ R+, H1 ∈ R, H2 ∈ R, H3 ∈ R} and T = [c, 1), with Hamiltonian

H = −
1
c

V −

2∑
m,n,p,q,r=0

m+n+p+q+r=2

βmnpqr

c

(
∂V
∂λ1

)m (
∂V
∂λ2

)n (
∂V
∂ H1

)p (
∂V
∂ H2

)q (
∂V
∂ H3

)r

; (44)

due to their bulkiness, the expressions for the fifteen coefficients βmnpqr = βmnpqr (λ1, λ2, H1, H2, H3) entering in
the Hamiltonian (44) are spelled out in Appendix C.

Thus, the computation of the homogenized free-energy function (42) characterizing the macroscopic magneto-
elastic response of the above-described magnetorheological elastomer filled with ferrofluid inclusions amounts to
solving the HJ equation (43)–(44) for the function V . Here, we do so by means of the proposed WENO scheme.
To this end, we first make the change of “space” and “time” variables

x = ln
(

λ1

λ2

)
, y = ln

(
λ1λ

2
2

)
, t = − ln c

in (43)–(44) so as to have symmetry for compressive (λ1, λ2 < 1) and tensile deformations (λ1, λ2 > 1) as well as
to circumvent dealing with the factor 1/c in (44). For possible comparison with experiments, we set the rubber and
ferrofluid material parameters as well as the volume fraction of the inclusions to those listed in Table 1. Finally,
we choose the following computational domains

Sh
= {(xi , y j , H1p , H2q , H3r ) : xi = ih, y j = jh, H1p = ph MA/m, H2q = qh MA/m, H3r = rh MA/m,

0 ≤ i, j, p, q, r ≤ M, Mh = 1.5}

and

Tδ
= {tk

: tk
= k∆t, 1 ≤ k ≤ T, T∆t = 1.897}

with h = 0.05 and ∆t = h/2 = 0.025. For illustration purposes, Fig. 6 shows the solution (42) generated by the
WENO scheme for the case when H1 = H2 = H3 = 0 MA/m in part (a) and the case when λ2 = λ

−1/2
1 and

H2 = H3 = 0 MA/m in part (b). As expected, the computed W exhibits a fairly high degree of regularity but
exhibits as well steep gradients in its “space” variables. This warrants employing a WENO scheme such as the one
proposed in this work.
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Fig. 6. WENO finite-difference solution of the homogenized free-energy function (42) describing the macroscopic magneto-elastic response
of a Gaussian rubber, characterized by the free-energy function (40), filled with an isotropic distribution of ferrofluid inclusions, characterized
by the free-energy function (41), with the material parameters and volume fraction of inclusions listed in Table 1. Part (a) shows W as a
function of λ1 and λ2 for the case when H1 = H2 = H3 = 0 MA/m, whereas part (b) shows W as a function of λ1 and H1 for the case
when λ2 = λ

−1/2
1 and H2 = H3 = 0 MA/m.

Fig. 7. Contour plots of the components F33(X) and h3(x) of the deformation gradient tensor and the Eulerian magnetic field in the e2–e3
plane, respectively, over: (a) the undeformed configuration and (b) the deformed configuration of the cylindrical specimen.

The FE computation of the macroscopic fields within the cylindrical specimen and surrounding air. Having worked
out numerically the homogenized free energy W that describes the macroscopic magneto-elastic material response
of the magnetorheological elastomer making up the cylindrical specimen, we are now in a position to investigate
the magneto-elastic structural response of the specimen when subjected to a remotely applied uniaxial magnetic
field, say H∞ = H∞e3. Again, because the deformation and magnetic fields inside the specimen, as well as in the
surrounding air, are expected to be non-uniform, generating solutions for this boundary-value problem requires an
additional numerical treatment. Here, we employ a FE formulation to discretize the relevant magneto-elastostatics
equations and generate solutions for the deformation and magnetic fields at every material point in both the
cylindrical specimen and the surrounding air; the interested reader is referred to Section 6 in [35] and Section
5 and Appendix in [58] for the relevant technical details on the FE formulation. For possible comparison with
experiments, we consider the case of a cylindrical specimen with equal initial diameter and initial height of 1 cm
(featuring filleted edges to avoid singularities) whose longitudinal axis is aligned in the direction of the applied
magnetic field, here, H∞ = H∞e3 with H∞ = 1 MA/m; see Fig. 5.

