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Abstract
Stochastic models that incorporate birth, death and immigration (also called birth–death and
innovation models) are ubiquitous and applicable to many problems such as quantifying
species sizes in ecological populations, describing gene family sizes, modeling lymphocyte
evolution in the body. Many of these applications involve the immigration of new species
into the system. We consider the full high-dimensional stochastic process associated with
multispecies birth–death–immigration and present a number of exact and asymptotic results
at steady state.We further include randommutations or interactions through a carrying capac-
ity and find the statistics of the total number of individuals, the total number of species, the
species size distribution, and various diversity indices. Our results include a rigorous anal-
ysis of the behavior of these systems in the fast immigration limit which shows that of the
different diversity indices, the species richness is best able to distinguish different types of
birth–death–immigration models. We also find that detailed balance is preserved in the sim-
ple noninteracting birth–death–immigration model and the birth–death–immigration model
with carrying capacity implemented through death. Surprisingly, when carrying capacity is
implemented through the birth rate, detailed balance is violated.

Keywords Birth–death–immigration processes · Multispecies · Steady-state probability
distributions · Diversity · Mutations

1 Introduction

In recent years, stochastic Birth–death–immigration (BDI) models have emerged as effective
descriptions of the evolution ofmulti-species populations. BDImodels assume that each indi-
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vidual belongs to a given “species” and undergoes a classical birth–death process; offspring
populate the same species as their parent, while new species are introduced via immigration
and/or mutation. The body of work on BDI models in the mathematical, ecological and bio-
logical literature is rich, and many results have been independently discovered in the context
of different disciplines. Arguably, the first BDI model can be traced to [22] who described the
evolution of different alleles in a genetic population. Later, similar tools were applied to ecol-
ogy in the context of the “Neutral Theory of Biodiversity” [18,23,26,34], where BDI models
were used to study the abundance distribution of island populations that undergo continuous
immigration from the mainland. BDI models have also been used under the name birth, death
and innovation models by Karev et al. [21] to describe gene domain family size in genomes.
Here, each domain is part of a family, and can be duplicated or deleted; new domains of new
families can be added to the genome via horizontal gene transfer. Desponds et al. [10] and
Lythe et al. [25] have instead employed BDI formalisms to study lymphocyte populations in
an organism. T-cells expressing the same surface receptor are assumed to belong to the same
“clone” (the species). Each T-cell can divide, generating receptor-identical daughter cells,
and die through apoptosis. In this context, immigration is represented by the export of new
naïve T-cells from the thymus. Due to the large number of theoretically possible T-cell clono-
types that can be generated, with estimates ranging from 1015–1020 [27], one can assume
that each new export almost surely generates a new clone rather than contribute to an existing
clonotype. Another application of BDI models arises in the study of microbiota populations
in the gut of metazoa [31]. Finally, counting “clones” is also used in stochastic models of
nucleation, where a high- or infinite-dimensional distribution function can be used to describe
states comprised of certain numbers of clusters (the “clones”) of specific size [8,12,13]. In
the rest of this paper, we will use both “individuals” (or “particles”) and “species” to describe
the two types of quantities (individuals of a given species and the number of species of a
given size) in all of the above-mentioned examples.

Note that we will focus exclusively on “neutral” BDI representations in the sense of the
Neutral Theory of Biodiversity [4,18], that is all individuals within a population are subject
to the same birth and death rates so that there is no fitness difference in the population. Our
first model is the simple BDI (sBDI) model where each individual evolves independently
of all others and where the only possible processes are birth, death and immigration. The
second model (BDIM) further includes mutations, whereby the dynamics of each individual
is still uncoupled from that of others, but where new species can arise via mutations. The
last model (BDICC) includes a carrying capacity on the death rate to represent the sharing of
limited resources. In this case, the dynamics of each individual is coupled to that of others,
and the overall mathematical analysis is more complex. Thus, for simplicity, when including
a carrying capacity term, we exclude mutations. The three major BDI processes we will
analyze are depicted in Fig. 1.

Since measures of diversity in a population are also of significant interest in ecology
[7,9,29], we will also analyze species diversity through three commonly used indexes [28]:
the species richness (the total number of species in the system), Shannon’s entropy, and
Simpson’s diversity index, and we will contrast and compare these quantities among the
different models.

The goal of this paper is to provide an accessible, yet rigorous, theoretical analysis of each
of the three types of BDI models outlined above. In particular, we determine the conditions
for the existence of an equilibrium distribution and derive analytical expressions for the
steady state distributions of the total number of individuals, the numbers if clones of each
size, the total number of species in the system, as well as the expected species diversities
predicted by model. Some results presented here can be recovered from previous work.
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(a) (b) (c)

Fig. 1 Schematic of various birth–death–immigration processes. Three distinct variants are considered,
including a simple birth–death–immigration (sBDI) without mutation, where r , μ are constants, b birth–
death–immigration with mutation (BDIM) where r , μ are constants and mutation rate ε > 0, and c
birth–death–immigration without mutation but with carrying capacity (BDICC) where r is constant and
μ = μ(N ) is an increasing function of total population N . We will also analyze a variant of the BDICC
model, the BDICC-bis model, where μ is constant but the growth r = r(N ) is assumed to be a decreasing
function of the total population N

More precisely, time-dependent versions of our sBDI model can be found in Karlin and
McGregor [22], Travaré [33], Lambert [23] and one particular version the BDIM model
(with somatic mutations) is described in [23]. In each case, it is possible to recover the steady
state distributions of the total population and the total number of species by evaluating the
infinite-time limits of their results.

Our work provides a number of additional results in the steady state limit: (i) the the-
oretical analysis of an interacting BDI model with carrying capacity is new, to the best of
our knowledge; (ii) we provide “full probability distributions” that completely describe the
properties of each model and that can be used to derive general quantities of interest, (in
particular, the moments of the species counts); (iii) we analytically quantify diversity indices
predicted by each model; (iv) we provide systematic quantitative comparisons between the
models and (v) we derive simpler limiting forms of our results in the large immigration rate
limit. A summary of all our results can be found in Table 1 in the general case and in Table 2
for the fast immigration limit. The interested reader will find more details of the methods and
the proofs of the derivation of these expressions in the Mathematical Appendix.

2 Basic Definitions

In this section we outline some general assumptions and introduce the mathematical nota-
tion to describe our three BDI models. First, we assume new individuals immigrate to the
system following a Poisson point process of rate α, i.e. the time interval between succes-
sive immigration events is given by a random variable exponentially distributed with rate α.
Each arriving individual will define a new species not yet present in the system. The random
variable representing the total number of individuals in the system will be denoted by N and
the total number of species by C . We consider both “particle-count” and “species-count”
representations (ni and ck respectively) of the system: in the particle count representation, ni

(with 1 ≤ i ≤ C) represents the number of individuals in the i th species; in the species-count
representation, ck (with k ≥ 1) represents the number of species having exactly k individuals.
In principle, there can be species with infinite population and hence both ni and the index
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Table 2 Table summarizing model results in the fast immigration limit defined by α = α̃�, � → ∞
Simple
birth–death–immigration
model (sBDI)

Birth–death–immigration
model with mutation
(BDIM)

Birth–death–immigration
model with carrying
capacity (BDICC)

Cond. � → ∞ � → ∞ � → ∞
μ(x) = μ̃(x/�)

n∗ : positive soln of xμ̃(x)

= α̃ + r x

N/� α̃
μ−r

α̃
μ−r n∗

ck/� α̃
r

(r/μ)k

k
α̃

μ−r
μ−r(1−ε)

r(1−ε)

(
r
μ (1−ε)

)k

k
α̃
k

rk−1

μ̃(n∗)k

C/� α̃
r log

[
1

1−r/μ

]
α̃

μ−r
μ−r(1−ε)

r(1−ε)
log

[
1

1− r
μ (1−ε)

]
α̃
r log

[
1

1−r/μ̃(n∗)

]

ni ni ∼ LogSeries (r/μ) ni ∼ LogSeries
(

r
μ (1 − ε)

)
ni ∼ LogSeries

(
r/μ̃(n∗)

)

H/ log� 1 1 1

S 1 1 1

H/ log� and S are expanded to the first nontrivial term

k are unbounded. The sequence of all numbers (ni )i≤C , the infinite vector �c = (ck)k≥1, as
well as N and C , are related by the following expressions:

ck =
C∑

i=1

I (ni , k) for k ≥ 1, C =
∑

k≥1

ck, N =
C∑

i=1

ni =
∑

k≥1

k ck, (1)

where I is the indicator function such that I (x, y) = 1 if x = y and 0 otherwise. Effectively,
the first relation in Eq. (1) will count the number of species that carry k individuals. The
second relation describes the total number of clones C that are present in the system, while
N is the total number of particles in the system. For many applications C and N are large.
For example, in humans, the richness of naive T-cells C ∼ 106–1010 [24,25].

The particle-count and species-count representations are related since a given sequence
(ni )i≤C corresponds to a uniquevector �c (determinedvia thefirst relation inEq. (1)).However,
given a vector �c one can determine the sequence (ni )i≤C only up to permutations of the species
identities. More information is intrinsically contained in (ni )i≤C than in �c.

As mentioned, we will also be interested in the statistics of the population diversity, as
described by, e.g., Shannon’s entropy H and Simpson’s diversity index S. These quantities
can be defined using either the particle-count or the species-count representations:

H = −
C∑

i=1

ni

N
log

[ni

N

]
= −

∑

k≥1

ck
k

N
log

[
k

N

]
and

S = 1 −
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(ni

N

)2 = 1 −
∑
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ck

(
k

N

)2

. (2)

While many variants of Simpson’s diversity exist, we have chosen the “Gini-Simpson” index
[20] with replacement, also known as the probability of interspecific encounter [19], Gini-
Martin, or Blau indices [15], so that more diverse populations have a higher value of S. Our
choice also allows for analytic derivations not available for other diversity indices.
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Weshall analytically derive, whenever possible, probability distributions over all the quan-
tities defined above. Our results will be limited to distributions in steady state. Henceforth,
we will define probabilities of a quantity X having a value x as P(X = x), but we will
interchangeably also use the imprecise notation P(X) when no ambiguity exists.

After determining results in steady state for each of the three neutral BDI models (sBDI,
BDIM, and BDICC ) we will also analyze the asymptotically large immigration limit. This
regime may relevant to applications where the per-individual immigration rate is higher than
their birth and death rates, such as in the case of lymphocyte production and maintenance.
In particular, we will assume the immigration rate α that defines the Poisson point process
described above to be proportional to a scaling factor � (i.e., the immigration rate α ≡ α̃�

with α̃ being a proportionality constant) and then study the � → ∞ limit. We will show that
as � increases, the above quantities also diverge, however, their scaled values

N/�, C/� and (ck/�)k≥1

will be shown to converge in distribution. For example, the convergence in distribution of

N/� to a given constant limit � will be denoted N/�
D−−−−→

�→∞ � and, when � is a constant,

the convergence can be characterized by

for any δ > 0, lim
�→∞ P(|N/� − �| < δ) = 1 (3)

(for a more general definition of the convergence in distribution where � is an arbitrary
random variable, see [5, Chapter 5]). This type of convergence implies that

E [N/�] −−−−→
�→∞ � and var [N/�] −−−−→

�→∞ 0.

