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Abstract
We study the dynamics of a consumer–resource reaction–diffusion model, proposed
recently by Zhang et al. (Ecol Lett 20(9):1118–1128, 2017), in both homogeneous and
heterogeneous environments. For homogeneous environments we establish the global
stability of constant steady states. For heterogeneous environments we study the exis-
tence and stability of positive steady states and the persistence of time-dependent
solutions. Our results illustrate that for heterogeneous environments there are some
parameter regions in which the resources are only partially limited in space, a unique
feature which does not occur in homogeneous environments. Such difference between
homogeneous and heterogeneous environments seems to be closely connected with
a recent finding by Zhang et al. (2017), which says that in consumer–resource mod-
els, homogeneously distributed resources could support higher population abundance
than heterogeneously distributed resources. This is opposite to the prediction by Lou
(J Differ Equ 223(2):400–426, 2006. https://doi.org/10.1016/j.jde.2005.05.010) for
logistic-type models. For both small and high yield rates, we also show that when a
consumer exists in a region with a heterogeneously distributed input of exploitable
renewed limiting resources, the total population abundance at equilibrium can reach a
greater abundancewhen it diffuses thanwhen it does not. In contrast, such phenomenon
may fail for intermediate yield rates.
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1 Introduction

Population abundance, or biomass of populations, is often the critical factor in decid-
ing management strategies for the protection of endangered species and the control
of exotic invasive species. For homogeneous environments in which the resources are
evenly distributed in space, the total population of a single population is usually deter-
mined by the carrying capacity. However, when the environment is spatially varying
across the habitat, the connection between biomass and carrying capacity may poten-
tially be complicated, partly due to different movement behaviors of organisms. This
issue has largely been addressed in theoretical studies, in both discrete and continuous
spatial models. For a two-patch system of a single population with logistic growth,it
was shown by Freedman andWaltman (1977) and Holt (1985) that for high movement
rates, the total biomass of population at equilibrium could exceed the sum of the car-
rying capacities of the two patches. See also a recent thorough study of the two-patch
system by Arditi et al. (2015).

The continuous model for a single population with logistic growth and diffusion
is studied by DeAngelis et al. (2016b), in which it is assumed that both intrinsic
growth rate and carrying capacity vary spatially. DeAngelis et al. showed that if the
growth rate is positively correlated with the carrying capacity, then the total population
at equilibrium could exceed the total carrying capacity. This extended the results of
Lou (2006), where the growth rate is assumed to be proportional to the carrying
capacity. The total population of a single species model also plays an important role
in determining the interesting dynamics of models of two competing species which
diffuse in heterogeneous environments, e.g., it could occur that without diffusion two
competing species will coexist at any location, but with diffusion one competitor can
wipe out the other at every location. We refer interested readers to Cantrell and Cosner
(1991, 1998), Hastings (1983), He and Ni (2013a, b, 2016a, b, 2017), Lam and Ni
(2012), Lou (2006) and references therein for further details.

In contrast to these theoretical developments, empirical works in validating the
theoretical predictions are lacking until the recent works of Zhang et al. (2015) and of
DeAngelis et al. (2016a). In their experimental studies Zhang et al. (2015) measured
the growth of the duckweed in a five-patch system with different nutrient levels,
by manually moving a portion of the duckweed between the adjacent patches in a
fixed time period. Their experimental results showed that the total population of the
duckweed is higher than the total carrying capacity of the system and it is peaked at a
relatively low diffusion (or mixing) rate, in agreement with the theoretical predictions
from both discrete and continuous spatial models.

The experimental work of Zhang et al. (2015)mimicked the classical logistic model
with diffusion, in which carrying capacity is held to be spatially varying but temporally
constant. Such considerations neglected several important factors, one of which is the
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Dynamics of a consumer–resource reaction–diffusion model 1607

feedback of resources from exploitations by consumers. To remedy such restrictions,
Zhang et al. (2017) first experimentally tested several hypotheses suggested previously
by the logistic model, and then, based on their experiments, extended the logistic mod-
els to consumer–resource reaction–diffusion models to include exploitable renewed
resources. Their experiments also confirmed that spatial diffusionwill increase the total
population in heterogeneous environments, as predicted by logistic models. Surpris-
ingly, their experimental results also showed that homogeneously distributed resources
actually supported higher population abundance than heterogeneously distributed
resources, which is opposite to the prediction from logistic models. In Appendix E of
the supplementary materials in Zhang et al. (2017), a mathematical proof of this fact
was given under some suitable assumptions. In this paper we will analytically study
the dynamics of a consumer–resource model proposed by Zhang et al. (2017).

The paper is organized as follows: In Sect. 2 we will introduce the mathematical
model and discuss our main results. In Sect. 3 we study the persistence of consumer
and resource populations in heterogeneous environments and establish the existence
of a positive steady state. The linear stability of the positive steady state is investigated
in Sect. 4. Section 5 is devoted to studying the dynamics of the model in homogeneous
environments, in which we show that the constant positive steady state is unique and
globally asymptotically stable. In Sect. 6 we study some qualitative properties of the
positive steady state determined in Sect. 3 and investigate two hypotheses raised by
Zhang et al. (2017). We conclude with discussions in Sect. 7.

2 Mathematical model andmain results

Consider the following consumer–resource model derived, based on the experiments,
by Zhang et al. (2017) (see Model I therein)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Zt = dΔZ + Z
(

r(x)N
k+N − g(x)Z

)
for x ∈ Ω, t > 0,

Nt = NR(x) − r(x)N Z
γ (k+N )

for x ∈ Ω, t > 0,

∂n Z = 0 for x ∈ ∂Ω, t > 0,

Z(x, 0) = Z0(x), N (x, 0) = N0(x) for x ∈ Ω.

(1)

Here Z(x, t) and N (x, t) are the densities of consumer and resource populations at
location x and time t , respectively. d is the diffusion rate of the consumer, Δ =
Σ N

i=1
∂2

∂x2i
is the usual Laplace operator, r(x) is the growth rate of the consumer under

unlimited resources, k is the half saturation rate, g(x) is the loss rate due to self
regulation of the consumer population, NR(x) is the resource input, and γ is the yield
rate (measured as individuals per unit resources).

Throughout this paper we assume that d, k and γ are positive constants, and r(x),
g(x) and NR(x) are positive, Hölder continuous functions in Ω̄ = Ω ∪ ∂Ω , where
Ω is a bounded domain in Euclidean space RN , with smooth boundary ∂Ω . n(x) is
the outward unit normal vector at x ∈ ∂Ω , and ∂n Z := n · ∇Z . The zero Neumann
boundary condition for Z means that there is no flux of consumer population across
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the boundary. We assume that Z0 and N0 are non-negative, not identically zero and
continuous in Ω̄ .

Our first observation is that for solutions of (1), it may occur that N (x, t) → ∞ as
t → ∞, i.e. the resources become unlimited in space. Accordingly, set

U (x, t) := Z(x, t)

γ
, M(x, t) := N (x, t)

k + N (x, t)
,

then we obtain the equivalent system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ut = dΔU + U (r M − γ gU ) for x ∈ Ω, t > 0,

k Mt = (1 − M)2(NR − r MU ) for x ∈ Ω, t > 0,

∂nU = 0 for x ∈ ∂Ω, t > 0,

U (x, 0) = U0(x), M(x, 0) = M0(x) for x ∈ Ω.

(2)

Here U0 = Z0/γ and M0 = N0/(k + N0) satisfy U0 ≥ 0, U0 �≡ 0, M0 ≥ 0, M0 �≡ 0,
and M0 < 1 in Ω̄ . Our first result settles the homogeneous case.

Theorem 1 Suppose that r(x), NR(x) and g(x) are positive constant functions,
denoted by r̄ , N̄R and ḡ, respectively. Then the positive constant steady state of (2),
given by

min

{

1,

√
γ ḡ N̄R

r̄

}

·
(

r̄

γ ḡ
, 1

)

is globally asymptotically stable among all solutions of (2) with initial data (U0, M0)

satisfying

U0(x) ≥ 0, M0(x) ≥ 0, U0(x) �≡ 0, M0(x) �≡ 0 and M0(x) < 1 for all x ∈ Ω̄.

(3)

That is, the following statements hold:

(a) If γ ≥ r̄2

ḡ N̄R
, then

(
r̄

γ ḡ , 1
)

is globally asymptotically stable;

(b) If γ < r̄2

ḡ N̄R
, then

(√
N̄R
γ ḡ ,

√
γ ḡ N̄R

r̄

)

is globally asymptotically stable.