Fig. 7(a) shows contour plots of the component F33(X) of the deformation gradient in the e2–e3 plane over the
undeformed configuration of the specimen. On the other hand, Fig. 7(b) shows contour plots of the component
h3(x) of the Eulerian magnetic field h = F−T H in the same e2–e3 plane but over the deformed configuration of
the specimen. A first immediate observation from Fig. 7 is that the specimen undergoes a substantial elongation in
the direction of the applied magnetic field, even though its intensity H∞ = 1 MA/m is moderate. It is also plain
that while the deformation and the Eulerian magnetic fields are not uniform over the specimen, they fluctuate over
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relatively narrow ranges of values. Both of these features are in direct contrast with the behavior of comparable
cylindrical specimens made up of classical magnetorheological elastomers filled with iron particles (cf. Section 7 in
[35]), and hence point to the further investigation of magnetorheological elastomers filled with ferrofluid inclusions.
By the same token, the above sample results provide ample motivation to further make use of the proposed WENO
scheme to generate numerical solutions for the general HJ equation (1)–(2) in order to investigate an admittedly wide
range of nonlinear and coupled phenomena in solids; see, e.g., [59] for a recent application to porous elastomers
in N = 3 dimensions.
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Appendix A. WENO approximation formulas for the “boundary” grid points

In this appendix, we report the fifth-order accurate left-biased and right-biased WENO approximations of the
first derivative ux (x) of a single-variable scalar function u(x) at the corresponding “boundary” grid points, other
than at x0, namely, at x1, x2, xM−1, xM for the left-biased WENO approximation and at x1, xM−2, xM−1, xM for
the right-biased WENO approximation. As already mentioned in the main body of the text, the derivations of these
approximations follow closely that of the WENO approximations worked out for ux (x0) in Section 3.1 and hence
we do not repeat them here. Instead, we report directly the resulting formulas.

The left-biased and right-biased WENO approximations of the first derivative of u(x) at x1 can be compactly
written in the form

u−

x,1 = u+

x,1 =
11
6
∆+u1

h
−

7
6
∆+u2

h
+

1
3
∆+u3

h
− g1

(
∆−∆+u1

h
,
∆−∆+u2

h
,
∆−∆+u3

h
,
∆−∆+u4

h

)
,

where

g1(z1, z2, z3, z4) =
1
3
ω̂3,1 (z1 − 2z2 + z3) −

11
6

ω̂5,1 (z2 − 2z3 + z4) (45)

with the parameters

ω̂ j,1 =

γ j,1

(ϵ + h2Ŝ j,1)2∑6
k=3

γk,1

(ϵ + h2Ŝk,1)2

, γ3,1 =
3
5
, γ4,1 =

47
110

, γ5,1 = −
3

110
, (46)

and the smoothness indicators

Ŝ j,1 =
13
12

(
z j−2 − z j−1

)2
+
[
( j − 2)z j−2 − ( j − 3)z j−1

]2
, (47)

where, again, the explicit dependence of ω̂ j,1 and Ŝ j,1 on z1, . . . , z4 has been omitted for notational convenience.
Similarly, the left-biased WENO approximation of ux (x2) can be written as