3 Simple Birth–Death–ImmigrationModel (sBDI)

We start with the neutral and independent simple birth–death–immigration model (sBDI)
where individuals are assumed to be identical, subject to the same birth, death and immi-
gration rates (neutral), and where the dynamics of each individual is independent of that of
others (independent). Mutations are not included. One of the most immediate applications of
this sBDI model is within the study of island biodiversity [18,34] where individuals follow
classical birth and death processes, and new species are introduced to the island via immi-
gration. The ensuing species abundances are then determined. The main ingredients of the
sBDI model are depicted in Fig. 1a and include (i) immigration, in which an individual of a
new species is added to the system at rate α, (ii) birth, in which each individual gives birth
to an offspring of the same species at rate r , and (iii) death, where each individual dies and
is removed from the system at rate μ.

3.1 Derivation of Steady State Statistics

We now determine the steady-state probability distribution P(N ) of the total number
of individuals N in the simple BDI model and the full probability distribution P(�c) ≡
P(c1, . . . , ck, . . . ) at steady-state. This quantity will lead us to the derivation of the marginal
steady-state probability distributions P(ck) and P(ni ) in the individuals and species count
representations, respectively. From P(�c) we will also be able to obtain the probability dis-
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tribution P(C) of the total number of species C at steady-state. Finally, Shannon’s entropy
and Simpson’s diversity index will be calculated.

The total number of particles N is a random variable that follows a birth and death process
with non-constant rates α + r N and μN , respectively. The properties of this birth and death
process are known (see for instanceMéléard [2]); in particular for a finite steady state to exist
the condition r < μ must hold. This constraint implies that death dominates reproduction
so that the number of individuals N does not diverge at long times. At steady state, and for
r < μ, detail balance leads to the following condition

μN P(N ) = (α + (N − 1)r)P(N − 1). (4)

This equation can be solved iteratively to yield

P(N ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 − r

μ

)α/r

, N = 0

P(0)

(
r

μ

)N 1

N !
N−1∏

k=0

(α

r
+ k

)
, N ≥ 1

(5)

which we recognize as a negative binomial distribution with parameters α/r and r/μ, and
mean and variance

E [N ] = α/μ

1 − r/μ
, var [N ] = α/μ

(1 − r/μ)2
. (6)

Equation (5) does not resolve how the subpopulations are distributed within the different
species. To determine this distribution we must derive the distribution P(�c) over the species-
count vector �c = (c1, . . . , ck, . . .) by explicitly writing down all possible BDI events and
their relative rates:

(c1, c2, . . .)
α−→ (c1 + 1, c2, . . .) Immigration

for k ≥ 1 (c1, . . . , ck, ck+1, . . .)
rkck−−→ (c1, . . . , ck − 1, ck+1 + 1, . . .) Birth

for k ≥ 2 (c1, . . . , ck−1, ck, . . .)

(c1, c2, . . .)

μkck−−→ (c1, . . . , ck−1 + 1, ck − 1, . . .)
μc1−−→ (c1 − 1, c2, . . .)

}
Death

Since each clone is populated by k individuals the total clone population is kck , within which
each cell can duplicate or die with rate r or μ. The overall birth and death rates for all clones
of size k are thus given by rkck and μkck , respectively. We can thus write for every k ≥ 2,

(k − 1) ck−1μP(c1, . . . , ck−1, ck, . . .) = k (ck − 1) r P(c1, . . . , ck−1+1, ck −1, . . .), (7)

and for k = 1,
μc1P(c1, c2, . . .) = αP(c1 − 1, c2, . . .). (8)

As shown in Appendix C.1 for the more general case of the BDICC model, by recursion of
Eq. (8) and using Eq. (7), we find

P(c1, . . . , ck, . . . ) = P(0, 0, . . .)
(α

r

)C
(

r

μ

)N 1
∏∞

i=1 i ci ci ! , (9)

123



Exact Steady-State Distributions of Multispecies Birth… 189

with C = ∑
k≥1 ck and N = ∑

k≥1 kck as defined in Eq. (1). The prefactor P(0, 0, . . .) is
simply the normalization constant and can be computed as

P(0, 0, . . .)−1=
∑

�c

(α

r

)C
(

r

μ

)N 1
∏∞

i=1 i ci ci ! =exp

(
α

r

∞∑

i=1

1

i

(
r

μ

)i
)

=
(
1 − r

μ

)−α/r

,

(10)

so that finally

P(�c) = P(c1, . . . , ck, . . . ) =
(
1 − r

μ

)α/r (α

r

)C
(

r

μ

)N 1
∏∞

i=1 i ci ci ! . (11)

Note that P(0, 0, . . .) as expressed in Eq. (10) corresponds to the N = 0 case in Eq. (5)
since the state with no individuals present in the population can only be represented by the
configuration �c = (0, 0, . . .).

We can now use Eq. (9) to determine the distribution for the total number of species
C . To do this, we consider its moment generating function MC (ξ) defined as the average
E
[
exp (ξC)

]

MC (ξ) ≡ E
[
exp (ξC)

] =
∑

c1,...,ck ,...

eξC
(
1 − r

μ

)α/r (α

r

)C
(

r

μ

)N 1
∏∞

i=1 i ci ci ! ,

with C = ∑
k≥1 ck and N = ∑

k≥1 kck . We find

MC (ξ) =
(
1 − r

μ

)(1−eξ )α/r ∑

c1,...,ck ,...

(
1 − r

μ

)αeξ /r (
αeξ

r

)C (
r

μ

)N 1
∏∞

i=1 i ci ci ! . (12)

Upon comparing Eq. (11) with the terms in the last summation in Eq. (12) we can easily
see that the terms within the sum define the probability P(c1, . . . , ck, . . . ) of another simple
independent BDI model with immigration rate α → αeξ . Thus, from normalization, the sum
in Eq. (12) is equal to one. By writing MC (ξ) in the form

MC (ξ) = exp

[(
eξ − 1

) α

r
log

(
1

1 − r/μ

)]
,

which is a moment generating function of a Poisson random variable with parameter
(α/r) log [1/ (1 − r/μ)] (see [17, Chapter 4]) we find

P(C) =
(
1 − r

μ

) α
r

(
α
r log

[
1/
(
1 − r

μ

)])C

C ! . (13)

Using this distribution, we find

E [C] = var [C] =
(α

r

)
log

[
1

1 − r/μ

]
. (14)

We nowfind themarginal probability P(ck) for the number of species ck with k individuals
regardless of all others. By using Eq. (11), separating out the ck terms, we obtain
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P(ck) =
∑

(ci )i �=k

P(c1, c2, . . . , ck−1, ck, ck+1) (15)

=
(
1 − r

μ

)α/r ∑

(ci )i �=k

∞∏

j=1

1

c j !

(
1

j

α

r

(
r

μ

) j
)c j

= 1

ck !

(
1

k

α

r

(
r

μ

)k
)ck (

1 − r

μ

)α/r ∞∏

j �=k

exp

(
1

j

α

r

(
r

μ

) j
)

= 1

ck !

(
1

k

α

r

(
r

μ

)k
)ck

exp

(

−1

k

α

r

(
r

μ

)k
)

,

which is a Poisson distribution with parameter equal to the mean and variance

E [ck] = var [ck] = α

r

1

k

(
r

μ

)k

. (16)

Next, we determine the marginal distribution of the number ni of individuals belonging
to species i . By taking the mean of the first relation in Eq. (1), we find

E [ck] = E

[
C∑

i=1

I (ni , k)

]

= E

[
C∑

i=1

E [I (ni , k) |C]

]

.

Since species are assumed to be non-interacting, the random variables (ni )i≤C are indepen-
dent and identically distributed (iid) and are also independent ofC . Thus, for every 1 ≤ i ≤ C
we can write

E [I (ni , k) |C] = E [I (n1, k)] = P(n1 = k)

for which P(n1 = k) is still undetermined. The above relation yields

E [ck] = E [C] P(n1 = k), (17)

in which E [ck] and E [C] are determined by Eqs. (16) and (14). Since all ni values are
identically distributed and P(ni = k) = P(n1 = k), we can finally write P(ni ) for any
species i :

P(ni ) = 1

ni

(
r

μ

)ni −1

log [1 − r/μ]
. (18)

Thus, every ni follows Fisher’s logarithmic series distribution [14] with parameter r/μ. Note
that although the distribution P(N ) for the total population N depends on the immigration
rate, the distribution in Eq. (18) is independent of α. This is because each immigration event
necessarily introduces a new species but does not influence the dynamics of a species already
present. Once introduced, the evolution of any species depends solely on its birth and death
rates r and μ.

Finally, we can use Eq. (11) to determine the expected Shannon’s entropy and Simpson’s
diversity index, as defined in Eq. (2). Using a similar procedure to the one used to determine
P(ck), we isolate the ck term in the definition of P(�c) and find the same form in terms of
ck − 1. Note that we can write the mean of ck f (N ), for any function f (N ), as

E [ck f (N )] = 1

k

α

r

(
r

μ

)k

E [ f (N + k)] .
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By considering the functions f (x) = log (x/k) /x and f (x) = (k/x)2 we find the respective
expressions for Shannon’s Entropy and Simpson’s diversity index

E [H ]= α

r

∞∑

k=1

(
r

μ

)k

E

[
log

( N+k
k

)

N +k

]

and E [S]=1 − α

r

∞∑

k=1

k

(
r

μ

)k

E

[(
1

N +k

)2
]

.

(19)

Since the distribution of N is known and given by Eq. (5), we can use Eq. (19) to numerically
compute E [H ] and E [S].

For completeness, we also derive results for the sBDI process with a finite number of
clones Q that each carry a finite immigration rate into the system. In Appendix A.1, we use
the detailed balance conditions to derive explicit steady state probability distributions over
the particle count vector ni , the species count vector ck , and the number of clones in the
sample C .

3.2 Fast Immigration Limit

We now consider the large immigration limit of the sBDI model. While at steady-state the
distribution of the number of individuals in each species P(ni ), given by Eq. (18), is indepen-
dent of α, the distributions P(N ), P(C) and P(ck) do depend on the total immigration rate
α as indicated in Eqs. (5), (13) and (15), respectively. Since immigration always introduces a
new species, the per clone immigration rate is zero. To study the large immigration regime in
which each clone has a finite immigration rate, we assume α ≡ α̃ � scales as the parameter
� → ∞, which can be thought of as the total number of different clones that can immigrate
into the system per unit time. Increasing α will introduce new individuals and new species to
the system, so one can intuitively conclude that the total population N and number of species
C , as well as the number of species with k individuals ck , will also increase. We also show
that, as � increases, the scaled values N/�, C/� and ck/� converge in distribution to a
constant, as described in Eq. (3), with average values given by

N

�

D−−−−→
�→∞

α̃

μ − r
,

C

�

D−−−−→
�→∞

α̃

r
log

[
1

1 − r/μ

]
and

ck

�

D−−−−→
�→∞

α̃

r

(r/μ)k

k
,

and vanishing variances. A rigorous proof is given in Appendix A.2. Moreover, we can
also write the convergence in distribution of the scaled Shannon’s entropy H/ log� and
Simpson’s diversity index S,

H

log�

D−−−−→
�→∞ 1 and S

D−−−−→
�→∞ 1,

as also derived in Appendix A.2. We can now use the scaling results above to infer that

E [H ]

log�
= 1 − O(�−1), E [S] = 1 − O(�−1).