Theorem 1 fully determines the dynamics of system (1) in the homogeneous case.
Namely, if the yield rate is greater than or equal to some critical value, part (a) implies
that the resource density will grow to infinity in Ω as t → ∞, which we refer as
the case of unlimited resources; in contrast, part (b) illustrates that if the yield rate
is smaller than the critical value, the resource density will remain bounded in Ω

as t → ∞, i.e. the resources are limited uniformly in space. In other words, for
homogeneous environments the resources are either unlimited across the habitat or
limited everywhere. We shall see that the situation will be more complicated for
heterogeneous environments.
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Dynamics of a consumer–resource reaction–diffusion model 1609

We now consider system (2) with general positive r(x), NR(x) and g(x), for which
(U , M) = (0, 1) is always a non-negative steady state. We focus on positive steady

states (Ũ , M̃) of (2) that satisfy Ũ > 0 and 0 < M̃ ≤ 1 in Ω̄ . Note that
(
1
γ
θ, 1

)
is

always a positive steady state of (2), where θ = θ(x) is the unique positive solution
of the scalar problem

{
dΔθ + θ [r(x) − g(x)θ ] = 0 for x ∈ Ω,

∂nθ = 0 for x ∈ ∂Ω.
(4)

(It is a standard fact that the above equation has a unique positive solution; see e.g.
Propositions 3.2 and 3.3 of Cantrell and Cosner 2003.) A natural question is whether

system (2) has any positive steady state other than
(
1
γ
θ, 1

)
. This is addressed in the

next result.

Theorem 2 Suppose that r(x), NR(x) and g(x) are positive and Hölder continuous
in Ω̄ .

(a) If γ ≥ supx∈Ω
r(x)θ(x)

NR(x)
, then

(
1
γ
θ, 1

)
is globally asymptotically stable. In partic-

ular,
(
1
γ
θ, 1

)
is the only positive steady state of (2);

(b) If γ < supx∈Ω
r(x)θ(x)

NR(x)
, then (2) has at least one additional positive steady state,

denoted by (u∗, m∗), satisfying u∗ > 0, 0 < m∗ ≤ 1 and m∗ �≡ 1 in Ω̄ . Moreover,
u∗ is the unique positive solution of

dΔu∗ + u∗
[

r min

{
NR

ru∗ , 1

}

− γ gu∗
]

= 0 in Ω, ∂nu∗|∂Ω = 0, (5)

and m∗ is given by m∗ = min
{

NR
ru∗ , 1

}
.

(c) The positive steady state (u∗, m∗) is linearly stable whenever it exists.

A natural question is whether (u∗, m∗), if it exists, is unique. It turns out that, due
to the degeneracy of the second equation of (2) when M = 1, the system can admit
infinitely many steady states in general. In view of the linear stability result of part (c),
we conjecture that the steady state (u∗, m∗) given by part (b) is globally asymptotically
stable among all solutions of (2) with initial data (U0, M0) satisfying (3). See Remark
1 for additional discussion.

By a priori estimates infΩ r
g ≤ θ ≤ supΩ

r
g , which follows readily from the

maximum principle, we have the following more explicit result:

Corollary 1 Suppose that r(x), NR(x) and g(x) are positive and Hölder continuous
in Ω̄ .

(a) If γ ≥ supΩ
r

NR
· supΩ

r
g , then

(
1
γ
θ, 1

)
is globally asymptotically stable.

(b) If γ < supΩ
r

NR
· infΩ r

g , then (2) has at least one additional positive steady

state, denoted by (u∗, m∗), satisfying u∗ > 0, 0 < m∗ ≤ 1 and m∗ �≡ 1 in Ω̄ .
Furthermore, u∗ can be determined by (5).

123



1610 X. He et al.

Next we proceed to discuss qualitative properties of positive steady state (u∗, m∗)
and illustrate some differences between heterogeneous and homogeneous cases. We
write the unique positive solution of (5) as u∗(x, γ ) to stress its dependence on γ .
Since u∗(x, γ ) is strictly decreasing in γ , i.e. u∗(x, γ1) < u∗(x, γ2) in Ω̄ if γ1 > γ2,
the following concise result is a consequence of Theorem 2.

Corollary 2 For any d > 0, there exist two positive constants γ∗(d) and γ ∗(d) satis-
fying

(

inf
Ω

r2

N 2
R

)(

inf
Ω

NR

g

)

≤ γ∗(d) ≤ γ ∗(d) ≤
(

sup
Ω

r

NR

)(

sup
Ω

r

g

)

(6)

and that:

(a) If 0 < γ < γ∗(d), then m∗ < 1 in Ω̄;
(b) If γ∗(d) ≤ γ < γ ∗(d), both sets {x ∈ Ω : m∗(x) = 1} and {x ∈ Ω : m∗(x) < 1}

are non-empty;
(c) If γ ≥ γ ∗(d), then m∗ ≡ 1 in Ω̄ .

The proof of Corollary 2 is given at the end of Sect. 3. Cases (a) and (c) correspond
to the cases of limited and unlimited resources, respectively, which is similar to the
homogeneous case. However, for the homogeneous case γ∗ = γ ∗ = r̄2/(ḡ N̄R) holds,
thus case (b) is null for the homogeneous case. For the heterogeneous case, i.e. r(x),
NR(x) and g(x) are non-constant functions, it holds generally that γ∗ < γ ∗, and case
(b) implies that the resources are unlimited in some locations but limited elsewhere.
Such scenario can be regarded as resources partially limited in space, which is a unique
feature for heterogeneous environments. This will be further elaborated in Sect. 6.

Three hypotheses were proposed and tested by Zhang et al. (2017) both mathemat-
ically and experimentally, of which two can be stated as follows:

Hypothesis AWhen a consumer exists in a region with a heterogeneously distributed
input of exploitable renewed limiting resources, the total population abundance at
equilibrium can reach a greater abundance when it diffuses than when it does not.

Hypothesis B A consumer diffusing in a region with a heterogeneously distributed
input of exploitable renewed limiting resources can have greater total population abun-
dance at equilibrium than a population diffusing in a space with the same total amount
of resources distributed homogeneously.

For logistics models of single populations, it was previously shown by Lou (2006)
that both hypotheses hold when the intrinsic growth rate and the carrying capacity are
proportional to each other. The situation becomes more complicated otherwise, as is
shown by DeAngelis et al. (2016b). One of the main findings by Zhang et al. (2017),
experimentally as well as mathematically for the consumer–resource model and its
discrete counterpart, is that Hypothesis B is false when the diffusion rate is small.

In Sect. 6 we study some qualitative properties of steady state u∗ of (5) under the
additional assumption that g ≡ 1. Our main findings are: (i) both Hypotheses A and
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B hold when the resources are unlimited everywhere in space (large γ ); (ii) when the
resources are limited everywhere in space, Hypothesis A holds but Hypothesis B fails
(small γ ); (iii) when the resources are partially limited in space, both Hypotheses A
and B may fail (intermediate γ ).

3 Persistence and existence of positive steady states

In this section we study positive steady states of (2) and the persistence of time-
dependent solutions of (2). Part (a) of Theorem 1 and parts (a) and (b) of Theorem 2
follow directly from the following result:

Theorem 3 Suppose that r(x), NR(x) and g(x) are positive and Hölder continuous
in Ω̄ .

(a) Suppose γ ≥ supx∈Ω
r(x)θ(x)

NR(x)
, then

(
1
γ
θ, 1

)
is globally asymptotically stable;

(b) Suppose γ < supx∈Ω
r(x)θ(x)

NR(x)
, then

(i) the steady state
(
1
γ
θ, 1

)
is weakly repelling, i.e. there is no solution (U , M) of

(2) with initial data satisfying (3) such that (U , M) →
(
1
γ
θ, 1

)
as t → +∞;

(ii) system (2)has at least one additional positive steady state, denoted by (u∗, m∗),
satisfying u∗ > 0, 0 < m∗ ≤ 1 and m∗ �≡ 1 in Ω̄ . Furthermore, u∗ is the
unique positive solution of

dΔu∗ + u∗
[

r min

{
NR

ru∗ , 1

}

− γ gu∗
]

= 0 in Ω, ∂nu∗|∂Ω = 0;

and m∗ is given by m∗ = min
{

NR
ru∗ , 1

}
.

Remark 1 (i) Here we adopt the notion of weak repeller with respect to the set of
initial data satisfying (3) from Definition 8.15 of Smith and Thieme (2011).

(ii) The linear stability of the steady state (u∗, m∗) given in Theorem 3(b)(ii) will
be established in Sect. 4. We conjecture that the steady state (u∗, m∗) is actually
globally asymptotically stable with respect to all initial conditions satisfying (3).

(iii) If we relax the initial condition (u0, m0) of (2) so that for some open subset Ω0
of Ω̄ ,

{
u0(x) ≥ 0, m0(x) ≥ 0, u0(x) �≡ 0,
m0(x) < 1 for x ∈ Ω0 and m0(x) = 1 for x ∈ Ω\Ω0,

then we conjecture that the corresponding solution (U (·, t), M(·, t)) →
(u∗

Ω0
, m∗

Ω0
) as t → ∞, where the latter are determined by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dΔu∗
Ω0

+ u∗
Ω0

[
rm∗

Ω0
− γ gu∗

Ω0

]
= 0 in Ω, ∂nu∗

Ω0
|∂Ω = 0;

m∗
Ω0

(x) =
⎧
⎨

⎩

min

{
NR(x)

ru∗
Ω0

(x)
, 1

}

x ∈ Ω0,

1 x ∈ Ω̄\Ω0,
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1612 X. He et al.

whenever (θ/γ, 1) is unstable. Note that m∗
Ω0

(x) may potentially be discontinu-
ous.

(iv) Concerning the domain of attraction of the steady state (u∗, m∗) given inTheorem
1(b), we conjecture that limt→∞(U (·, t), M(·, t)) = (u∗, m∗), provided that
{x ∈ Ω : m0(x) = 1} ⊂ {x ∈ Ω : m∗(x) = 1}.