u−

x,2 = −
1
12

∆+u3

h
+

1
7
∆+u2

h
+

1
7
∆+u1

h
−

1
12

∆+u0

h
+

g
(
∆−∆+u4

h
,
∆−∆+u3

h
,
∆−∆+u2

h
,
∆−∆+u1

h

)
and the right-biased WENO approximation of ux (xM−2) reads as

u+

x,M−2 = −
1

12
∆+uM−4

h
+

7
12

∆+uM−3

h
+

7
12

∆+uM−2

h
−

1
12

∆+uM−1

h
−

g
(
∆−∆+uM−4

h
,
∆−∆+uM−3

h
,
∆−∆+uM−2

h
,
∆−∆+uM−1

h

)
,
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where we recall that the function g is given by expressions (13) with (10) and (14).
Finally, the left-biased and right-biased WENO approximations of ux (xM−1) and ux (xM ) are given by

u−

x,M−1 = u+

x,M−1 =
11
6
∆+uM−2

h
−

7
6
∆+uM−3

h
+

1
3
∆+uM−4

h
+

g1

(
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h
,
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h
,
∆−∆+uM−3

h
,
∆−∆+uM−4

h

)
,

u−

x,M = u+

x,M =
13
3
∆+uM−2

h
−

31
6
∆+uM−3

h
+

11
6
∆+uM−4

h
+

g0

(
∆−∆+uM−1

h
,
∆−∆+uM−2

h
,
∆−∆+uM−3

h
,
∆−∆+uM−4

h

)
,

where, again, the function g1 is given by expressions (45) through (47) and where we recall that the function g0 is
given by expressions (20) with (18) and (21).

Appendix B. Identification and computation of “inflow” boundary conditions on ∂Sh via the method of
characteristics

As discussed in Section 3.4, for a given choice of “space” discretization Sh , the value of the function W needs
to be prescribed on the regions of the boundary ∂Sh through which the characteristics pass in the “inflow” direction
so as to ensure the well-posedness of the numerical scheme. These boundary conditions need to be identified and
computed a priori for all the discrete “times” in the given choice of discretized “time” domain Tδ . In this appendix,
we sketch out how to carry out such identifications and computations via the method of characteristics. For clarity
of exposition, we present the relevant basic details for the case when the HJ equation (1)–(2) involves only two
“space” variables, and use the HJ equation (36)–(37) examined in Section 4 as an illustrative example.

The basic idea behind the method of characteristics is to recast (appropriate types of) PDEs as a system of
ordinary differential equations (ODEs); see, e.g., [60] for an interesting historical perspective on this method. For
the type of HJ equation (1)–(2) under investigation here, the method amounts to finding curves in S × T, the
so-called characteristics, along which the solution W can be computed. This is achieved by integrating the system
of ODEs – with unknowns, the “space” and “time” variables, the solution of the PDE, and its partial “space”-“time”
first-order derivatives – defining these curves from a point (x0, y0) ∈ S where the initial condition is prescribed, to
points (x, y, t) in S× T. Repeating this process for different initial points (x0, y0) ∈ S allows one to compute, in
principle, the solution W in the whole of S×T. We do not discuss further this classical method and, instead, refer
the interested reader to Section 3.2 in [7] for the derivation of the results spelled-out below as well as for additional
details regarding the existence and uniqueness aspects of the resulting solutions.

We begin by writing the HJ equation of interest here in the form{
F (p, q, r, z, x, y, t) = r + H (x, y, z, p, q) = 0, (x, y) ∈ S, t ∈ T

z0 = Wi(x0, y0), {x0, y0} ∈ S

with the parametrization

p(s) =
∂W
∂x

(x(s), y(s), t(s)), q(s) =
∂W
∂y

(x(s), y(s), t(s)),

r (s) =
∂W
∂t

(x(s), y(s), t(s)), z(s) = W (x(s), y(s), t(s)), s ≥ 0

along the characteristic curve (x(s), y(s), t(s)); in these expressions, we have made use of the notation z0 = z(0),
x0 = x(0), y0 = y(0), t0 = t(0). Now, the characteristic curve initiating from (x0, y0) ∈ S is defined by the system
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of ODEs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp
ds