3.3 Interpretation of Results

All distributions computed above depend on two nondimensional quantities: u ≡ α/r and
v−1 ≡ μ/r (with 0 ≤ v < 1). Also note that the ratios E [C] /E [N ] and var [C] /var [N ] are
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Fig. 2 a The ratios E [C] /E [N ] and var [C] /var [N ] as a function of v = r/μ. This ratio is independent of
the immigration rate α and can be explicitly determined by our theoretical results. b–d Analytical results for
the total richness E [C], Shannon’s entropy E [H ] and Simpson’s index E [S], respectively, as functions of
u = α/r and v = r/μ. Both E [C] and E [H ] increase with α/r , r/μ, and E [N ]. Simpson’s index E [S] has
a similar behavior only if E [N ] = uv/(1 − v) is greater than ∼ 10

“immigration-invariant” in the sense that they depend only on v = r/μ and are independent
of the immigration rate α and/or u. These ratios are plotted in Fig. 2a. For systems where the
immigration rate is difficult to estimate, such quantities can be useful probes of the system.
For example, E [C] /E [N ] represents the relative abundance of species with respect to the
total number of individuals in the system. By construction, this ratio cannot exceed unity.
The limiting case of E [C] /E [N ] → 1 corresponds to a completely heterogeneous system
where every individual belongs to a different species while E [C] /E [N ] → 0 corresponds
to homogeneous systems where the entire population is dominated by very few species.

In Fig. 2b–d we show the respective heat-maps of E [C], E [H ] and E [S] as a function
of u = α/r and v = α/r , along with level-sets of E [N ]. These figures have been generated
using Eqs. (13) and (19) and show that both E [C] and E [H ] increase with u, v, and E [N ].
In our plots, E [S] is not strictly monotonic despite the expectation that E [S], as a measure
of diversity, would follow the same trend as E [C] and E [H ]. However, this qualitative
discrepancy occurs only in the small E [N ] regime where there is a high probability that
there are no individuals in the system and diversity loses its meaning. In the extreme limit of
N → 0, we find C → 0 and H → 0, but S → 1, giving rise to the nonmonotonic pattern
for E [S].

4 Birth–Death–ImmigrationModel with Mutation (BDIM)

In this section we consider a birth–death–immigration Model with Mutation (BDIM). Muta-
tion events are particularly relevant in ecology as they lead to speciation within populations
[23], and in studies of gene domain family evolution [21]. In the BDIM process, we still
assume individuals and species are non-interacting and that birth, death, immigration, and
mutation rates do not depend on the state of the system. We allow an individual of a given
species to mutate and give rise to a new, yet unrepresented, species. Mutations are assumed
to be neutral in that an individual arising from mutation maintains the same birth and death
rates as the rest of the population.

We start by allowing mutations only in offspring arising immediately after their birth, as
illustrated in Fig. 1b. For each birth event there is a probability ε (with 0 ≤ ε ≤ 1) that the
offspring is mutated, representing a completely new species. This mechanism is applicable
to e.g., bacterial populations where DNA replication can induce a gene mutation that will be
carried by the newborn cell. The subsequent theoretical analysis will be carried out within
the framework of a single mutation at birth as described here. However our mathematical
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treatment is not limited to this specific case and, in Sect. 4.4, we will apply the same tools
to study other relevant scenarios such as “somatic” mutations that can occur any time during
the lifetime of an individual, and “double” (or “symmetric”) mutations where both parent
and offspring mutate upon birth.

4.1 Derivation of Steady State Statistics

In Sect. 3, we were able to use reversibility and detailed balance to determine P(�c), the
probability for a given species-count configuration �c = (c1, . . . , ck, . . . ) to occur. The intro-
duction of mutation, however, makes the system irreversible and analytically evaluating
P(�c) becomes prohibitively complex. We can nonetheless exploit some general features of
the BDIMmodel, such as neutrality and independence, to extract results such as themean and
the variance of C and ck . The evaluation of other quantities such as the mean of the diversity
indices E [H ] and E [S] will require numerical simulations. Our theoretical analysis relies
on two important features of the model:

• Because mutations do not affect overall birth or death rates but only the species to which
newborns belong, the distribution for P(N ) remains identical to the one derived in Eq. (5)
for the simple BDI model. Hence, in the BDIM model, the overall growth rate due to
immigration and birth is still α + Nr and the overall death rate is still μN . The resulting
P(N ) is independent of mutation events and Eq. (5) still holds.

• The marginal distribution P(ni ) of the number of particles ni of species i still follows
a logarithmic series distribution as in Eq. (18), but with the replacement r → r(1 − ε).
Intuitively, this can be understood by noting that under mutation a new individual is
introduced into the ni population with rate r(1 − ε) instead of r , since the “remainder”
rε is the rate at which a new individual in a new species arises. The dynamics of the ni

individuals thus remains unchanged, provided the birth rate is modified to r(1 − ε) to
account for the diminished births within the given species. In Appendix B.1 we provide a
more rigorous justification of this argument. Also, in Fig. 6 of Appendix B.1 we plot the
probability distribution for the number of individuals in a given species as determined
from simulations of the BDIM model, compare our findings to the expected logarithmic
distribution, and show good agreement between the two. Thus, both theoretically and
numerically, we verify that P(ni ) follows a logarithmic series distributionwith parameter
r (1 − ε) /μ for all values of 0 ≤ ε ≤ 1:

P(ni ) = 1

ni

(
r(1 − ε)

μ

)ni −1

log [1 − r(1 − ε)/μ]
. (20)

Once the P(ni ) and P(N ) distributions are known for the BDIM model we can use Eq. (1)
and the fact that the (ni )i≤C are iid and independent of C to express the mean of the third
relation of Eq. (1) as

E [N ] = E

[
C∑

i=1

E [ni |C]

]

= E [C]E [n1] ,

so that

E [C] = α/μ

1 − r/μ
log

(
1

1 − r(1 − ε)/μ

)
1 − r(1 − ε)/μ

r(1 − ε)/μ
. (21)
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Using the moment generating function of N , we can similarly determine the variance of C
as shown in detail in Appendix B.2

var [C] = E [C]

[
E [C]

(α/r)
+ log

(
1 − r(1 − ε)

μ

)
+ 1

]
. (22)

Finally, we take the mean of the first relation in Eq. (1). Since all the (ni )i≤C are iid and
independent of C we can write

E [ck] = E [C] P(n1 = k) = α/μ

1 − r/μ

1

k

(
1 − r(1 − ε)

μ

)(
r(1 − ε)

μ

)k−1

. (23)

For the variance of ck , we also use the definition in the first relation in Eq. (1) to find

ckc� = I (k, �)

C∑

i=1

I (ni , k) +
C∑

i=1

∑

j �=i

I (ni , k) I
(
n j , k

)
.

Upon using Eq. (20) to take the mean of this expression, and recalling that ni is independent
of n j �=i and C , we find

E [ckc�] = I (k, �)E [ck] + E [C(C − 1)] P(ni = k)P(ni = �),

var [ck] = E [ck] + var [C] − E [C]

E [C]2
E [ck]

2 . (24)

These expressions are also valid for the sBDImodel, but sinceC and ck arePoisson-distributed
in that case, var [C] = E [C] and var [ck] = E [ck] (see below).

We can use Eqs. (20), (23), (21), andAppendixB.2 to further develop the secondmoments.
For example,

E
[
ckc��=k

] =
(

r(1 − ε)

μ

)k� 1

k�

[
α
μ

(
1 − r(1−ε)

μ

)
+ ε r

μ

] [
α
μ

(
1 − r(1−ε)

μ

)]

(
1 − r

μ

)2 ( r(1−ε)
μ

)2 ,

which reduces to the simple BDI result E [ck]2 when ε = 0. For k = �, we have

var [ck] = E [ck] + ε
(α/μ)(r/μ)

(1 − r/μ)2k2

(
r(1 − ε)

μ

)2(k−1)

.

4.2 Fast Immigration Limit

We now study the large immigration limit of the BDIM model. As done in Sect. 3.2 we set
α = α̃ � and consider the � → ∞ limit. Since the dynamics of N/� remain unchanged in
theBDIMmodel compared to the dynamics in the simpleBDImodel, we recover convergence
in distribution for N/� towards the constant α̃/(μ − r) as � → ∞. Following the same
procedures illustrated in Appendix A.2 for the simple BDI model, and using the moment
generating functions of C and ck we can also prove the convergence in distribution of C/�

and ck/� towards the following

C

�

D−−−−→
�→∞

(̃α/μ)

1 − r/μ

1 − r(1 − ε)/μ

r(1 − ε)/μ
log

(
1

1 − r(1 − ε)/μ

)
,

ck

�

D−−−−→
�→∞

(̃α/μ)

1 − r/μ

1 − r(1 − ε)/μ

k

(
r(1 − ε)

μ

)k−1

.

123



Exact Steady-State Distributions of Multispecies Birth… 195

0.00 0.25 0.50 0.75 1.00
Mutation prob

4

6

8

10

E
[C

]

BDIM
sBDI
E[N ]

(a)

0.00 0.25 0.50 0.75 1.00
Mutation prob

1.0

1.5

E
[H

]

BDIM
sBDI

N≥1 log(N)P (N)

(b)

0.00 0.25 0.50 0.75 1.00
Mutation prob

0.5

0.6

0.7

0.8

E
[S
]

BDIM
sBDI
1+ N≥1

N−1
N P (N)

(c)

Fig. 3 Comparison of various diversity indices between the sBDI model and the BDIM model at varying
values of mutation probability ε. For both models, we set α = 1, μ = 1, and r = 0.9. a Total richness C as
determined using Eqs. (21) and (22). b Expected Shannon’s entropy E [H ], determined with simulations of
the model with mutation at division. c Expected Simpson’s diversity index E [S], determined with simulations
of the model with mutation at division. In each case, mutation increases diversity (black curves) relative to that
of the sBDI model (blue dot-dashed lines). The maximum diversity is obtained in the limit where mutation
always occurs (i.e. ε = 1) and all individuals belong to different species such that C = N (red dashed lines)
(Color figure online)

Finally, the convergence in distribution of the scaled Shannon’s entropy H/ log� and Simp-
son’s diversity index S are

H

log�

D−−−−→
�→∞ 1 and S

D−−−−→
�→∞ 1.

4.3 Interpretation of Results and Comparison with sBDI Model

In this subsection we compare features of the sBDI and BDIM models. Note that only three
parameters are necessary to characterize all results obtained in both models: u ≡ α/r ≥ 0,
v ≡ r/μ (0 ≤ v ≤ 1), and 0 ≤ ε ≤ 1. In Fig. 3a–c we plot the total richness C , Shannon’s
entropy H , andSimpson’s index S as defined inEq. (2). In these figures,E [C]was determined
using Eqs. (21) and (22), while E [H ] and E [S] were found from simulations.