(v) The above discussion also explains the connection with the case when m0 ≡ 1,
in which case it must hold that U (x, t) → 1

γ
θ(x) as t → ∞.

Before we prove Theorem 3, we first state and prove two lemmas:

Lemma 1 Let V (x, t) be twice continuously differentiable in x and continuously dif-
ferentiable in t and satisfy

⎧
⎨

⎩

Vt − ai j Vxi x j − b j Vx j ≥ f (x, t, V ) for x ∈ Ω, t ≥ t0,
∂n V ≥ 0 for x ∈ ∂Ω, t ≥ t0,
inf x∈Ω V (x, t0) > −∞,

where the coefficients ai j (x, t) and b j (x, t) are assumed to be Hölder continuous, with
(ai j ) being uniformly positive-definite on Ω̄ × [t0,∞), and the Einstein convention
is used so that repeated indices are summed. Assume also that f (x, t, s) is Hölder
continuous in x and t and Lipschitz continuous in s, and there exist η, δ > 0 such that

f (x, t, s) ≥ η

1 + t
for x ∈ Ω, t ≥ t0, and s ≤ δ

1 + t
. (7)

Then there exists T > t0 such that

V (x, t) >
δ

1 + t
for x ∈ Ω, t ≥ T .

Proof We claim that it is enough to show that

inf
x∈Ω

V (x, T ) ≥ δ

1 + T
for some T ≥ t0. (8)

Suppose that (8) holds. Using δ
1+t as a comparison function, by standard arguments

involving the strong maximum principle, we have

V (x, t) >
δ

1 + t
for x ∈ Ω̄, t > T .

In particular, the lemma is proved in case infx∈Ω V (x, t0) ≥ δ
1+t0

.

Suppose now that infx∈Ω V (x, t0) < δ
1+t0

, then there exists T > t0 such that

inf
x∈Ω

V (x, t0) + η log

(
1 + T

1 + t0

)

= δ

1 + T
.
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Define the auxiliary function

V (t) = inf
x∈Ω

V (x, t0) + η log

(
1 + t

1 + t0

)

for t0 ≤ t < T .

Claim V has the following properties in t0 ≤ t ≤ T :

(i) V t − ai j V xi x j
− b j V x j

≤ f (x, t, V ) for x ∈ Ω and t ∈ [t0, T ];
(ii) ∂n V = 0 for x ∈ ∂Ω and t0 ≤ t ≤ T ;
(iii) V (t0) ≤ V (x, t0) for x ∈ Ω .

It suffices to verify the differential inequality (i) as assertions (ii) and (iii) clearly hold.
For (i), observe that V (t) ≤ δ

1+t for all t ∈ [t0, T ]. Hence, by (7)

V t − ai j V xi x j
− b j V x j

= η

1 + t
≤ f (x, t, V (t)) for x ∈ Ω, 0 ≤ t < T .

This proves the claim.
By the above claim, we may apply the parabolic maximum principle to conclude

that V (x, t) ≥ V (t) for all x ∈ Ω and t0 ≤ t ≤ T . In particular, (8) holds. ��
Corollary 3 Let f (t, s) be a Lipschitz continuous function from [t0,+∞) × R to R,
and δ, η > 0 are given such that

f (t, s) ≥ η

1 + t
for t ≥ t0 and s ≤ δ

1 + t
.

If Ṽ (t) ∈ C1([t0,+∞)) satisfies the differential inequality

Ṽ ′ ≥ f (t, Ṽ ) for t ≥ t0,

then there exists T > t0 such that

Ṽ (t) >
δ

1 + t
for t ≥ T .

Lemma 2 Let (U , M) be a solution of (2) with initial data (U0, M0) satisfying (3).
Then

(a) For each time-dependent solution of (2), there exists C1 > 0 such that

M(x, t) ≤ 1 − C1

1 + t
for x ∈ Ω̄ and t ≥ 0.

(b) There exist T1 > 0 and 0 < δ1 < 1, depending on initial data, such that

U (x, t) ≤ 1

γ
θ(x)

(

1 − δ1

1 + t

)

for t ≥ T1.
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1614 X. He et al.

Proof First, we prove (a). Fix a non-negative, non-trivial initial data (U0, M0) such
that M0 < 1 for x ∈ Ω̄ and consider the corresponding time-dependent solution of

(2). Let C1 = min
{
infΩ(1 − M0),

k
supΩ NR

}
.

It suffices to observe, by the equation of M , that

k

(
1

1 − M

)

t
≤ (sup NR)

so that

1

1 − M(x, t)
≤ 1

1 − M0(x)
+ (sup NR)

k
t ≤ 1 + t

C1
.

This proves (a).
For (b), setting w(x, t) := γ

U (x,t)
θ(x)

, we have

⎧
⎪⎨

⎪⎩

wt − dΔw − 2d ∇θ
θ · ∇w ≤ gθw

[
− infx∈Ω

(
r

gθ

)
C1
1+t + 1 − w

]
x ∈ Ω, t > 0,

∂nw = 0 x ∈ ∂Ω, t > 0,
w(x, 0) = γU0(x)/θ(x) x ∈ Ω.

(9)

Now, observe that V1(x, t) := 1 − w(x, t) satisfies

(V1)t − dΔV1 − 2d
∇θ

θ
· ∇V1 ≥ f1(x, t, V1) for x ∈ Ω, t ≥ 0, (10)

where

f1(x, t, s) = g(x)θ(x)(1 − s)

[

inf
x∈Ω

(
r

gθ

)
C1

1 + t
− s

]

.

Moreover, letting

δ1 = 1

2
min

{

1, C1 inf
x∈Ω

(
r

gθ

)}

and η1 = C1

4

(

inf
x∈Ω

gθ

)(

inf
x∈Ω

r

gθ

)

,

it holds that

f1 (x, t, s) ≥ g(x)θ(x) (1 − s)

[

inf
x∈Ω

(
r

gθ

)
C1

1 + t
− s

]

≥ η1

1 + t
(11)

for t ≥ 0 and s ≤ δ1
1+t .

By Lemma 1, there exists T1 ≥ 0 such that

V1(x, t) >
δ1

1 + t
for x ∈ Ω, t ≥ T1.

This proves (b). ��
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Next, we prove Theorem 3.

Proof We first prove (a). Suppose γ ≥ supx∈Ω
r(x)θ(x)

NR(x)
, i.e. NR(x) ≥ 1

γ
r(x)θ(x) in

Ω̄ . Recall that M ≤ 1, then

k Mt = (1 − M)2(NR − r MU ) ≥ (1 − M)2r

(
1

γ
θ − U

)

, for x ∈ Ω̄, t ≥ 0.

By Lemma 2, we deduce that M(x, t) < 1 for t ≥ 0, and Mt (x, t) > 0 for x ∈ Ω and
t ≥ T1. This implies that m∞(x) := limt→∞ M(x, t) exists and satisfies m∞(x) ≤ 1
for all x ∈ Ω .

It remains to show that m∞(x) ≡ 1. Suppose to the contrary that m∞(x) < 1
somewhere. Next, let μ1 be the principal eigenvalue of

dΔϕ + rm∞ϕ + μϕ = 0 in Ω, and ∂nϕ = 0 on ∂Ω.

Define ŵ ≡ 0 when μ1 ≥ 0; and when μ1 < 0, define ŵ to be the unique positive
solution of

{
dΔŵ + ŵ(rm∞ − gŵ) = 0 in Ω,

∂nŵ = 0 on ∂Ω.
(12)

Then, when μ1 < 0, 1
γ
ŵ is the unique positive solution of

dΔ

(
1

γ
ŵ

)

+
(
1

γ
ŵ

)[

rm∞ − γ g

(
1

γ
ŵ

)]

= 0 in Ω.

In either case, limt→∞ U (x, t) = 1
γ
ŵ(x) uniformly for x ∈ Ω̄ . Since m∞ ≤ 1, �≡ 1,

we may deduce by comparison that ŵ < θ in Ω̄ . Now, choose δ′, T ′ so that

U (x, t) ≤ 1

γ
ŵ(x) + δ′ <

1

γ
θ(x) − δ′ for all x ∈ Ω, t ≥ T ′.

Then

k∂t

(
1

1 − M

)

= k Mt

(1 − M)2
= NR − r MU ≥ r

(
1

γ
θ − U (x, t)

)

≥ rδ′

for all x ∈ Ω̄ and t ≥ T ′. This implies that m∞(x) = limt→∞ M(x, t) = 1, which is
a contradiction. This proves (a).

Next, we prove (b)(i). Suppose to the contrary that there is some time-dependent
solution (U (x, t), M(x, t)) of (2), with non-negative, non-trivial initial data (U0, M0)

such that M0 < 1 for x ∈ Ω̄ , which is attracted to
(
1
γ
θ, 1

)
as t → ∞. By the

hypothesis, there exists x0 ∈ Ω such that NR(x0) < 1
γ

r(x0)θ(x0). Fix x = x0, then
for all sufficiently large t ,
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1616 X. He et al.

k Mt (x0, t) = (1 − M(x0, t))2 [NR(x0) − r(x0)M(x0, t)U (x0, t)]

= (1 − M(x0, t))2
[

NR(x0) − r(x0)M(x0, t)
(
1
γ
θ(x0) + o(1)

)]

< 0,

rendering it impossible that M(x0, t) → 1 as t → ∞. This proves (b)(i).
To show assertion (b)(ii), let (μ̃1, ϕ̃1) be the principal eigenpair of

dΔϕ̃ + r ϕ̃ + μ̃ϕ̃ = 0 in Ω, and ∂n ϕ̃ = 0 on ∂Ω.