= −
∂F
∂x

− p
∂F
∂z

= −
∂H
∂x

− p
∂H
∂z

dq
ds

= −
∂F
∂y

− q
∂F
∂z

= −
∂H
∂y

− q
∂H
∂z

dr
ds

= −
∂F
∂t

− r
∂F
∂z

= −r
∂H
∂z

dz
ds

= p
∂F
∂p

+ q
∂F
∂q

+ r
∂F
∂r

= p
∂H
∂p

+ q
∂H
∂q

+ r

dx
ds

=
∂F
∂p

=
∂H
∂p

dy
ds

=
∂F
∂q

=
∂H
∂q

dt
ds

=
∂F
∂t

= 1

(48)

together with the compatibility equations

F (p0, q0, r0, z0, x0, y0, t0) = r0 + H(x0, y0, z0, p0, q0) = 0,

p0 =
∂Wi

∂x
(x0, y0, t0), q0 =

∂Wi

∂y
(x0, y0, t0) (49)

that define p0 = p(0), q0 = q(0), r0 = r (0). With help of the above formulation, the “inflow” regions of the
boundary ∂Sh of the computational domain Sh where boundary conditions need to be prescribed can then be
readily identified as those that satisfy the condition⎛⎜⎝ dx

ds
(s)

dy
ds

(s)

⎞⎟⎠ · nh < 0, (50)

where nh denotes the outward unit normal to ∂Sh .

The “inflow” boundary conditions for the HJ equation (36)–(37). By way of an example, we spell out the
specialization of the general system of characteristics (48)–(49) to the case of the HJ equation (36)–(37) studied in
Section 4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp
ds

=
G
2

ey sinh x +

(
e−y

2 cosh2(x/2)
− 1

)
p +

e−y tanh(x/2)
4G cosh2(x/2)

p2

dq
ds

=
G
2

[
ey cosh(x) − e−y

]
− e−y tanh

( x
2

)
p +

e−y

4G cosh2(x/2)
p2

+ (e−y
− 1)q

dr
ds

= −r

dz
ds

= −e−y tanh
( x

2

)
p +

e−y

2G cosh2(x/2)
p2

+ (e−y
− 1)q + r

dx
ds

= −e−y tanh
( x

2

)
+

e−y

2G cosh2(x/2)
p

dy
ds

= e−y
− 1

dt
ds

=
∂F
∂t

= 1

(51)

with

p0 = 0, q0 = 0, r0 =
G
2

[
ey0 cosh x0 + e−y0 − 2

]
, z0 = 0, t0 = 0.
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Although it is possible from knowledge of the solution (38) for W to work out a closed-form solution for the system
of nonlinear ODEs (51), it is also straightforward – and in general required – to integrate numerically this system
to identify and compute the required “inflow” boundary conditions. Now, for the choice of discretized “space”
domain (39) considered in Section 4.2, it follows from the condition (50) that boundary conditions need not be
prescribed at the boundary grid points (xi , y j ) = (0, y j ) and (xi , y j ) = (xi , 0) for any “time” tk . On the other hand,
the value of W needs to be prescribed on “time”-dependent parts of the boundary grid points (xi , y j ) = (2, y j ),
while it needs to be prescribed for all “times” tk

∈ Tδ at the boundary grid points (xi , y j ) = (xi , 2).
We close by remarking that employing the above-outlined method of characteristics to compute the solution W

in the entire computational domain of interest Sh
×Tδ , and not just at the “inflow” boundaries on ∂Sh , is plausible

but impractical, among other things, because it is computationally very costly, especially for problems with a large
number of “space” variables.

Appendix C. The fifteen coefficients βmnpqr in the Hamiltonian (44)
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where the functions EF and EE , stand for, respectively, the incomplete elliptic integrals of first and second kind:

EF {φ; η} =

∫ φ

0
[1 − η2 sin2 θ ]−1/2 dθ, EE {φ; η} =

∫ φ

0
[1 − η2 sin2 θ ]1/2 dθ.
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