The expected diversity indices for the simple BDI model are shown by the dashed red
horizontal lines. As can be seen from Fig. 3, all measures of diversity in the BDIM model
increase with ε and reach their maximum at ε = 1 (shown by the blue dot-dashed lines) when
all individuals give rise to mutant offspring. Upon setting ε = 1, and assuming a nonzero
population N , Eq. (2) yields C = N , H = log N and S = (N − 1)/N , mirroring the fact
that each species only has one individual. By noting that H = 0 and S = 1 for N = 0, we
find for ε = 1

E [C] = E [N ] , E [H ] =
∑

N≥1

log N P(N ) and E [S] = 1 +
∑

N≥1

N − 1

N
P(N ),

with P(N ) being the probability distribution of N given in Eq. (5).
For general ε in the BDIM model, since we cannot analytically determine the probability

for the species-count vector �c, we cannot derive explicit formulae for E [H ] and E [S] as we
did for the simple BDI model in Sect. 3. However, we can estimate both E [H ] and E [S] by
approximating ck with E [ck] in Eq. (2) to find
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E [H ] 	 −
(
1 − r(1 − ε)

μ

)∑

k≥1

(
r(1 − ε)

μ

)k−1

log

[
μ

α
k

(
1 − r

μ

)]
and

E [S] 	 1 − μ

α

1 − r/μ

1 − r(1 − ε)/μ
. (25)

We compare these approximations with results obtained from numerical simulations in Fig. 7
inAppendixB.1.As can be seen our analytical estimates becomemore accurate as the average
number of individuals E [N ] = α/(μ − r) increases, that is, for α � μ and μ � r . For
E [N ] ≥ 5, both estimates for Shannon’s entropy and Simpson’s diversity index fall within
10% of their simulated values.

4.4 Alternative MutationMechanisms

TheBDIMmodel, as described above, assumes thatmutations occurwith probability ε during
each birth event. We can very easily adapt the mathematical reasoning used in Sect. 4.1 to
characterize other types of mutation processes. Note that if mutation events add more species
to the system, but do not change the overall birth and death rates of the population, the total-
population distribution P(N ) will remain unchanged from the expression found in Eq. (5)
for the simple BDI model. This will be the case for the two alternative mutation mechanisms
described below.

Somatic mutation: Each individual may spontaneously mutate at constant rate η > 0 over
its lifetime, giving rise to an individual of a new species. Such a birth-independentmutation
might be a reasonable model for e.g., DNA damage or epigenetic changes in a cell. In
this scenario, for a given ni population, new individuals are added to the same i species
at rate rni and removed at rate (μ + η)ni since mutation events will effectively transfer
an individual from a given species to a new one. Hence, the distribution for P(ni ) should
remain a logarithmic series distribution as in Eq. (18) but with parameter r/(μ + η). All
theoretical results found in Sect. 4.1 remain the same in this case provided we replace
ε → η/(μ + η).

Double mutation: Both parent and offspring may spontaneously mutate at birth, as for
example in symmetric stem cell differentiation. More generally, we can assume that one
of the two individuals mutates to a new species with probability ε1 and that both mutate
into two new species with probability ε2. In this case, for a given ni population, new
individuals are added at rate r(1−ε1 −ε2)ni to species i and removed at rate (μ+rε2)ni .
The number of individuals in species i should thus still be logarithmically distributed as
in Eq. (18), but with parameter r(1− ε1 − ε2)/(μ + rε2). All theoretical results found in
Sect. 4.1 remain the same, provided we replace ε → (rε2 + μ(ε1 + ε2))/(rε2 + μ).

5 Birth–Death–ImmigrationModel with Carrying Capacity (BDICC)

In the third and final model analyzed in this paper, we include an important interaction within
the total population—a carrying capacity that is typically used to represent resource limi-
tations. The more individuals present in a system, the more they need to share resources,
potentially affecting survival or reproduction rates. The carrying-capacity concept is ubiq-
uitous in ecology such as for species on an island with finite resources that limit the total
population. Other applications may include lymphatic growth which is known to be induced
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by several molecules, in particular cytokines [32] that may become insufficient to sustain
further proliferation of T-cells if the population becomes too large.

We first consider a carrying capacity on the death rate of each individual and derive
analytical results; more general cases will be addressed via numerical simulations. As shown
in Fig. 1c, the only difference between our BDI model with carrying capacity (BDICC) and
the sBDI model is that the death rate now depends on the total number of individuals in the
system N . We assume that μ(N ) is an increasing function with N as dwindling resources
led by population increases will also increase the death rate. It is important to remark that
populations described by the BDICCmodel do not evolve independently. Since the dynamics
of each individual nowdepends on that of all others, there is a global, but “neutral” interaction.
In contrast to the two previous models, the number of individuals in each species (ni )i≤C ,
can no longer be considered an independent random variable so that

E [ck] �= E [C] P(n1 = k).

The equality of the quantities on the left and right hand sides above was used in the previous
analysis to determine Eqs. (17) and (23) and is no longer applicable to the BDICC model.

5.1 Derivation of Steady State Statistics

We first consider the dynamics of the total number of individuals N and study how P(N ) is
modified in the BDICC model. In this case, the overall population still undergoes a birth and
death process with rates α + r N and μ(N )N , respectively. The properties of birth and death
process with non homogeneous rates are known [2]. In particular, in the case of an increasing
function μ(N ) > 0, the conditions for the existence of a steady state is

lim
N→∞ μ(N ) > r .

More general conditions for the existence of a steady-state configuration have been detailed
in the case of a non-increasing death rate μ(N ) [2]. If a steady-state exists, then P(N ) can
be found using detailed balance, similar to what was done in Sect. 3

P(N ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

Zα,r
, N = 0,

1

Zα,r

1

N !
N−1∏

k=0

α + rk

μ(k + 1)
, N ≥ 1

(26)

with Zα,r a normalization constant given by

Zα,r = 1 +
∞∑

n=1

1

n!
n−1∏

k=0

α + rk

μ(k + 1)
.

To determine P(�c), P(C) and P(ck), we rely on reversibility of the system and detailed
balance. Interestingly, while a non-constant death rate μ(N ) preserves detailed balance, a
non-constant growth function r(N ) does not strictly obey detailed balance. We will come
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back to this point further in the discussion, in Sect. (5.3.2). For now, we consider μ(N ) and
constant r and write all possible transitions of the system as was done in Sect. 3.1

(c1, c2, . . .)
α−→ (c1 + 1, c2, . . .) Immigration

for k ≥ 1 (c1, . . . , ck , ck+1, . . .)
rkck−−→ (c1, . . . , ck − 1, ck+1 + 1, . . .) Birth

for k ≥ 2 (c1, . . . , ck−1, ck , . . .)

(c1, c2, . . .)

μ(N )kck−−−−−→ (c1, . . . , ck−1 + 1, ck − 1, . . .)

μ(N )c1−−−−→ (c1 − 1, c2, . . .)

}
Death

which differ from the ones written in Sect. 3.1 by virtue of μ → μ(N ) with N = ∑
k≥1 kck .

By assuming detailed balance, we write

μ(N )kck P(c1, . . . , ck−1, ck, . . .) = (k − 1) (ck−1 + 1) r P(c1, . . . , ck−1 + 1, ck − 1, . . .),
(27)

for k ≥ 2, while for k = 1 the following holds

μ(N )c1P(c1, c2, . . .) = αP(c1 − 1, c2, . . .). (28)

We follow the same procedure as in Sect. 3.1 and iterate Eq. (7) using Eq. (8). After imposing
normalization, we obtain

P(�c) = P(c1, . . . , ck, . . . ) = 1

Zα,r

(α

r

)C r N

∏N
n=1 μ(n)

1
∏∞

i=1 i ci ci ! , (29)

where C = ∑
k≥1 ck as defined in Eq. (1) and where Zα,r is the normalization constant that

can be obtained by evaluating P(N = 0) in Eq. (26) so that

Zα,r =
∞∑

c1,...,ck ,...

(α

r

)C r N

∏N
n=1 μ(n)

1
∏∞

i=1 i ci ci ! = 1 +
∞∑

n=1

1

n!
n−1∏

k=0

α + rk

μ(k + 1)
. (30)

More details can be found in Appendix C.1. We can now use the expression for P(�c) in
Eq. (29) to evaluate the moment generating function of C and related moments

MC (ξ) ≡ E
[
exp (ξC)

] = 1

Zα,r

∑

c1,...,ck ,...

(α

r
eξ
)C r N

∏N
n=1 μ(n)

1
∏∞

i=1 i ci ci ! .

Since the argument of the sum in the above expression is the same as in Eq. (30) provided
α → αeξ we can write

MC (ξ) = Zαeξ ,r

Zα,r
,

for any ξ < 0. We can now differentiate MC (ξ) with respect to ξ and take the limit ξ → 0
to find the following expressions for the mean and the variance of C

E [C] =α E

[
N−1∑

k=0

(α + rk)−1

]

, (31)

var [C] =E [C] (1 − E [C]) + α2
E

⎡

⎣

(
N−1∑

k=0

1

α + rk

)2

−
N−1∑

k=0

1

(α + rk)2

⎤

⎦ . (32)
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We can use the above expressions and P(N ) as determined in Eq. (26) to evaluate the mean
and variance of C . Note that setting a uniform μ(N ) = μ in Eqs. (29) and (30) reduces the
results to those of the sBDI model (Sect. 3.1). We can now evaluate E [ck] using Eq. (29):

E [ck] = 1

Zα,r

∑

c1,...,ck ,...

ck

(α

r

)C r N

∏N
n=1 μ(n)

1
∏∞

i=1 i ci ci ! ,

which can be rearranged to yield

E [ck] = 1

Zα,r

α

kr

∑

c1,...,ck ,...

(α

r

)C r N+k

∏N+k
n=1 μ(n)

1
∏∞

i=1 i ci ci !

= αrk−1

k

∑

c1,...,ck ,...

P(�c)
∏k

m=1 μ(N + m)

= αrk−1

k
E

[
k∏

m=1

1

μ(N + m)

]

. (33)

A uniform μ(n) = μ returns E [ck] = (α/μ)(r/μ)k−1/k, as previously determined in
Sect. 3.1. We can also verify that for any function f (N ),

E [ck f (N )] = αrk−1

k
E

[
f (N + k)

∏k
m=1 μ(N + m)

]

.

For f (x) = log (x/k) /x and f (x) = (k/N )2 the expressions for Shannon’s Entropy and
Simpson’s diversity index become

E [H ] = α

∞∑

k=1

rk−1
E

[
log

[ N+k
k

]

(N + k)
∏k

m=1 μ(N + m)

]

, (34)

E [S] = 1 − α

∞∑

k=1

krk−1
E

[
1

(N + k)2
∏k

m=1 μ(N + m)

]

. (35)

Once again, setting μ(N ) = μ a constant allows us to recover the results in Eq. (19) for the
sBDI model.

5.2 Fast Immigration Limit

To analyze the large immigration limit, α = α̃ �, � → ∞, we need to assume a specific
form for the death rate. For a given �, we take the death rate as a function of N/�:

μ(N ) = μ̃(N/�).

The reason behind this scaling is that we want to keep μ(N ) at the same order of magnitude
as � increases. As in the previous models, we will show that E [N ] diverges as � increases,
but the random variable N/� will be shown to converge in distribution to a constant. As a
consequence, the death rate μ̃(N/�) will also converge in distribution to a constant.