Then

μ̃1 = −
∫

Ω

Δϕ̃1 + r ϕ̃1

ϕ̃1
dx = −

∫

Ω

(
|∇ϕ̃1|2

ϕ̃2
1

+ r

)

dx < 0.

Now, for 0 < ε � 1, εϕ̃1 and 1
γ
θ gives a pair of strict lower and upper solutions of

{
dΔũ + ũ

[
r min

{
NR(x)
r ũ(x)

, 1
}

− γ gũ
]

= 0 for x ∈ Ω,

∂nũ = 0 for x ∈ ∂Ω.
(13)

Here we have used the condition γ < supx∈Ω
r(x)θ(x)

NR(x)
to ensure that 1

γ
θ is a strict

upper solution. This proves the existence of at least one positive solution u∗ to (13)
such that u∗(x) < 1

γ
θ(x) in Ω̄ . The uniqueness of u∗ follows from the fact that

f (x, u) := r(x)min{ NR(x)
r(x)u , 1} − γ gu is decreasing in u and Hölder continuous in x ;

see, e.g. Proposition 3.3 of Cantrell and Cosner (2003). (Alternatively, one may also
argue by the subhomogeneity of the semiflow, see Theorem 2.3.4 of Zhao 2017.)

Setting m∗(x) = min
{

NR(x)
ru∗(x)

, 1
}
, we obtain the existence of a positive steady

state (u∗, m∗). Finally, since u∗(x) �≡ 1
γ
θ , we must have m∗(x) �≡ 1. This proves

Theorem 3. ��
Finally we establish Corollary 2.
Proof of Corollary 2. For any d > 0, define

γ ∗(d) = sup
Ω

r(x)θ(x)

NR(x)
and γ∗(d) = sup

{

γ > 0 : sup
Ω

NR

rũ
< 1

}

, (14)

where θ is the unique positive solution of (4) and ũ is the unique positive solution of

dΔũ + (NR − γ gũ2) = 0 in Ω. ∂nũ
∣
∣
∂Ω

= 0. (15)

Let (u∗, m∗) be the steady state of (2) as given by Theorem 2. Then m∗ =
min

{
1, NR

ru∗
}
and u∗ is the unique solution to (5). If m∗ ≡ 1 in Ω , then u∗ = θ/γ and

NR
ru∗ ≥ 1 in Ω̄ . This implies m∗ ≡ 1 in Ω iff γ ≥ γ ∗(d).
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Next, suppose that m∗ < 1 somewhere in Ω . Then m∗ < 1 in Ω̄ iff

u∗ = ũ, and sup
Ω

NR

rũ
< 1.

Hence, fixing all parameters except γ , then

m∗ < 1 in Ω̄ iff γ is such that sup
Ω

NR

rũ
< 1.

The definition of γ∗(d) follows from the fact that ũ is strictly decreasing in γ .
Finally, the inequalities in (6) are direct consequences of the definitions of γ∗(d),

γ ∗(d), and that supΩ θ ≤ supΩ
r
g , infΩ ũ2 ≥ infΩ

NR
γ g . This establishes Corollary 2.

4 Linear stability of positive steady states

In this section we consider the linear stability of positive steady state (u∗, m∗), which
is given in Theorem 2. The main result is stated as follows:

Theorem 4 If the steady state (u∗, m∗) exists, then it is linearly stable; i.e. if λ ∈ C is
an eigenvalue of the linear problem

⎧
⎨

⎩

−kλΨ = (−ru∗Ψ − rm∗Φ)(1 − m∗)2 for x ∈ Ω,

−λΦ = dΔΦ + Φ(rm∗ − 2γ gu∗) + ru∗Ψ for x ∈ Ω,

∂nΦ = 0 for x ∈ ∂Ω,

(16)

then necessarily Re λ > 0 holds.

We caution the readers that in the first equation of (16), the term−2(1−m∗)(NR −
rm∗u∗)Ψ actually vanishes, as a consequence of the definition of m∗ after (5).

Remark 2 Let (u∗, m∗) be a steady state given by Theorem 3(b)(ii). Define Ω0 :=
{x ∈ Ω : m∗(x) < 1}. Then the above linearization concerns perturbations from the
steady state (u∗, m∗) within the function space

X1 = {
(ũ, m̃) ∈ C(Ω̄;R+ × [0, 1]) : m̃(x) < 1 in Ω0, m̃(x) = 1 in Ω\Ω0

}
.

Proof We eliminate Ψ by the substitution

Ψ = X{x :m∗(x)<1}
rm∗

kλ
(1−m∗)2 − ru∗ Φ = X{x :m∗(x)<1}

(1 − m∗)2

k

[
rm∗

λ − ru∗(1−m∗)2
k

]

Φ

to obtain the nonlinear eigenvalue problem
⎧
⎪⎨

⎪⎩

dΔΦ + Φ

[

rm∗ − 2γ gu∗ + λ + X{x :m∗(x)<1} (1−m∗)2

k
r2u∗m∗

λ− ru∗(1−m∗)2
k

]

= 0 for x ∈ Ω,

∂nΦ = 0 for x ∈ ∂Ω.

(17)
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Claim The following holds:

inf
ϕ∈H1(Ω)

∫

Ω

[d|∇ϕ|2 − (rm∗ − γ gu∗)ϕ2] dx = 0. (18)

This assertion follows by observing that 0 is an eigenvalue (with positive eigenfunction
ϕ1 = u∗) of the problem

{
dΔϕ + (rm∗ − γ gu∗)ϕ + μϕ = 0 for x ∈ Ω,

∂nϕ = 0 for x ∈ ∂Ω.

We further claim that for each constant k > 0, the nonlinear eigenvalue problem
(17) does not admit any eigenvalue with non-positive real part. Suppose to the contrary
that λ = α + iβ is an eigenvalue, with α ≤ 0, β ∈ R, and eigenfunction Φ = φ + iψ ,
where φ,ψ are real-valued functions. Then

⎧
⎨

⎩

−dΔφ + Aφ = Bψ for x ∈ Ω,

−dΔψ + Aψ = −Bφ for x ∈ Ω,

∂nφ = ∂nψ = 0 for x ∈ ∂Ω,

(19)

where A and B are given by

A = −rm∗ − α + 2γ gu∗

+X{x :m∗(x)<1}
(1 − m∗)2u∗r2m∗

k
· −α + ru∗(1 − m∗)2/k

β2 + (−α + ru∗(1 − m∗)2/k)2

and, respectively,

B = β

(

−1 + X{x :m∗(x)<1}
(1 − m∗)2u∗r2m∗

k
· 1

β2 + (−α + ru∗(1 − m∗)2/k)2

)

.

Claim There exists σ0 > 0 independent of k, such that

σ0

∫

ϕ2 dx ≤
∫ [

d|∇ϕ|2 + Aϕ2
]

dx for all ϕ ∈ H1(Ω). (20)

To establish our assertion, we make use of (18) to get

inf
ϕ∈H1(Ω)

∫ [d|∇ϕ|2 + Aϕ2] dx
∫

ϕ2 dx

≥ inf
ϕ∈H1(Ω)

∫ [d|∇ϕ|2 + (−rm∗ + γ gu∗)ϕ2] dx
∫

ϕ2 dx
+

∫
γ gu∗ϕ2 dx
∫

ϕ2 dx

≥ γ inf
Ω

(gu∗) > 0.
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Multiplying the equation of φ by φ, the equation of ψ by ψ , integrating the results by
parts and adding them together, we obtain (by using (20))

σ0

∫

(φ2 + ψ2) dx ≤
∫ [

d|∇φ|2 + d|∇ψ |2 + A(φ2 + ψ2)
]

dx

=
∫

[Bψφ − Bφψ] dx = 0.

Hence φ ≡ ψ ≡ 0, and this shows that any λ with Re λ ≤ 0 is not an eigenvalue. This
concludes the proof of the theorem. ��

5 Global asymptotic stability in the homogeneous case

Throughout this section r(x), NR(x) and g(x) are positive constant functions, denoted
by r̄ , N̄R and ḡ, respectively. We establish Theorem 1 for the case γ < r̄2/(ḡ N̄R) as
the other case γ ≥ r̄2/(ḡ N̄R) is covered by part of (a) of Theorem 3. For the ease of
notation we drop the bars and write them as NR , g and r for the rest of this section.

Proposition 1 For each time-dependent solution of (2), there exist δ0 > 0 and T0 > 0
such that

NR

r
+ δ0

1 + t
≤ U (x, t) ≤ r

γ g
− δ0

1 + t
and

γ gNR

r2
+ δ0

1 + t
≤ M(x, t) ≤ 1 − δ0

1 + t

for x ∈ Ω and t ≥ T0.