Given μ̃(x) is continuous and strictly increasing, and that limx→∞ r/μ̃(x) < 1, one can
show that there exists a unique, positive solution n∗ to the fixed-point equation

n∗μ̃(n∗) = α̃ + rn∗. (36)
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In Appendix C.2, we show that for every δ > 0,

P(|N/� − n∗| > δ)
�→∞−−−−→ 0,

thus proving that
N

�

D−−−−→
�→∞ n∗ (37)

in which n∗ is defined by Eq. (36). The proof of this convergence is analogous to the one
in [11, Proposition 4]). Intuitively, n∗ can be identified with the steady-state solution to the
deterministic approximation of the dynamics of n(t) ≡ N (t)/� given by

dn(t)

dt
= α̃ + rn(t) − μ̃(n(t))n(t).

Using the convergence of Eq. (37), we can show convergence in distribution of C/� and
ck/� as follows

C

�

D−−−−→
�→∞

α̃

r
log

[
1

1 − r/μ̃(n∗)

]
and

ck

�

D−−−−→
�→∞

α̃

r

1

k

(
r

μ̃(n∗)

)k

.

The complete proofs of these convergences are given in Appendix C.3, but one can also
verify them by inspecting Eqs. (31) and (33) respectively to determine the convergence of
E [C/�] and E [ck/�] using convergence of N/� to n∗.

Even though the dynamics of all ni are coupled through the death rate μ(N ) = μ
(∑

ni
)
,

all ni remain identically distributed: P(ni = k) = P(n j = k) for all i, j ≤ C and k ≥ 1.
This “neutrality” allows us to determine the convergence of ni in the� → ∞ limit as detailed
in Appendix C.4:

P(ni = k) −−−−→
�→∞

1

k

(
r

μ̃(n∗)

)k −1

log[1 − r/μ̃(n∗)] ,

which shows that for � → ∞, ni converges to a logarithmic-series distribution with param-
eter r/μ(n∗).

Finally, we can use the convergence in distribution of both N/� and ck/�, to determine
the convergence in distribution for the rescaled Shannon’s Entropy H/ log� and Simpson’s
diversity index S:

H

log�

D−−−−→
�→∞ 1 and S

D−−−−→
�→∞ 1.

These convergence results are identical for all three models and their proofs are similar to
the ones for the sBDI model as described in Appendix A.2.

5.3 Interpretation and Analysis of Results

5.3.1 Comparison with the sBDI Model

To properly compare the sBDI and BDICC models, we fix their immigration rates α and
birth rates r to be the same. For the BDICC model, we use a linear death rate function
μ(N ) = μ1N and tune both μ1 and the constant death rate μ in the sBDI model to yield the
same average total number of individuals E [N ].

In Fig. 4 we plot the distributions P(N ) and P(C) as well as the average E [ck] in a low
immigration regime (α = 0.2 and r = 0.99) for both the sBDI and the BDICC models. We
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Fig. 4 Comparison of the sBDI model with the two carrying capacity models (BDICC with carrying capacity
on the death rate and BDICC-bis with carrying capacity on birth the rate) for slow immigration (parameters
are chosen such as E [N ] = 20 in both cases: α = 0.2, r = .99, μ = 1 for the sBDI; α = 0.2, r = .99,
μ(N ) = 0.0475N for the BDICC). a Theoretical distributions P(N ) for the three models. b Distributions of
the richness P(C) obtained from Monte-Carlo simulations. c The theoretical expected species-count vector(
E
[
ck
])

k≥1 calculated from Eqs. (33) and (26). Contrary to the sBDI model, the BDICC model is dominated

by only one species (C 	 1) with around 20 individuals (the peak of E
[
ck
]
arises at k 	 20). This attribute is

completely missed in a mean-field approximation to E
[
ck
]
[16]. Negligible differences between the BDICC

and BDICC-bis models are observed (Color figure online)

adjusted μ for the sBDI model and μ1 for the BDICC model so that E [N ] = 20 in both
cases. Clear differences emerge. First, since μ(N ) is proportional to the existing population
N in the BDICC model, very rarely will the population reach vanishingly small levels: as
N → 0 so will μ(N ) → 0 allowing birth and immigration to replenish N . This is in contrast
to the sBDI model where μ is a constant independent of N .

Another feature of a low immigration rate is that it allows one species to “invade the
niche” of the BDICC model before the arrival of another species. The result is that only
one species (C 	 1) represents the whole population and E [ck] has a peak around k ≈
E [N ] = 20. This exclusion effect does not arise in the sBDI model since the presence of
species already in the system does not influence the dynamics of the newly arriving ones.
These exclusionary interactions are also the origin of the peak observed in Fig. 4c. Note that
this difference is not only due to the sBDI model’s high probability of extinction (N = 0):
we checked that the distributions of the sBDI model, conditioned on N > 0, also fail to
display the exclusionary effectwhere one clonedominates.Directmean-field approximations,
E [ckc�] ≈ E [ck]E [c�], lead to monotonic decreasing E [ck] [16], completely missing the
peak around the carrying capacity (k ≈ 20). Global carrying capacity interactions can also
have a significant influence on Shannon’s entropy and Simpson’s diversity index.

The qualitative differences between the two models diminish as the immigration rate α

increases. This confirms our theoretical analysis through which we showed that the sBDI and
the BDICC models follow similar trends as α increases. If we fix μ of the sBDI model and
μ1 in the BDICC model such that lim�→∞ E [N/�] remains the same for both models, we
find that N/�, C/� and ck/� converge to the same constants in the two models and that
ni converges to the same the log-series distribution as well.

5.3.2 Carrying Capacity on Birth (BDICC-bis Model)

Our BDICC model included an interaction only through the death rate μ(N ). This choice, as
opposed to, say, r(N ) was made because the detailed balanced assumption can be shown to
hold between all pairs of states, rendering our analytic results for the probability distribution
P(�c) exact.
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Alternatively, one can impose an interaction through a population-dependent birth term. It
is well-known that even if the mean populations are equal, models usingμ(N ) yield different
higher order statistics from those using r(N ) [1]. The interactingmodel withμ constant, but a
growth rate r(N ) is dubbed the BDICC-bismodel. For the BDICC-bismodel, the equilibrium
distribution of N can still be determined as

P(N ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

Zα,μ

, N = 0,

1

Zα,μ

1

N !
N−1∏

k=0

α + r(k)k

μ
, N ≥ 1,

with Zα,μ a normalizing constant. However, as shown in Sect. C.5 of the Appendix the
BDICC-bis model with population-dependent growth is no longer reversible when enu-
merated by the species counts ck and we cannot use detailed balance properties to exactly
determine the probability distribution P(�c). Consequently, neither means nor variances of ck

and C can be determined. We thus perform numerical simulations by setting r(N ) = r1/N ,
while keeping α,μ uniform.

We compare results of the BDICC-bis model to those of the sBDI model (α, r , μ uniform)
and the previous BDICC model (α, r , μ(N ) = μ1N ). As in Sect. 5.3 we consider a low
immigration rate α = 0.2, set μ = 1, and adjust the parameter r1 so that E [N ] is the
same across the three models. Results for the BDICC-bis model are plotted as the blue
dashed curves in Fig. 4. Observed trends for the P(N ) and P(C) distributions within the
BDICC and the BDICC-bis models are similar, as well as for E [ck]. Shannon’s entropy
and Simpson’s diversity index also remain similar, E [H ] = 0.25 and E [S] = 0.15 for the
BDICC-bis model, and E [H ] = 0.26 and E [S] = 0.16 for the BDICC model.

5.3.3 Quasi-steady State and Reflecting Boundary Conditions

When α = 0 in the BDICC model, the N = 0 state is a perfect sink. In the absence of
immigration, a system cannot escape from the “absorbing” N = 0 state. However, in the
deterministic limit, the N = 0 state is unstable while the finite-population state with N∗
individuals is stable (for μ(N ) = μ1N , N∗ = r/μ1). Even though the true steady-state of
the stochastic problem is N = 0, it may take an exponentially long time for a population
initially at N ∼ N∗ to become extinct. Therefore, given a system initiated with a large
population N ∼ N∗, we expect that a quasi-steady state is established before extinction.

To find distributions associatedwith the long-lived quasi-steady state of theBDICCmodel,
we modify the absorbing boundary condition at N = 0 to a reflecting boundary condition
by simply preventing the last individual from dying by setting μ(N = 1) = 0. We can now
compute the steady state distribution of N using detailed balance to find

P(N ) = P(1)
1

N !
N−1∏

k=1

α + rk

μ(k + 1)
,

with P(1) being the probability of having one individual. Contrary to the BDICCmodel with
an absorbing boundary condition, we can no longer recurse the detailed balance equations
down to N = 0, since the last individual cannot die (in other words P(0) = 0). By denoting

Z ′
α,r =

∞∑

n=1

1

n!
n−1∏

k=1

α + rk

μ(k + 1)
,
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Fig. 5 Comparison of P(N ) for the BDICC model with absorbing and reflecting boundary conditions in
the small α limit. For both submodels, r = 0.995 and μ(N ) = 0.0498N , leading to a carrying capacity of
N∗ ≈ 20. The thick black curve corresponds to the quasi-steady state for α = 0 computed by using a reflecting
boundary condition approximation (Eq. (38)). The colored curves correspond to the steady-state distribution
of the absorbingmodel using different values of α. When α = 0, the standard absorbing BDICCmodel leads to
an equilibrium “vacuum” or “extinct” state (dark blue), while the BDICC model approximated with reflecting
boundary condition leads to a the quasi-steady state distribution P(N ) centered about N∗ (Color figure online)

we find

P(N ) = 1

Z ′
α,r

1

N !
N−1∏

k=1

α + rk

μ(k + 1)
.

Similarly, using the detailed balance equations, we find the distribution of �c,

P(�c) = P(1, 0, . . .)

α

(α

r

)C r N

∏N
n=2 μ(n)

1
∏∞

i=1 i ci ci ! ,

where P(1, 0, . . .) = 1/Z ′
α,r .

The importance of the quasi-steady state is most discernible in the α → 0 limit where
initial conditions determine long-lived configurations. With absorbing boundary conditions,
the equilibrium state is the trivial empty state even if it is deterministically unstable. However,
by using a reflecting boundary condition on the total population, we can approximate the
long-lived quasi-steady state distributions with

P(N ) −−−→
α→0

1

Z ′
0,r

r N−1

N !
N∏

k=2

1

μ(k + 1)
(38)

P(�c) −−−→
α→0

⎧
⎪⎪⎨

⎪⎪⎩

1

Z ′
0,r

r N−1

N !
N∏

k=2

1

μ(k + 1)
if C = ∑

k ck = 1

0 otherwise.

(39)

In this limit, only one species survives and occupies the whole system before final extinction
at exponentially long times.

Intuitively, without immigration, new species cannot be introduced in the system, and
with probability 1 there will be at some point only one individual in the system. This single-
species population persists for a long time before final extinction. This long time persistence
is approximated by the reflecting boundary condition that prevents true extinction. Note
that this limit is related to species extinction and coarsening in a multispecies Moran model
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with fixed population size [3]. The distributions P(N ) for absorbing and reflecting boundary
conditions are compared in Fig. 5 for small α.

6 Summary and Conclusions

In this paperwe analyzed three stochastic, neutral birth–death–immigration (BDI)models: the
simple BDI (sBDI), BDI with mutations (BDIM), and BDI with carrying capacity (BDICC).
Where possible, we derived analytical expressions for the steady-state distribution P(N ) of
the total population and the steady-state distribution P(C) for the total number of species
in the system. In many cases, we were also able to derive expressions for the steady-state
distributions of individual subpopulations P(ni ) and P(ck), given in terms of cells counts ni

and species counts ck , respectively.
All three models (sBDI, BDIM, and BDICC) analyzed show similar species abundance

distribution functions. In particular, we find that the number of individuals in one species
ni follows a strict log-series distribution P(ni ), or, in the case of the BDICC model, can
be approximated by one. The prediction that species could follow this type of distribution
dates to the early days of theoretical ecology. For example, after analyzing insect abundances
in the field, Fisher et al. [14] proposed that the distribution of insect species in an area
should follow a geometric or, possibly, a log-series distribution. The log-series distribution
has since been widely used in theoretical ecology [4,26,34], but has also been challenged. For
instance Preston [30] speculated that actual species abundances would be better described
by a log-normal, or possibly a Poisson log-normal distribution [6]. Within immunology, the
abundance of T-cell clones appears to follow a power-law distribution, incompatible with a
log-series distributions [10]. The log-series characteristic of our BDI models can be linked
to their neutrality, i.e. that replication and death rates are independent of the given species.

We also evaluated diversity metrics such as Shannon’s entropy and Simpson’s diversity
index and provided expectations and variances of a number of quantities. Stochastic simu-
lations were also performed and matched with our analytical results. Our analytical results
are summarized in Table 1, while Table 2 lists the same results in the large immigration
regime. Interestingly, we show that in the fast immigration limit, the diversity indices H and
S converge to values independent of the model, but the richness C converges to values that
are model-dependent. Only the richness can distinguish the different processes in the fast
immigration limit, implying that in this limit it is a more useful diversity metric.

Finally, we confirmed the consistency of detailed balance for a carrying capacity model in
which the global interaction is implemented through the death rate (BDICC) but demonstrated
that detailed balance is violated if carrying capacity is effected through the birth rate (BDICC-
bis model). Nonetheless, this asymmetry generates almost no qualitative difference in the
statistical properties when comparing the two models using equal mean total populations.

Many related applicationsmotivate us to extendourwork towards non-neutralBDImodels.
We expect that lifting the neutrality condition will typically generate longer tails in species
abundance distributions.
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Mathematical Appendices

A: Simple Birth–Death–ImmigrationModels (sBDI)

A.1: Finite Number of Species

So far, we have assumed immigration events introduce completely new species to the system,
regardless of the existing population structure. Within the context of island biodiversity, this
assumption corresponds to the mainland hosting an unlimited number of species, so that
individuals who emigrate to the island are always part of a new species. Mathematically, we
are assuming that each species immigrates only once.

In this Appendix, we consider an alternative model where the number of mainland species
Q is finite. In this case, the probability that a newly immigrated individual belongs to species
i (with 1 ≤ i ≤ Q) is 1/Q and the number of species in the island cannot exceed Q.
As a consequence, the total number of species C ≤ Q, and the number of species with k
individuals ck ≤ Q for all k.

The dynamics of the total number of individuals N remains unchanged with respect to the
sBDI model, as the type of species immigrating from the mainland does not affect overall
birth or death rates. Therefore, the distribution for P(N ) remains identical to the one derived
in Eq. (5) for the simple BDI model. We can now determine the distribution of �c in the
alternative model using the same approach taken for the sBDI model. Transitions are given
by

(c1, c2, . . .)
α(1−C/Q)−−−−−−−→ (c1 + 1, c2, . . .)

}
Immigration

(of new species)

for k ≥1 (c1, . . . , ck , ck+1, . . .)
(rk+α/Q)ck−−−−−−−→ (c1, . . . , ck − 1, ck+1+1, . . .)

}
Birth+Immigration

(ofexistingspecies)

for k ≥ 2 (c1, . . . , ck−1, ck , . . .)

(c1, c2, . . .)

μkck−−−→ (c1, . . . , ck−1 + 1, ck − 1, . . .)
μc1−−→ (c1 − 1, c2, . . .)

}
Death.

Note that the birth process rate is effectively augmented byα/Q, due to the possibility of a new
individual immigrating into an existing species. Conversely, the corresponding immigration
rate for new species is decreased by αC/Q. Also note that the limit Q → ∞ reduces the
current model to the original sBDI. Using detailed balanced equations, similarly as in the
sBDI model, we can write P(�c) as follows

P(�c) =
(
1 − r

μ

)α/r Q!
(Q − C)!

(
r

μ

)N ( 1
∏∞

i=1 ci !
) ∞∏

�=1

�−1∏

j=0

(
j + α

Qr

j + 1

)c�

.

One can verify that this distribution satisfies all the required transition equations. Yet, contrary
to the sBDI model, it is more difficult to determine the distributions of C , ck and ni based on
this formulation; in particular the factor Q!/ (Q − C)! prevents us from applying the same
mathematical procedure used in the sBDI case.

We can however take a different route, namely invoking neutrality and the independence of
the system, to deduce the distributions ofC and ck . Since each species behaves independently
from all others, we can consider the number mi of individuals in the i th species (with 1 ≤ i ≤
Q) independently from the rest. Note that mi is a random variable that can be zero when there
are no individuals of species i present in the system. The quantity mi is the counterpart to ni

123



206 R. Dessalles et al.

introduced for the sBDI model with the caveat that ni represents the number of individuals
of a species actually present on the island (i.e. P (ni = 0) = 0). In the current model ni can
be expressed as a function of mi via

P (ni = k) = P (mi = k|mi > 0) for k ≥ 1, (40)

describing the distribution of the i th species provided that at least one of its individuals is
on the island. The random variable mi follows a birth and death process: its birth rate is
α/Q + rmi and its death rate is μmi . The α/Q rate corresponds to immigration, the rate
rmi corresponds to actual reproduction. We already determined the steady state distribution
of this process in Eq. (5), yielding a negative binomial distribution with parameters α/(r Q)

and r/μ as follows

P(mi ) =
(
1 − r

μ

)α/(Qr) ( r

μ

)mi 1

mi !
mi −1∏

k=0

(
α

Qr
+ k

)
.

The P(ni ) distribution can be determined from P(mi ) expressed above, using Eq. (40)

P (ni = k) = P (mi = k)

1 − P (mi = 0)
=

(
1 − r

μ

)α/(Qr)

1 −
(
1 − r

μ

)α/(Qr)

(
r

μ

)k 1

k!
k−1∏

k′=0

(
α

Qr
+ k′

)

for any k ≥ 1.

Finally, the number of species ck with k individuals and the total number of species C can
be expressed as a function of mi as follows

ck =
Q∑

i=1

I (mi = k) and C =
Q∑

i=1

I (mi > 0) .

Since all mi are i.i.d., the probability distributions of ck and C are given by

P(ck) =
(

Q

ck

)
P (mi = k)ck (1 − P (mi = k))Q−ck ,

P(C) =
(

Q

C

)
(1 − P (mi = 0))C P (mi = k)Q−C ,

which are binomial distributions of respective parameters Q and P (mi = k) for ck , and Q
and 1− P (mi = 0) forC . Note that this approach does not allow us to determine the diversity
indices H and S.

A.2: Convergences in the Large Immigration Regime

In this section, we will prove the convergence of

N/�, C/�,
(c1

�
,

c2
�

, . . .
)

, and H/ log�

in the large immigration regime defined by α = α̃�, � → ∞.

Proposition 1 The scaled total number of individuals N/� converges in distribution to the
constant α̃/(μ − r).
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Proof The definition of the convergence in distribution described in Eq. (3) is equivalent to
the convergence of its moment generating function. One is left with showing that

for any ξ < 0, lim
�→∞E

[
eξ N/�

]
= α̃

μ − r

(see for instance [5, Chapter 5]). Since N ∼ NegBinom (̃α�/r , r/μ) for which the moment
generating function is known, we have for any ξ < 0:

E

[
eξ N/�

]
=
(

1 − r/μ

1 − eξ/�r/μ

)α̃�/r

.

Upon taking the logarithm of the previous expression, we find

log
[
E

[
eξ N/�

]]
= α̃�

r

[
log (1 − r/μ) − log

(
1 − eξ/�r/μ

)]

× ∼
�→∞ − α̃�

r
log

[
1 − ξ

�

r/μ

1 − r/μ

]

× ∼
�→∞

α̃�

r

ξ

�

r/μ

1 − r/μ
= ξ

α̃

μ − r
,

so

E

[
eξ N�/�

]
−−−−→
�→∞ exp

[
ξ

α̃

μ − r

]
,

thus proving the proposition. ��

Proposition 2 The scaled total number of species C/� converges in distribution to

C

�

D−−−−→
�→∞

α̃

r
log

[
1

1 − r/μ

]
.

Proof The proof is similar to Proposition 1. ��

Proposition 3 For each k > 0, ck/� converges in distribution to

ck

�

D−−−−→
�→∞

α̃

r

(r/μ)k

k
.

Proof For any vector �c and k ≥ 1, we have that

ck =
C∑

i=1

I (ni , k) .

Consider the moment generating function of the random variable ck . For any ξ < 0, we have

E
[
eξck/�

] = E

[

exp

(
ξ

�

C∑

i=1

I (ni , k)

)]

.
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Since ni are identical and independently distributed and independent of C , and since their
distributions do not depend on the parameter �, it follows that

E
[
eξck/�

] = E

[(
E

[
exp

(
ξ

�
I (n1, k)

)])C
]

= E

[(
eξ/� P(n1 = k) + (1 − P(n1 = k))

)C]

= E

[((
eξ/� − 1

)
P(n1 = k) + 1

)C]
.

Since the probability distribution of n1 is known, we have

E
[
eξck/�

] = E

⎡

⎣

(

1 − 1

k

(
r

μ

)k
(eξ/� − 1)

log(1 − r/μ)

)C
⎤

⎦ .

Note that for any real A,

C log
[
1 − (

eξ/� − 1
)

A
] ∼

�→∞ −C
(
eξ/� − 1

)
A,

∼
�→∞ −C

�
ξ A.

Considering the exponential of this expression, we have

E
[
eξck/�

] = E

[
exp

[
−C

�

(r/μ)k

k

ξ

log(1 − r/μ)

]]
.

Finally, since we have already shown that C/� converges in distribution (Proposition 2
above), we find

lim
�→∞E

[
eξck/�

] = exp

(
ξ
α̃

r

(r/μ)k

k

)
.

��
Proposition 4 The Shannon’s Entropy H converges in distribution as

H

log�

D−−−−→
�→∞ 1.

Proof Using the definition of H ,

H

log�
=

∞∑

k=1

k
ck

�

�

N

log N − log k

log�
,

where ck/� and N/� converge in distribution to known constants, we find

H

log�

D−−−−→
�→∞

μ − r

r

∞∑

k=1

(
r

μ

)k

= 1

��
Proposition 5 The Simpson’s diversity index S converges in distribution as

S
D−−−−→

�→∞ 1.
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Proof By the definition of S (Eq. (2))

S = 1 − 1

�

∞∑

k=1

ck

�

(
k

N/�

)2

,

and since ck/� and N/� converge in distribution to known constants, we find

S
D−−−−→

�→∞ − 1

�

∞∑

k=1

α̃

r
k

(
r

μ

)k (
μ − r

α̃

)2

= 1 − (μ − r)2

�r α̃

∞∑

k=1

k

(
r

μ

)k

.