Proof By Lemma 2, there exist C1, T1 > 0 and 0 < δ1 < min
{
1, r

γ g

}
such that

M(x, t) ≤ 1 − C1

1 + t
and U (x, t) ≤ r

γ g
− δ1

1 + t
for x ∈ Ω, t ≥ T1,

where we have used the fact that 1
γ
θ = r

γ g .

Claim There exist δ2 > 0 and T2 > 0 such that M(x, t) ≥ γ gNR
r2

+ δ2
1+t for x ∈ Ω

and t ≥ T2.

Fix x ∈ Ω , and let V2(t) = M − γ gNR
r2

, then for t ≥ T1,

k(V2)
′ =

(

1 − γ gNR

r2
− V2

)2 [

NR − r

(

V2 + γ gNR

r2

)

U (x, t)

]

≥
(

1 − γ gNR

r2
− V2

)2 [

NR − r

(

V2 + γ gNR

r2

)(
r

γ g
− δ1

1 + t

)]

=
(

1 − γ gNR

r2
− V2

)2 [(

− r2

γ g
+ rδ1

1 + t

)

V2 + γ gNRδ1

r

1

1 + t

]

.
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Hence, we define f2(t, s) =
(
1 − γ gNR

r2
− s

)2 [(
− r2

γ g + rδ1
1+t

)
s + γ gNRδ1

r
1

1+t

]
, so

that

k(V2)
′ ≥ f2(t, V2) for t ≥ T1.

Setting δ2 = 1
2 min

{
1 − γ gNR

r2
,

γ 2g2NRδ1
r3

}
, we deduce that, for t ≥ T1 and s ≤ δ2

1+t ,

f2 (t, s) ≥
(

1 − γ gNR

r2
− s

)2 [(

− r2

γ g
+ rδ1

1 + t

)
δ2

1 + t
+ γ gNRδ1

r

1

1 + t

]

≥
(

1 − γ gNR

r2
− s

)2 [

− r2

γ g

δ2

1 + t
+ γ gNRδ1

r

1

1 + t

]

≥ 1

4

(

1 − γ gNR

r2

)2
γ gNRδ1

2r

1

1 + t
.

By Corollary 3, there exists T2 ≥ T1 such that V2(t) ≥ δ2
1+t for all t ≥ T2. This proves

the claim.

Claim There exist δ3 > 0 and T3 > 0 such that U (x, t) ≥ NR
r + δ3

1+t for x ∈ Ω and
t ≥ T3.

By the previous claim, we deduce that

{
Ut − dΔU ≥ U

[
γ g

(
NR
r − U

)
+ r δ2

1+t

]
for x ∈ Ω, t ≥ T2,

∂nU = 0 for x ∈ ∂Ω, t ≥ T2.

By comparison it is not hard to show that lim inf
t→∞ U (x, t) ≥ NR

r
. In particular, there

exists T ′
2 ≥ T2 such that

inf
x∈Ω

U (x, t) ≥ NR

2r
for t ≥ T ′

2. (21)

Let V3(x, t) = U (x, t) − NR
r , then

(V3)t − dΔV3 ≥ f3(x, t, V3) for x ∈ Ω, and t ≥ T ′
2,

where, using (21),

f3(x, t, s) :=
⎧
⎨

⎩

(
s + NR

r

) (
rδ2
1+t − γ gs

)
when γ gs ≥ rδ2

1+t ,

NR
2r

(
rδ2
1+t − γ gs

)
when γ gs ≤ rδ2

1+t .
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Setting δ3 = rδ2
2γ g , we have, for all t ≥ T ′

2 and s ≤ δ3
1+t ,

f3 (x, t, s) ≥ NR

2r

(
rδ2

1 + t
− γ g

δ3

1 + t

)

≥ NR

2r
· rδ2

2
· 1

1 + t
.

And Lemma 1 again implies the existence of T3 ≥ T ′
2 such that V3(t) ≥ δ3

1+t for all
t ≥ T3. This proves the claim.

Finally, the proposition follows by letting T0 = max{T1, T2, T3} and δ0 =
min{C1, δ1, δ2, δ3}. ��
Theorem 5 Suppose γ < r2/(gNR), then the positive (constant) steady state (u∗, m∗)
for (2) is globally asymptotically stable among initial values (U0, M0) satisfying (3).

Proof Suppose the constant parameters satisfy γ < r2/(gNR), then the steady state

(u∗, m∗) =
(√

NR

γ g
,

√
γ gNR

r

)

is determined by

rm∗ = γ gu∗ and NR = rm∗u∗.

Clearly, m∗ < 1.
Step 1. Suppose the initial condition satisfies (3), then there exists T0 > 0 such that

NR

r
< U (x, T0) <

r

γ g
and

γ gNR

r2
< M(x, T0) < 1 for x ∈ Ω. (22)

This follows from Proposition 1. Thus we may assume without loss of generality that
the initial data (U0, M0) satisfies (22).

Define, for ξ ∈
(

u∗, r
γ g

)
,

U (ξ) := ξ, U (ξ) := NR

γ gξ
, M(ξ) := γ g

r
ξ, and M(ξ) := NR

rξ

where, by construction, for all x ∈ Ω̄ it holds that

NR

r
< U < u∗ < U <

r

γ g
,

γ gNR

r2
< M < m∗ < M < 1, MU = MU = NR

r
.

Next, define the family of (invariant) sets Γ (ξ) as follows:

Γ (ξ) := {
(y1, y2) ∈ R

2 : U (ξ) ≤ y1 ≤ U (ξ) and M(ξ) ≤ y2 ≤ M(ξ)
}
.

By Step 1, it is possible to choose ξ ∈
(

u∗, r
γ g

)
close enough to r

γ g such that

(U (x, 0), M(x, 0)) ∈ intΓ (ξ) for all x ∈ Ω̄. (23)
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Step 2. Let ξ ∈
(

u∗, r
γ g

)
. We claim that if (U (x, 0), M(x, 0)) ∈ intΓ (ξ) for all

x ∈ Ω̄ then (U (x, t), M(x, t)) ∈ intΓ (ξ) for all x ∈ Ω̄ and t ≥ 0.
Suppose to the contrary that Step 2 is false, then for some t1 > 0,

(U (x, t), M(x, t)) ∈ intΓ (ξ) for all x ∈ Ω̄ and t ∈ [0, t1),

and one of the following alternatives holds (in the following we suppress the depen-
dence of ξ in U , U , M, M):

(i) U (x1, t1) = U or U (x1, t1) = U for some x1 ∈ Ω̄ .
(ii) U < U (x, t1) < U for all x ∈ Ω̄ , but M(x1, t1) = M or M(x1, t1) = M for

some x1 ∈ Ω̄ .

For case (i), we observe that for t ∈ [0, t1], M ≤ M(x, t) ≤ M for all x ∈ Ω̄ and
hence

{
γ gU (U − U ) ≤ Ut − dΔU ≤ γ gU (U − U ) for x ∈ Ω, t ∈ [0, t1],
∂nU = 0 for x ∈ ∂Ω, t ∈ [0, t1]. (24)

Since U < U (x, 0) < U for x ∈ Ω̄ , the strong maximum principle for parabolic
equations yields that U < U (x, t) < U for all x ∈ Ω̄ and t ∈ [0, t1]; a contradiction,
i.e. case (i) is impossible.

For case (ii), for x = x1 and t ∈ [0, t1], we have

Mt = (1 − M)2

k
[r MU − r MU + r M(U − U )]

= −r(1 − M)2

k
U (M − M) + r(1 − M)2

k
M(U − U )

and also

Mt = (1 − M)2

k

[
r MU − r MU − r M(U − U )

]

= r(1 − M)2

k
U (M − M) − r(1 − M)2

k
M(U − U )

i.e. (still fixing x = x1)

(M − M)t = −r(1 − M)2

k
U (M − M) + r(1 − M)2

k
M(U − U ) (25)

and

(M − M)t = − (1 − M)2

k
rU (M − M) + r(1 − M)2

k
M(U − U ). (26)
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Since U < U (x, t) < U for x ∈ Ω̄ and t ∈ [0, t1], we have

M(x1, t1) − M > exp

(

−
∫ t1

0

rU

k
(1 − M(x1, s))2 ds

)

(M(x1, 0) − M) ≥ 0.

Similarly, we deduce that M − M(x1, t1) > 0, a contradiction, i.e. case (ii) is also
impossible. This finishes Step 2.

Step 3. Let t0 ≥ 0, and let ξ ∈
(

u∗, r
γ g

)
be fixed so that

(U (x, t0), M(x, t0)) ∈ Γ (ξ) for x ∈ Ω̄, (27)

then

(U (x, t), M(x, t)) ∈ Γ (ξ) for x ∈ Ω̄, and t > t0. (28)

To show Step 3, suppose (27) holds. Then (U (x, t0), M(x, t0)) ∈ intΓ (ξ̂ ) for all

x ∈ Ω̄ and for all ξ̂ ∈
(
ξ, r

γ g

)
. In view of Step 2, for all ξ̂ ∈

(
ξ, r

γ g

)
, we have

(U (x, t), M(x, t)) ∈ intΓ (ξ̂ ) for all x ∈ Ω̄, t ≥ t0.

Since ∩
ξ̂∈

(
ξ, r

γ g

)intΓ (ξ̂ ) = Γ (ξ), this implies (28).