One can then recognize the power series identity

r/μ

(1 − r/μ)2
=

∞∑

k=1

k

(
r

μ

)k

and hence show that the second term vanishes as � → ∞ and deduce the result S
D−−−−→

�→∞ 1.

��

B: BDI Model with Mutation (BDIM)

B.1: Distribution of the Number of Individual in One Species

We propose an argument for a Log-series distribution of any species

πk = P(ni = k)

when all species are independent of each other. There are several ways to interpret πk . First
consider the explicit dynamics of each species. Denote by mq(t) the number of individuals
of species q at time t and define aq as the time of arrival (by convention, we order the species
such as a0 = 0 < a1 < a2 < . . .) and dq its “lifespan”, i.e. the species will be extinct at
time aq + dq (see the example in Fig. 8a). Note that the index q indicates the order of arrival
(and not the species identity index i used in the main article), and that the distribution of
the times aq is not specified and can be adapted to any rate of species creation (either by
immigration or by mutation). The evolution of each species is independent of each other,
and each of them defines an identically distributed birth–death process characterized by the
following transitions

{
mq → mq + 1 at rate mq r(1 − ε),

mq → mq − 1 at rate mq μ.
(41)

Due to the r < μ assumption, this process will become extinct almost surely [2, Chapter 2]
and the lifespan dq of each species is finite (Figs. 6 and 7).

In the main article, we interpreted πk as the number of individuals in a given species at
steady state, that is to say, we considered the T → ∞ limit

πk = lim
T →∞ P

(
m JT (T ) = k

)

where JT is the index of a randomly sampled species among those that exist at time T ; i.e.,
JT is uniformly chosen among all the species q such that aq < T < aq + dq .
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Fig. 6 Distribution of the number of individuals in one species ni under different parameter choices. Dots
represent simulations for various values of u = α/r , v = r/μ, (r = 1) and ε; solid lines depict logarithmic
distributions with parameter r(1− ε)/μ. As expected, the logarithmic distributions match the simulations ni ,
and the distributions of ni do not depend on u

However, there is anotherway to interpretπk . Consider all species that exist or have existed
up to time T and then randomly select one of them, species IT . The number of individuals
in species IT at a randomly chosen time τIT between the introduction of the species (at time
aIT ) and the extinction (at time aIT +dIT ) is denoted m IT . In this picture, we can characterize
πk according to

πk = lim
T →∞ P

(
m IT (τIT ) = k

)
. (42)

Themain difference between the two approaches is that, in the first case, we sample among
the species that exist at a precise time T before taking T → ∞, while in the second case, we
sample among all the species that existed before time T (before taking T → ∞).

For a fixed time T , the last species introduced in the system is given by

QT = argmax
q∈N

(
aq < T

)
.
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Fig. 7 Accuracy of Shannon’s entropy and Simpson’s index (as defined in Eq. (25)). We plot the ratio of the
estimates of Shannon’s entropy and Simpson’s index and their respective values measured via simulation for
different u = α/r , v = r/μ (by taking r = 1), and different ε. The estimates become more accurate as E [N ]
increases: the error is below 10% for any parameters u, v, ε such that E [N ] is larger than 5

All species that exist or have existed before time T are in the set {0, . . . , QT }. Note that since
aq are increasing in q , limT →∞ QT = ∞. As per Eq. (42), we have to sample one species
among the set {0, . . . , QT }. One key point is that the random selection is not uniform: there is
a higher chance of selecting species with longer lifespans. If IT is the index of the randomly
chosen species, we can write

P (IT = q) = I (q ≤ QT )
dq

∑QT
j=0 d j

.

The first term I (q ≤ QT ) ensures that the species q exists before time T while the second
term proportionally weights the probability of sampling according to their lifespans. Con-
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Fig. 8 a A representative trajectory of three immigrated species. The q-th species is introduced at time aq
and extinguishes at time aq + dq . b Construction of the process m (defined in Eq. (43)) by stacking and
concatenating the trajectories of each species

(
mq
)
q∈N

ditioned on species IT having been sampled, we then randomly chose a time τIT uniformly
distributed between aIT and aIT + dIT .

Proposition 6 The limiting distribution becomes

πk = lim
T →∞ P

(
m IT (τIT ) = k

) = 1

log
(
1 − r(1−ε)

μ

)
1

k

(
r(1 − ε)

μ

)k

.

Proof By summing over all possible species q , we can write

P
(
m IT (τIT ) = k

) =
∑

q∈N
E

[

I (q ≤ QT )
dq

∑QT
j=0 d j

I
(
mq(τq), k

)
]

= E

⎡

⎣
QT∑

q=0

dq
∑QT

j=0 d j

1

dq

∫ aq+dq

aq

I
(
mq(t), k

)
dt

⎤

⎦

= E

⎡

⎣

∑QT
q=0

∫ aq+dq
aq

I
(
mq(t), k

)
dt

∑QT
j=0 d j

⎤

⎦

Next, consider the process m(s) defined as

m(t) = mνt

(
t − dν(t) + aν(t)

)
(43)

with

dk =
k−1∑

q=1

dq and ν(t) = argmax
q

⎧
⎨

⎩

q∑

j=0

d j < t

⎫
⎬

⎭
.

The process m is simply the stacking of all the processes mq in the sense that the process
m(t) for t between dq and dq+1 will be equal to the process mq(s) for s = t − dq + aq

between aq and its extinction time aq + dq (see the example on Fig. 8b). With this stacked
process,

P
(
m IT (τIT ) = k

) = E

[∫ aδT +dδT
0 I (m(t), k) dt

d QT

]

.
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By ergodicity of the process m, we have

lim
T →∞ P

(
m IT (τIT ) = k

) = lim
T →∞ P (m(T ) = k) .

Finally, we have to determine the steady state of the process m. Since the transitions of the
process m are a simple birth–death process

{
m → m + 1 at rate m r(1 − ε)

m → m − 1 at rate m μI (m > 0) .
, (44)

we have that its equilibrium distribution is a logarithmic series distribution with parameter
p ≡ r(1 − ε)/μ (by imposing equations of detailed balance). ��

B.2: Moments of C

The third relation of Eq. (1) yields the following expression for the moment generating
function of N :

E

[
eξ N

]
= E

[
C∏

i=1

eξni

]

,

for any ξ < 0. Since all the (ni )i≤C are identical and independently distributed and indepen-
dent of C , we have

E

[
eξ N

]
= E

[
E
[
eξn1

]C] = E

⎡

⎣

(
log

(
1 − peξ

)

log (1 − p)

)C
⎤

⎦ . (45)

Equation (20) shows that the distribution over n1 is a log-series distribution with parameter
p = r (1 − ε). By redefining the variable ξ ′ such that eξ ′ := log

(
1 − peξ

)
/ log (1 − p) and

eliminating ξ for ξ ′, Eq. (45) becomes an expression for the moment generating function of
C ,

E

[
eξ ′C

]
=
⎛

⎜
⎝

1 − r/μ

1 − r
μ

1−(1−p)eξ
′

p

⎞

⎟
⎠

α/r

.

By differentiating this expression, we can determine the second moment of C :

E
[
C2] = lim

ξ ′→0

d2

dξ ′2E
[
eξ ′C

]
= E [C]

[
1 + log (1 − p) +

(
1 + r

α

)
E [C]

]
,

which yields the expression for var [C] in Eq. (22).

C: BDI Model with Carrying Capacity (BDICC)

C.1: Steady State Distribution of �c

To determine P(�c), the probability of occurrence of the species-count state �c, first consider
a finite K = argmaxi (ci > 0). As explained in the main text, if the system is reversible, one
instance of Eq. (27) is
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μ(N )cK K P(�c) = (K − 1) (cK−1 + 1) r P(c1, . . . , cK−1 + 1, cK − 1, �0).
Recursively unwinding this relationship, we find

P(�c) = P(c1, . . . , cK−1 + 1, cK − 1, �0) r

μ(N )

K − 1

K

cK−1 + 1

cK
,

P(�c) = P(c1, . . . , cK−1 + cK , 0, �0) rcK

μ(N ) . . . μ(N − cK + 1)

(
K − 1

K

)cK (cK−1 + cK )!
cK !cK−1! ,

P(�c) = P(C, �0) r N−C

μ(N ) . . . μ(N −(K −1)cK −. . . − c2+1)

K−1∏

i=1

K∏

j=i+1

(
i

i +1

)c j C !
∏K

i=1 ci !
,

P(�c) = P(C, �0) r N−C

∏N−C
n=1 μ(N − n + 1)

C !
∏K

i=1 i ci ci !
.

After applying Eq. (28), we have by recursion

P(C, 0, . . .) = α

μ(C)

1

C
P(C − 1, 0, . . .) = αC

C !∏C
i=1 μ(i)

P(0, . . .),

and

P(�c) = P(0, . . .)
(α

r

)C r N

∏N
n=1 μ(n)

1
∏K

i=1 i ci ci !
.

Since the state �c = �0 uniquely corresponds to the state N = 0 and the above expression
holds for K arbitrarily large, it follows that

P(�c) = 1

Zα,r ,μ

(α

r

)C r N

∏N
n=1 μ(n)

1
∏∞

i=1 i ci ci ! . (46)

One can verify that this steady-state distribution satisfies the detailed balanced conditions
connecting all pairs of states:
{

μ
(∑

k kck
)

kck P(�c) = (k − 1) (ck−1 + 1) r P(c1, . . . , ck−1 + 1, ck − 1, . . .) ∀k > 1,

μ
(∑

k kck
)

c1P(�c) = αP(c1 − 1, . . . , ck, . . .).

(47)

C.2: Convergence of N/Ä

Theorem 7 The random variable N/� converges in probability to the real n∗ which is the
only solution of the fixed point Eq. (36).

To prove this Theorem, first define

f (x) := α̃ + r x

xμ̃(x)
and fk := α̃ + (k − 1)r/�

(k/�)μ̃(k/�)
∀k ∈ N∗.

The function f defines the steady-state constraint on n = N/� given by Eq. (36) where x =
n∗ is the only real solution to f (x) = 1. With these definitions, the probability distribution
over N can be expressed as

∀n ∈ N, P (N = n) = exp
(∑n

k=1 log fk
)

∑∞
n′=0 exp

(∑n′
k=1 log fk

) .
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Now, consider the following lemma:

Lemma 8 The function f is strictly decreasing and there exists a �∗ for which ∀� ≥ �∗,
( fk)k≥1 is a decreasing sequence.

Proof The decrease of the function f is a direct implication of the increase of μ̃. For, ( fk)k≥1
we have

(k + 1) (̃α� + r(k − 1)) − k (̃α� + rk) = α̃� − r ,

which is positive for large enough �. Since μ̃ is increasing,

fk

fk+1
= μ̃((k + 1) /�)

μ̃(k/�)

(k + 1) (̃α� + (k − 1)r)

k (̃α� + rk)
> 1.

��
To prove Theorem 7, we have to show that ∀δ > 0,

P
(∣∣N/� − n∗∣∣ > δ

) −−−−→
�→∞ 0

that is to say, we have to show that

P
(
N/� > n∗ + δ

) −−−−→
�→∞ 0, (48)

P
(
N/� < n∗ − δ

) −−−−→
�→∞ 0. (49)

The proofs of convergence for both limits above are very similar so we will focus on the
proof of Eq. (48). To simplify notation, we define a�,δ ≡ ��(n∗ + δ)�, (where �·� is the
ceiling function). Since the distribution of N is known, we have

P
(
N/� > n∗ + δ

) =
∑∞

n=a�,δ
exp

(∑n
k=1 log fk

)

∑a�,δ−1
n=0 exp

(∑n
k=1 log fk

)+∑∞
n=a�,δ

exp
(∑n

k=1 log fk
)

=
(∑a�,δ−1

n=0 exp
(∑n

k=1 log fk
)

∑∞
n=a�,δ

exp
(∑n

k=1 log fk
) + 1

)−1

.

Thus, it is enough to show
∑a�,δ−1

n=0 exp
(∑n

k=1 log fk
)

∑∞
n=a�,δ

exp
(∑n

k=1 log fk
) −−−−→

�→∞ ∞

in order to prove the convergence of Eq. (48).

Proposition 9 In the � → ∞ limit, the following equivalence holds

∞∑

n=a�,δ

exp

(
n∑

k=1

log fk

)

∼
�→∞ exp

⎛

⎝
a�,δ−1∑

k=1

log fk

⎞

⎠ 1

1 − f (n∗ + δ)

Proof We first decompose the sum according to

∞∑

n=a�,δ

exp

(
n∑

k=1

log fk

)

= exp

⎛

⎝
a�,δ−1∑

k=1

log fk

⎞

⎠
∞∑

n=a�,δ

exp

⎛

⎝
n∑

k=a�,δ

log fk

⎞

⎠ .
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The second term of the decomposition can be rewritten as

∞∑

n=a�,δ

exp

⎛

⎝
n∑

k=a�,δ

log fk

⎞

⎠ =
∞∑

n=0

exp

(
n∑

k=0

log fk+a�,δ

)

.

Since ak,�/� −−−−→
�→∞ n∗ + δ, it follows that

n∑

k=0

log fk+a�,δ ∼
�→∞ n log f (n∗ + δ).

As f is a strictly decreasing function (cf. Lemma 8), and since n∗ is the only point where
f (n∗) = 1, it follows that f (n∗ + δ) < 1. Therefore, the sum over n converges, and we
have

∞∑

n=a�,δ

exp

⎛

⎝
n∑

k=a�,δ

log fk

⎞

⎠ ∼
�→∞

1

1 − f (n∗ + δ)

��
With the previous Proposition, it is enough to prove that the ratio

∑a�,δ−1
n=0 exp

(∑n
k=1 log fk

)

exp
(∑a�,δ−1

k=1 log fk

) =
a�,δ−1∑

n=0

exp

⎛

⎝−
a�,δ−1∑

k=n+1

log fk

⎞

⎠

diverges to infinity in order to prove the convergence of Eq. (48).

Proposition 10 The sum

a�,δ−1∑

n=0

exp

⎛

⎝−
a�,δ−1∑

k=n+1

log fk

⎞

⎠ −−−−→
�→∞ ∞

diverges.
Proof Since ( fk)k≥1 is decreasing for large � (cf. Lemma 8), we have

a�,δ−1∑

k=n+1

log fk ≤ (
a�,δ − n − 1

)
log fa�,δ−1

for sufficiently large �. Therefore,

a�,δ−1∑

n=0

exp

⎛

⎝−
a�,δ−1∑

k=n+1

log fk

⎞

⎠ ≥
a�,δ∑

n′=1

(
1

fa�,δ−1

)n′

.

Since

fa�,δ−1 −−−−→
�→∞ f (n∗ + δ),

for large enough � and since f is decreasing, we have that fa�,δ−1 < 1 − η for η small
enough. Therefore, we conclude the divergence

a�,δ∑

n′=1

(
1

fa�,δ−1

)n′

−−−−→
�→∞ ∞

and proof of the proposition. ��
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With this Proposition, we have proven the convergence of Eq. (48). The convergence of
Eq. (49) can be proved using exactly the same methods by considering b�,δ = ��(δ + n∗)�
instead of a�,δ .

C.3: Convergence of C/Ä

Theorem 11 The scaled total number of species C/� converges in distribution to

C

�

D−−−−→
�→∞

α̃

r
log

[
1 + r

α̃
n∗] = α̃

r
log

[
1

1 − r/μ̃(n∗)

]
,

in which n∗ is the only real solution of the fixed point Eq. (36).

Proof One has to prove that

E
[
exp [ξC/�]

] = Zαeξ/�,r ,μ

Zα,r ,μ

−−−−→
�→∞

(
1

1 − r/μ̃(n∗)

)ξ α̃/r

=
(
1 + r

α̃
n∗)ξ α̃/r

with

Zα,r ,μ =
∞∑

n′=0

exp

⎛

⎝
n′∑

k=1

log
α̃ + r(k − 1)/�

k/� μ̃(k/�)

⎞

⎠ .

First note that

E
[
exp [ξC/�]

] = 1

Zα,r ,μ

∞∑

n=0

exp

(
n∑

k=1

log
α̃eξ/� + r(k − 1)/�

k/� μ̃(k/�)

)

=
∞∑

n=0

P (N = n) exp

(
n∑

k=1

log
α̃eξ/� + r(k − 1)/�

α̃ + r(k − 1)/�

)

= E

[

exp

(
N∑

k=1

log
α̃eξ/� + r(k − 1)/�

α̃ + r(k − 1)/�

)]

Since N/� converges in probability to n∗,

E
[
exp [ξC/�]

] ∼
�→∞ exp

⎛

⎝
n∗�∑

k=1

log
α̃eξ/� + r(k − 1)/�

α̃ + r(k − 1)/�

⎞

⎠ .

Since the function log
(

α̃eξ/�+r(x−1)/�
α̃+r(x−1)/�

)
is decreasing in x , we can bound the sum with its

lower and upper integral bounds

∫ n∗�+1

1
log

α̃eξ/� + (x − 1)r/�

α̃ + (x − 1)r/�
dx ≤

n∗�∑

k=1

log
α̃eξ/� + (k − 1)r/�

α̃ + (k − 1)r/�

≤ ξ

�
+
∫ n∗�

1
log

α̃eξ/� + (x − 1)r/�

α̃ + (x − 1)r/�
dx .
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After rescaling y = (x − 1)/�, the bounds can be expressed as

�

∫ n∗+1/�

0
log

α̃eξ/� + ry

α̃ + ry
dy ≤

n∗�∑

k=1

log
α̃eξ/� + (k − 1)r/�

α̃ + (k − 1)r/�

≤ ξ

�
+ �

∫ n∗

0
log

α̃eξ/� + ry

α̃ + ry
dy

Upon taking� → ∞ and expanding the above expression, we find that both bounds converge
to

ξ

∫ n∗

0

α̃

α̃ + ry
dy.

Thus, we find

E
[
exp [ξC/�]

] ∼
�→∞ exp

(

ξ α̃

∫ n∗

0

1

α̃ + ru
du

)

= exp

(
ξ
α̃

r
log

[
1 + r

α̃
n∗]

)
.

��

C.4: Convergence of ni

Proposition 12 The marginal probability over each particle count ni converges according
to

P (n1 = k) −−−−→
�→∞

1

k

(
r

μ̃(n∗)

)k −1

log [1 − r/μ̃(n∗)]
.

Proof The ni values are identically distributed, so that for any i, j ≤ C ,

for any k ≥ 1, P (ni = k) = P
(
n j = k

)
.

We can then compute the expectation

E

[ck

C

]
= E

[
C∑

i=1

E [I (ni , k) |C]

C

]

= E [E [I (n1, k) |C]] = P (n1 = k) .

This expectation is over a product of two converging quantities:

E

[ck

C

]
= E

[
ck

�

�

C

]
= P(n1 = k),

where ck/� and C/� converge in distribution to constants
(

ck

�
,

C

�

)
D−−−−→

�→∞

(
α̃

r
log

[
1

1 − r/μ̃(n∗)

]
,
α̃

r

1

k

(
rk

μ̃(n∗)

)k
)

.

We now apply the mapping theorem (see [5, Chapter 5]) to E
[
g
( ck

�
, C

�

)]
for any continuous

function g to obtain

P(n1 = k) −−−−→
�→∞

1

k

(
r

μ̃(n∗)

)k −1

log[1 − r/μ̃(n∗)] .
��
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C.5: Explicit Breakdown of Detailed Balance in the BDICC-bis Model with
Birth-Mediated Carrying Capacity

Here, we consider a birth–death–immigration model with carrying capacity but contrary to
the BDICC model presented in Fig. 1c, the carrying capacity is on the birth rate r(N ), and
the death rate μ is a constant. By analogy with the BDICC analysis, we find a sufficient
condition for a steady state to exist

lim
N→∞ r(N ) < μ.

The distribution P(N ) of the total number of individuals is given by

P(N ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

Zα,μ

, N = 0,

1

Zα,μ

1

N !
N−1∏

k=0

α + r(k)k

μ
, N ≥ 1,

where

Zα,μ = 1 +
∞∑

N=1

1

N !
N−1∏

k=0

α + r(k)k

μ
.

All possible transitions of the BDICC-bis model are given by

(c1, c2, . . .)
α−→ (c1 + 1, c2, . . .) Immigration

for k ≥ 1 (c1, . . . , ck , ck+1, . . .)
r(N )kck−−−−−→ (c1, . . . , ck − 1, ck+1 + 1, . . .) Birth

for k ≥ 2 (c1, . . . , ck−1, ck , . . .)

(c1, c2, . . .)

μkck−−−→ (c1, . . . , ck−1 + 1, ck − 1, . . .)
μc1−−→ (c1 − 1, c2, . . .)

}
Death

If we assume detailed balance between pairs of states with maximum clone size K , we can
recurse the relations

μckk P(c1, . . . , ck−1, ck, . . .) = r(N )(k − 1) (ck−1 + 1) P(c1, . . . , ck−1 + 1, ck − 1, . . .)

for 2 ≤ k ≤ K down to the states

μc1P(c1, �0) = αP(c1 − 1, �0)
to give

P(�c) = 1

Zα,μ

αC

μN

∏N−C
n=1 r(N − n)
∏∞

i=1 i ci ci ! . (50)

Using these chosen pairs of states to impose detailed balance, we find a unique distribution
P(�c). However, this form of P(�c) will not obey detailed balance between all pairs of states.
For example, balancing the transitions

(c1, c2, . . .)
μc1−−⇀↽−−
α

(c1 − 1, c2, . . .)

would also require

μc1P(c1, c2 ≥ 1, . . .) = αP(c1 − 1, c2 ≥ 1, . . .).
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However, using the P(�c) from Eq. (50), we find

μc1P(c1, c2 ≥ 1, . . .)

αP(c1 − 1, c2 ≥ 1, . . .)
= r(C − 1)

r(N − 1)
�= 1

because generally, N �= C . Remarkably, the analogous exercise for the BDICCmodel where
μ = μ(N ) does satisfy detailed balance between all pairs of states and the P(�c) we derived
for the BDICC model, Eq. (29), is exact.
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