Step 4. Define

ξ∗ := inf

{

ξ ∈
(

u∗, r

γ g

)

: ∃t0 s.t. (U (x, t), M(x, t)) ∈ Γ (ξ) for x ∈ Ω̄, t ≥ t0

}

.

By Steps 1 and 3, ξ∗ ∈
[
u∗, r

γ g

)
is well-defined. If ξ∗ = u∗, then (U (·, t), M(·, t)) →

(u∗, m∗) as t → ∞, and we are done.

Suppose to the contrary that ξ∗ ∈
(

u∗, r
γ g

)
. By parabolic regularity theory and

a standard diagonal process, passing to a sequence t j → ∞, we may assume

that U (x, t + t j ) → Ũ (x, t) weakly in W 2,1,p
loc (Ω × [0,∞)) and strongly in

C1+α,(1+α)/2(Ω̄ × [0,∞)). Moreover, denoting U = U (ξ∗) and similarly for
U , M, M , we have for each ε > 0, there exists t0 > 0 such that

(U (x, t), M(x, t)) ⊂ Γ (ξ∗ + ε) for all x ∈ Ω̄, t ≥ t0,

so that if we let t → ∞ and then ε → 0, we have

lim sup
t→+∞

sup
x∈Ω

M(x, t) ≤ M, and lim inf
t→+∞ inf

x∈Ω
M(x, t) ≥ M (29)
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and that

lim sup
t→+∞

sup
x∈Ω

U (x, t) ≤ U , and lim inf
t→+∞ inf

x∈Ω
U (x, t) ≥ U . (30)

Passing to the weak limit for the equation of U , we deduce differential inequalities for
the nonnegative functions (U − Ũ ) and (Ũ − U ) that are similar to (24),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(U − Ũ )t − dΔ(U − Ũ ) = −Ũt + dΔŨ ≥ −γ gŨ (U − Ũ ), (x, t) ∈ Ω × [0,∞),

(Ũ − U )t − dΔ(Ũ − U ) = Ũt − dΔŨ ≥ −γ gŨ (Ũ − U ), (x, t) ∈ Ω × [0,∞),

∂n(U − Ũ ) = ∂n(Ũ − U ) = 0 (x, t) ∈ ∂Ω × [0, ∞),

U − Ũ ≥ 0 and Ũ − U ≥ 0 (x, t) ∈ Ω × [0,∞).

(31)

By the weak Harnack inequality for strong solutions of parabolic equations (see
Theorem 7.37 of Lieberman 1996) applied to (U − Ũ ) and (Ũ − U ), there can only
be three cases:

(i) there exists t0 > 0 such that U < Ũ (x, t) < U for (x, t) ∈ Ω̄ × (t0,∞);
(ii) Ũ (x, t) ≡ U for (x, t) ∈ Ω̄ × [0,∞);
(iii) Ũ (x, t) ≡ U for (x, t) ∈ Ω̄ × [0,∞).

We will make use of the following technical lemma, whose proof will be postponed
to the end of this section.

Lemma 3 Suppose t j → +∞ and Ũ (x, t) = lim j→∞ U (x, t + t j ) weakly in

W 2,1,p
loc (Ω × [0,∞)).

(a) If Ũ < U in Ω̄ × [1, 3], then there exist δ1 > 0 and j0 ∈ N such that for all
j ≥ j0,

M(x, t j + t) > M + δ1 and U (x, t j + t) < U − δ1 in Ω̄ × [2, 3];

(b) If Ũ > U in Ω̄ × [1, 3], then there exist δ1 > 0 and j0 ∈ N such that for all
j ≥ j0,

M(x, t j + t) < M − δ1 and U (x, t j + t) > U + δ1 in Ω̄ × [2, 3].

In both assertions δ1 is independent of j ≥ j0.

Assume the lemma holds. Then for case (i),

U < Ũ (x, t) < U for x ∈ Ω̄ and t0 + 1 ≤ t ≤ t0 + 3.

By parts (a) and (b) of Lemma 3, we deduce that for j ≥ j0,

M(ξ∗) + δ1 < M(x, t j + t0 + t) < M(ξ∗) − δ1,

U (ξ∗) + δ1 < U (x, t j + t0 + t) < U (ξ∗) − δ1,
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for x ∈ Ω̄ and t ∈ [2, 3]. Hence, there exists ξ∗∗ such that u∗ < ξ∗∗ < ξ∗ and

(U (x, t j + t0 + 2), M(x, t j + t0 + 2)) ∈ Γ (ξ∗∗) for x ∈ Ω̄.

By the invariance of Γ (ξ∗∗) (proved in Step 3), we deduce

(U (x, t), M(x, t)) ∈ Γ (ξ∗∗) for x ∈ Ω̄, t ≥ t j + t0 + 2.

This contradicts the minimality of ξ∗. Thus case (i) is impossible.
Next we consider case (ii), where Ũ ≡ U . This implies, by way of Lemma 3(a),

that for some constant δ1 and for all j ≥ j0,

M(x, t j + t) − M ≥ δ1 for x ∈ Ω̄, t ∈ [2, 3].

Hence the second differential inequality in (31) can be improved to

⎧
⎪⎨

⎪⎩

Ũt − dΔŨ ≥ γ gŨ
(

U + rδ1
γ g − Ũ

)
for x ∈ Ω, t ∈ [2, 3],

∂nŨ = 0 for x ∈ ∂Ω, t ∈ [2, 3],
Ũ ≥ U for x ∈ Ω, t ∈ [2, 3].

Standard comparison yields that Ũ (x, t) > U for x ∈ Ω̄ and t ∈ (2, 3]. This is
a contradiction to Ũ ≡ U for all x ∈ Ω̄ and t ≥ 0. Thus case (ii) is impossible.
Similarly, we can deduce that case (iii) is also impossible. We thus have arrived at a
contradiction from the assumption that ξ∗ > u∗. Thus ξ∗ = u∗ and we are done.

Finally, we supply the proof of Lemma 3. We only prove (a), as the proof of (b) is
analogous. Solving (25) in the interval [t j , t j + t], we have

M(x, t j + t) − M

= exp

(

−
∫ t j +t

t j

rU

k
(1 − M(x, s))2ds

)

×
[

(M(x, t j ) − M) +
∫ t j +t

t j

exp

(∫ t j +τ

t j

rU

k
(1 − M(x, s))2ds

)

× r(1 − M(x, τ ))2

k
M(x, τ )(U − U (x, τ ))dτ

]

.

Choose, by Step 1, a parameter ξ0 ∈
(

u∗, r
γ g

)
such that

(U (x, 0), M(x, 0)) ∈ Γ (ξ0) for all x ∈ Ω̄,

and set M0 = M(ξ0) < 1, and M0 = M(ξ0) > 0. By Step 3, we have
(U (x, t), M(x, t)) ∈ Γ (ξ0) for all x ∈ Ω̄ and t ≥ 0, i.e. M0 ≤ M(x, t) ≤ M0
for all x ∈ Ω̄ and t ≥ 0.
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By assumption, Ũ (x, t) = lim j→∞ U (x, t +t j ) < U in the compact set Ω̄×[1, 3].
Hence it is possible to choose δ0 and j1 so that for all j ≥ j1,

{
U − U (x, t j + t) ≥ δ0 for x ∈ Ω̄, t ∈ [1, 3],
inf x∈Ω(M(x, t j ) − M) ≥ − 1

2

[
r(1−M0)

2

k M0δ0

]
,

where we have made use of (29). Hence, for each x ∈ Ω̄ and t ∈ [2, 3],

M(x, t j + t) − M

≥ exp

(

−
∫ t j +t

t j

rU

k
(1 − M(x, s))2ds

)

·
[

inf
x∈Ω

(M(x, t j ) − M) +
∫ t j +t

t j +1

r(1 − M0)
2

k
M0δ0dτ

]

≥ exp

(

−
∫ t j +t

t j

rU

k
(1 − M(x, s))2ds

)

·
[

inf
x∈Ω

(M(x, t j ) − M) + r(1 − M0)
2

k
M0δ0

]

≥ exp

(

−
∫ t j +3

t j

rU

k
ds

)

· 1
2

·
[

r(1 − M0)
2

k
M0δ0

]

= exp

(

−3rU

k

)[
r(1 − M0)

2

2k
M0δ0

]

:= δ1 > 0.

Since the last expression is independent of x ∈ Ω̄ and t ∈ [2, 3], part (a) of Lemma 3
is proved. The proof of part (b) is analogous and is skipped. ��
Remark 3 In fact, it is not difficult to construct a Lyapunov function as follows:

V (t) := max
x∈Ω̄

{

U (x, t),
r

γ g
M(x, t),

NR

γ gU (x, t)
,

NR

r M(x, t)

}

.

However, due to the lack of compactness of the semiflow generated by (2), one can-
not directly invoke LaSalle’s Invariance Principle to conclude the global asymptotic
stability of the homogeneous steady state (u∗, m∗).

6 Qualitative properties of steady state: Case g ≡ 1

In this section we study some qualitative properties of the unique positive steady state
u∗ of (5), under the condition g ≡ 1. The main goal of this section is to determine
when Hypothesis A and Hypothesis B hold or fail for the special case g ≡ 1.
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Throughout this section we assume that g ≡ 1 and rewrite (5) as

{
dΔu∗ + u∗

[
min

{
NR
u∗ , r

}
− γ u∗

]
= 0 in Ω,

∂nu∗ = 0 on ∂Ω.
(32)

Note that u∗ depends upon d and γ . For the sake of brevity we write it as u∗ instead
of u∗(x, d, γ ). By Theorem 3 we may assume that if γ ≥ supx∈Ω

r(x)θ(x)
NR(x)

, then
u∗ = θ/γ .

In terms of u∗, Hypothesis A is equivalent as

∫

Ω

u∗ dx > lim
d→0

∫

Ω

u∗ dx

holds for all d > 0, and Hypothesis B is equivalent to

∫

Ω

u∗ dx > lim
d→∞

∫

Ω

u∗ dx

holds for all d > 0.
We start with a few properties for u∗ which hold for all γ .

Lemma 4 For any d > 0 and γ > 0,

max
Ω̄

u∗ ≤min

{
maxΩ̄ r

γ
,
maxΩ̄

√
NR√

γ

}

; min
Ω̄

u∗ ≥min

{
minΩ̄ r

γ
,
minΩ̄

√
NR√

γ

}

.

(33)

Proof Suppose that maxΩ̄ u∗ = u∗(x0) for some x0 ∈ Ω̄ . By Proposition 2.2 of Lou
and Ni (1996),

γ u∗(x0) ≤ min

{
NR(x0)

u∗(x0)
, r(x0)

}

,

from which the first inequality of (33) follows. The proof for the second inequality of
(33) is similar and thus omitted. ��

The proofs of the following two results are also standard; See DeAngelis et al.
(2016b).

Lemma 5 As d → 0+,

u∗(x) → u0(x) := min

{√
NR(x)

γ
,

r(x)

γ

}

uniformly in x ∈ Ω̄ .

Lemma 6 As d → ∞, u∗ → u∞ uniformly in x ∈ Ω̄ , where u∞ is the positive
constant uniquely determined by
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γ |Ω|u∞ =
∫

Ω

min

{
NR(x)

u∞
, r(x)

}

dx .

Weconsider three scenarios: large, small and intermediateγ , and determinewhether
Hypotheses A and B hold or fail in these parameter regions. Our main findings are as
follows.

(i) (large γ )When the resources are unlimited everywhere in space, thenHypotheses
A and B hold.

(ii) (small γ ) When the resources are limited everywhere in space, then Hypothesis
A holds but Hypothesis B fails.

(iii) (intermediate γ ) When the resources are partially limited in space, then both
Hypotheses A and B may fail.

6.1 Large � case

Theorem 6 Suppose that γ ≥ γ̄ := maxΩ̄ r · maxΩ̄
r

NR
and r(x) is non-constant.

Then for any d > 0,

∫

Ω

u∗ dx > lim
d→0+

∫

Ω

u∗ dx = lim
d→∞

∫

Ω

u∗ dx .

Theorem6 implies that for suitably large γ , bothHypothesisA andBhold, similarly
as predictions on logistic models. This is not surprising as u∗ satisfies the logistic
equation, as asserted in the following result:

Lemma 7 If γ ≥ γ̄ , then u∗ satisfies

{
dΔu∗ + u∗ [

r − γ u∗] = 0 in Ω,

∂nu∗ = 0 on ∂Ω.
(34)

Proof By Lemma 4,

max
Ω̄

u∗ ≤ maxΩ̄ r

γ
≤ min

Ω̄

NR

r
,

whenever γ ≥ γ . Hence, NR/u∗ ≥ r in Ω̄ , and thus u∗ satisfies (34). ��

The proof of Theorem 6 follows from Lemmas 5, 6 and 7; see, e.g., the proof of
Lou (2006).

From the proof of Lemma 7 we see that if γ is suitably large, then m∗ =
min{ NR

ru∗ , 1} ≡ 1 in Ω̄ . This implies that N (x, t) → ∞ as t → ∞, i.e. the resources
are unlimited everywhere in space. In other words, both Hypotheses A and B hold
when the resources are unlimited everywhere in space.
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6.2 Small � case

This is the case when the resources are limited everywhere in space, which is opposite
to the case of large γ . In this case, wewill show thatHypothesisA holds butHypothesis
B fails.

Theorem 7 Suppose that 0 < γ ≤ γ , where

γ :=
{(

min
Ω̄

r2

N 2
R

)(

min
Ω̄

NR

)

,

(

min
Ω̄

r

)(

min
Ω̄

r

NR

)}

,

and NR(x) is non-constant. Then
∫

Ω
u∗ dx is strictly increasing in d. In particular,

lim
d→0

∫

Ω

u∗ dx <

∫

Ω

u∗ dx < lim
d→∞

∫

Ω

u∗ dx .

holds for any d > 0.

Lemma 8 If γ ≤ γ , then u∗ = ũ, where ũ = ũ(·; d) is the uniquely positive solution
of

{
dΔũ + NR − γ ũ2 = 0 in Ω,

∂nũ = 0 on ∂Ω.
(35)

Proof By Lemma 4,

min
Ω̄

u∗ ≥ min

{
minΩ̄ r

γ
,
minΩ̄

√
NR√

γ

}

≥ max
Ω̄

NR

r
,

where the last inequality follows from γ ≤ γ . Hence, NR/u∗ ≤ r in Ω̄ , and thus u∗
satisfies (35). ��
Lemma 9 Let ũ = ũ(·; d) be the unique positive solution of (35). Suppose that NR is
non-constant. Then

∫

Ω
ũ(x; d) dx is strictly increasing in d.

Proof We denote ∂ ũ/∂d as ũ′. Differentiating (35) with respect to d, we have

{
dΔũ′ + Δũ − 2γ ũũ′ = 0, x ∈ Ω,

∂nũ′ = 0 x ∈ ∂Ω.
(36)

Set L := (−dΔ + 2γ ũ)−1, i.e. the inverse of the operator −dΔ + 2γ ũ subject to
the Neumann boundary condition. By (35) and (36) we have

ũ = L(NR + γ ũ2), and dũ′ = L(dΔũ) = L(γ ũ2 − NR).
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Hence

d

(∫

Ω

ũ

)′
= d

∫

Ω

ũ′

= d
∫

Ω

L(Δũ)

=
∫

Ω

L(dΔũ)

=
∫

Ω

L(γ ũ2 − NR)

=
∫

Ω

L(2γ ũ2) −
∫

Ω

L(γ ũ2 + NR)

=
∫

Ω

L(2γ ũ2) −
∫

Ω

ũ. (37)

It remains to show that
∫

Ω

L(2γ ũ2) >

∫

Ω

ũ,

from which it follows that
∫

Ω
ũ is strictly increasing in d.

To prove our assertion, let v = L(2γ ũ2), i.e. v satisfies

{−dΔv + 2γ ũv = 2γ ũ2, x ∈ Ω,

∂nv = 0 x ∈ ∂Ω.
(38)

By the maximum principle, v > 0 in Ω̄ . As ũ is non-constant, v is also non-constant.
Dividing (38) by v and integrating the result in Ω we obtain

− d
∫

Ω

|∇v|2
v2

+ 2γ
∫

Ω

ũ = 2γ
∫

Ω

ũ2

v
.

Since v is non-constant, we have

∫

Ω

ũ >

∫

Ω

ũ2

v
,

which can be written as
∫

Ω

ũ(v − ũ)

v
> 0.

Note that

∫

Ω

(v − ũ) −
∫

Ω

(v − ũ)2

v
=

∫

Ω

ũ(v − ũ)

v
.
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Hence,

∫

Ω

(v − ũ) >

∫

Ω

(v − ũ)2

v
≥ 0,

which proves the assertion. ��
Theorem 7 now follows from Lemmas 8 and 9.

6.3 Intermediate �

The results from previous two subsections illustrate that Hypothesis A hold for small
and large γ . In this subsection we show that Hypothesis A could fail for intermediate
values of γ .

Theorem 8 Suppose that maxΩ̄
r2
NR

<

∫

Ω r
|Ω| maxΩ̄

r
NR

holds. Then

lim
d→0

∫

Ω

u∗ dx > lim
d→∞

∫

Ω

u∗ dx

for

γ ∈
[

max
Ω̄

r2

NR
,

∫

Ω
r

|Ω| max
Ω̄

r

NR

)

.

Remark 4 It is easy to construct functions NR and r for which maxΩ̄
r2
NR

<
∫

Ω r
|Ω| maxΩ̄

r
NR

holds; for instance, it holds when r is non-constant and NR is pro-

portional to r2. We also note that maxΩ̄
r2
NR

<

∫

Ω r
|Ω| maxΩ̄

r
NR

does not hold when NR

is proportional to r .
In fact, when NR(x) = kr(x) for some k > 0, then limd→0

∫

Ω
u∗ dx ≤

limd→∞
∫

Ω
u∗ dx holds for every γ > 0. Precisely, by Lemmas 4 and 5,

u∞ =
√

r̄

γ
min

{√
k,

√
r̄

γ

}

, and u0(x) =
√

r(x)

γ
min

{√
k,

√
r(x)

γ

}

Hence, by Schwartz’s inequality,

∫

Ω

u0 dx ≤
∫

Ω

√
kr(x)

γ
dx =

√
k|Ω|
|Ω|

∫

Ω

√
r(x)

γ
dx ≤ √

k|Ω|
√

r̄

γ
=

∫

Ω

u∞ dx

in case k < r̄
γ
; and

∫

Ω

u0 dx ≤
∫

Ω

r(x)

γ
dx = r̄

γ
|Ω| =

∫

Ω

u∞ dx
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in case k ≥ r̄
γ
.

An immediate corollary of Theorem 8 says that for γ belong to the interval

[maxΩ̄
r2
NR

,

∫

Ω r
|Ω| maxΩ̄

r
NR

), limd→0
∫

Ω
u∗ dx >

∫

Ω
u∗ dx for large d; in particular,

Hypothesis A could fail for large d.
One can also construct examples such that Hypothesis B fails for intermediate

values of γ and small d.
Given two functions F, G on Ω̄ , define

A :=
(∫

Ω

min{F, G} dx

)2

−
∫

Ω

min

{

|Ω|F2,

(∫

Ω

min{F, G} dx

)

G

}

.

Lemma 10 Suppose that F, G ∈ C(Ω̄) and F ≥ G in Ω̄ . Then A ≥ 0 holds.
Furthermore, A = 0 if and only if |Ω|F2 ≥ (∫

Ω
G
)

G in Ω̄ .

Proof By F ≥ G,

A =
(∫

Ω

G

)2

−
∫

Ω

min

{

|Ω|F2,

(∫

Ω

G

)

G

}

=
(∫

Ω

G

)2

−
∫

Ω

G ·
∫

{x :|Ω|F2≥(
∫

Ω G)G}
G −

∫

{x :|Ω|F2<(
∫

Ω G)G}
|Ω|F2

=
∫

Ω

G ·
∫

{x :|Ω|F2<(
∫

Ω G)G}
G −

∫

{x :|Ω|F2<(
∫

Ω G)G}
|Ω|F2

=
∫

{x :|Ω|F2<(
∫

Ω G)G}

[(∫

Ω

G

)

G − |Ω|F2
]

≥ 0,

and the last equality holds if and only if the set {x : F2 < (
∫

Ω
G)G} has zero measure,

i.e. |Ω|F2 ≥ (
∫

Ω
G dx)G in Ω̄ . ��

Proof of Theorem 8 For s ∈ (0,∞), set

f (s) = γ |Ω|s2 −
∫

Ω

min{NR(x), sr(x)} dx .

As f (s)/s is strictly increasing, f (s) is positive for large s and negative for small s,
f (s) = 0 has a unique positive root, which is precisely given by u∞, by the definition

of u∞ (Lemma 6). Recall that u∗ → u0 = min
{√

NR
γ

, r
γ

}
as d → 0 and u∗ → u∞

as d → ∞. Hence, to compare limd→0
∫

Ω
u∗ dx and limd→∞

∫

Ω
u∗ dx , it suffices

to determine the sign of f
(

1
|Ω|

∫

Ω
u0 dx

)
. More precisely, if f

(
1

|Ω|
∫

Ω
u0 dx

)
>

0, then 1
|Ω|

∫

Ω
u0 dx is strictly greater than the unique root u∞ of f , and thus

limd→∞
∫

Ω
u∗ dx = |Ω|u∞ <

∫

Ω
u0 dx = limd→0

∫

Ω
u∗ dx .
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By direct computation we have

|Ω|
γ

f

(∫

Ω
u0

|Ω|
)

=
(∫

Ω

min

{√
NR

γ
,

r

γ

})2

−
∫

Ω

min

{

|Ω| NR

γ
,

(∫

Ω

min

{√
NR

γ
,

r

γ

})

· r

γ

}

.

By choosing F = √
NR/γ and G = r/γ we see that

|Ω|
γ

f

(∫

Ω
u0

|Ω|
)

= A.

By assumption γ ≥ maxΩ̄
r2
NR

, F = √
NR/γ ≥ G = r/γ in Ω̄ . Hence, by Lemma

10, A ≥ 0 and A = 0 holds if and only if γ ≥
∫

Ω r
|Ω| maxΩ̄

r
NR

. This completes the
proof of Theorem 8. ��

7 Discussions

In this paper we have investigated the dynamics of a consumer–resource reaction–
diffusion model, proposed recently by Zhang et al. (2017), for both homogeneous and
heterogeneous environments. For homogeneous environments we have established the
global stability of the constant steady state. In particular, if the yield rate is greater
than or equal to some critical value, the resources will become unlimited across the
habitat; if the yield rate is smaller than the critical value, the resources are limited in
the whole habitat. For heterogeneous environments we have studied the existence and
stability of positive steady states and the persistence of time-dependent solutions. For
heterogeneous environments, our results imply that the resources will be unlimited
across the habitat for large yield rate and limited in the space for sufficiently small
yield rate. However, there is some range of yield rates in which the resources are
partially limited in space, a unique feature which does not occur in homogeneous
environments.

As was mentioned in the Introduction, an experiment performed by Zhang et al.
(2017) showed, surprisingly, that Hypothesis B was false. In fact, this can be easily
seen by comparing Figure 4 in p. 1124 and Figure 6 in p. 1126. A mathematical proof
of this fact was included in the Appendix E of Zhang et al. (2017) for the case when
γ is small. For the reader’s convenience, we include it here for comparison purposes.

Proposition 2 Let ud and vd be respectively the unique positive solution of the follow-
ing problems

{
dΔu + NR − γ gu2 = 0 in Ω,

∂nu = 0 on ∂Ω,
(39)
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and
{

dΔv + N̄R − γ gv2 = 0 in Ω,

∂nv = 0 on ∂Ω.
(40)

where N̄R = 1
|Ω|

∫

Ω
NR dx. Then, for d small

∫

Ω

ud <

∫

Ω

vd

provided that NR and g are positively correlated and, either NR or g is nonconstant.

The proof follows from the following lemma which compares the respective car-
rying capacities of the two systems.

Lemma 11

∫

Ω

√
NR

γ g
dx <

∫

Ω

√

N̄R

γ g
dx

if NR and g are positively correlated and, either NR or g is nonconstant.

Proof If NR and g are positively correlated, then NR and 1/g are negatively correlated,
then by Lemma 26 in p. 247 of DeAngelis et al. (2016b), it follows that

∫

Ω

√
NR

γ g
dx ≤ 1

|Ω|
∫

Ω

√

N̄R

∫

Ω

√
1

γ g
=

∫

Ω

√

N̄R

γ g
dx ��

Combining Proposition 2 and Theorem 7, we see that, for γ small, we now have a
fairly good understanding of why Hypothesis B fails. This seems particularly relevant,
as the experiments performed byZhang et al. (2017) seem to indicate that the parameter
γ is quite small.

Another hypothesis proposed by Zhang et al. (2017) stated that when a consumer
exists in a region with a heterogeneously distributed input of exploitable renewed
limiting resources, the total population abundance at equilibrium can reach a greater
abundance when it diffuses than when it does not.While we show that such hypothesis
holds for both small and high yield rates, a new finding of this paper is that this second
hypothesis proposed by Zhang et al. (2017) may fail for intermediate values of yield
rates.

The phenomenon of partially limited resources in space can be regarded as a tran-
sition between the current consumer–resource model with small yield rates and the
classical logistic model. The details of such transition in terms of parameters such as
the diffusion rate and the yield rate yet remain to be understood and invite further inves-
tigation. To illuminate the situation, we make some comments to clarify the general
conditions on the critical yield rates given in Theorem 3 and Corollary 2 versus those
in Sect. 6 (Theorems 6, 7, 8). To this end, for any given d > 0, recall the following
critical rates specified in (14) (see also Corollary 2):
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γ ∗(d) = sup
Ω

r(x)θ(x)

NR(x)
and γ∗(d) = sup

{

γ > 0 : sup
Ω

NR

rũ
≤ 1

}

.

Since maxΩ̄ θ < maxΩ̄ r and minΩ̄ θ > minΩ̄ r when g = 1, it is easy to show

γ < inf
d>0

γ∗(d) < sup
d>0

γ ∗(d) < γ ,

which implies that m∗ ≡ 1 everywhere for those values of γ as given in Theorem
6, whereas m∗ < 1 everywhere in case of Theorem 7. This in particular implies that
γ − γ ∗(d) does not change sign for those values of γ as given in Theorems 6 and 7,
respectively. In contrast, for those γ in Theorem 8, γ − γ ∗(d) always changes sign as
it holds that

(

max
Ω̄

r2

NR
,

∫

Ω
r

|Ω| max
Ω̄

r

NR

)

⊂
(

inf
d>0

γ ∗(d), sup
d>0

γ ∗(d)

)

,

which follows from γ ∗(d) → maxΩ̄
r2
NR

when d → 0 and γ ∗(d) →
∫

Ω r
|Ω| maxΩ̄

r
NR

when d → ∞.

Determining the shapes of γ ∗(d) and γ∗(d)will be useful in understanding the tran-
sition between the consumer–resource model with small yield rates and the classical
logistic model. For the case of NR(x) proportional to r(x), it was conjectured by Lou
and Wang (2017) that γ ∗(d) is strictly monotone decreasing in d; see also the work
by Li and Lou (2018) for recent development. It seems interesting but challenging to
determine the general shapes of γ ∗(d) and γ∗(d), as functions of the diffusion rate d.
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