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Abstract 
In a recent clone-tracking experiment, millions of uniquely tagged hematopoietic stem 

cells (HSCs) and progenitor cells were autologously transplanted into rhesus macaques 

and peripheral blood containing thousands of tags were sampled and sequenced over 14 

years to quantify the abundance of hundreds to thousands of tags or “clones.” Two major 

puzzles of the data have been observed: consistent differences and massive temporal 

fluctuations of clone populations. The large sample-to-sample variability can lead clones 

to occasionally go “extinct” but “resurrect” themselves in subsequent samples. Although 

heterogeneity in HSC differentiation rates, potentially due to tagging, and random 

sampling of the animals’ blood and cellular demographic stochasticity might be invoked 

to explain these features, we show that random sampling cannot explain the magnitude 

of the temporal fluctuations. Moreover, we show through simpler neutral mechanistic and 

statistical models of hematopoiesis of tagged cells that a broad distribution in clone sizes 

can arise from stochastic HSC self-renewal instead of tag-induced heterogeneity. The 

very large clone population fluctuations that often lead to extinctions and resurrections 

can be naturally explained by a generation-limited proliferation constraint on the 

progenitor cells. This constraint leads to bursty cell population dynamics underlying the 

large temporal fluctuations. We analyzed experimental clone abundance data using a 

new statistic that counts clonal disappearances and provided least-squares estimates of 

two key model parameters in our model, the total HSC differentiation rate and the 

maximum number of progenitor-cell divisions. 
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Author summary 
Hematopoiesis of virally tagged 

cells in rhesus macaques is 

analyzed in the context of a 

mechanistic and statistical model. 

We find that the clone size 

distribution and the 
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temporal variability in the 

abundance of each clone (viral 

tag) in peripheral blood are 

consistent with (i) stochastic HSC 

self-renewal during bone 

marrow repair, (ii) clonal aging 

that restricts the number of 

generations of progenitor cells, 

and (iii) infrequent and smallsize 

samples. By fitting data, we infer 

two key parameters that control 

the level of fluctuations of clone 

sizes in our model: the total HSC 

differentiation rate and the 

maximum proliferation capacity 

of progenitor cells. Our analysis provides insight into the mechanisms of hematopoiesis 

and a framework to guide future multiclone barcoding/lineage tracking measurements. 

Introduction 
Hematopoiesis is a process by which hematopoietic stem cells (HSCs) produce all the 

mature blood in an animal through a series of proliferating and differentiating divisions [1]. 

Maintenance of balanced hematopoietic output is critical for an organism’s survival and 

determines its response to disease and clinical procedures such as bone marrow 

transplantation [2–5]. How the relatively small HSC population generates more than 1011 

cells of multiple types daily over an organism’s lifetime has yet to be fully understood. HSCs 

are defined primarily by their function but are often quiescent [6]. In vivo, it is hard to track 

the dynamics of individual HSCs, while HSCs in vitro do not typically proliferate or 

differentiate as efficiently. Therefore, the dynamics of HSCs can be inferred only from 

analyses of populations of progenitors and differentiated blood cells [7] and it is useful to 

investigate HSC dynamics through mathematical modeling and simulations [8–10]. 

While most studies model population-level HSC behavior [5, 11, 12], certain aspects of 

HSCs, such as individual-level heterogeneity in repopulation and differentiation dynamics, 

have to be studied on a single-cell or clonal level [13]. Single HSC transplant mouse data [14] 

and clonal tracking of HSCs [15, 16] in mice have shed some light on repopulation dynamics 

under homeostasis and after bone marrow transplantation [5, 17, 18]. However, murine 

studies usually involve only one or a few clones. How each individual HSC contributes to the 

blood production process over long times in much larger human and non-human primates is 

less clear and more difficult to study. Also, unlike in mice, there is no way to isolate and 

mark HSC populations in human [19]. 

Recently, results of a long-term clonal tracking of hematopoiesis in normal-state rhesus 

macaques has been made available [13, 20]. The experiment extracted and uniquely 

“labelled” hematopoietic stem and progenitor cells (HSPCs) from four rhesus macaques 

with viral tags that also carry an enhanced green fluorescent protein gene. After autologous 

transplantation, if any of the tagged HSPCs divide and differentiate, its progeny will inherit 

their unique tags and ultimately appear in the peripheral blood. Blood samples were drawn 

every few months over 4 − 14 years (depending on the animal) and the sampled cells were 

counted and sequenced. Of the *106 − 107 unique HSPC tags transplanted, *102 − 103 clones 

were detected in the sampled peripheral blood. In the original paper describing the clonal 

tracking experiment, Kim et al. [13] observed “A small fraction (4 − 10%) of tagged clones 

predominately contribute to a large fraction (25 − 71%) of total blood repopulation.” They 

described the fluctuations of tags that appeared in each sample as “waves of clones”, but 

did not address why some clones can disappear at certain times and reappear in a latter 

sample. 

In this study, we seek to better understand the observed clone size distributions and the 

large temporal variability in clonal populations. To address these observations, we ask: Is 
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heterogeneity in HSCs necessary for peripheral blood clone size heterogeneity, or can a 

neutral model explain clone size differences? Are clones that disappear and reappear from 

sample to sample simply missed by random blood sampling, or do other mechanisms of 

temporal variability need to be invoked? 

Unlike other previous models that describe the evolution of lineages of different cell 

types and their regulation [8–10, 21], we will consider simpler neutral models that describe 

the dynamics of specifically granulocyte populations carrying different tags. Of central 

interest is the competition among the thousands of clones under a neutral environment 

that gives rise to fluctuations, extinctions, and resurrections in individual clone populations. 

Even when considering only one cell type, realistic mathematical models may need to 

include complex multilevel biochemical feedback mechanisms of regulation [8, 22–27]. 

Many mechanisms may contribute to temporal fluctuations, including extrinsic noise and 

heterogeneity of HSCs, progenitors, or mature granulocytes. Large time gaps between 

samplings (5 − 11 months) and small sample sizes also add to the uncertainty of the 

underlying dynamics. Trying to infer all possible mechanisms and associated parameters 

from the experimental data would essentially be an overfitting problem. In order to feasibly 

compare with experimental data, our modeling philosophy will be to recapitulate these 

complexities into simple, effective models and infer parameters that subsume some of 

these regulatory effects. This approach and level of modeling are similar to those taken by 

e.g., Yang, Sun, and Komarova [28, 29]. 

After careful consideration of a number of key physiological mechanisms, we hypothesize 

that stochastic HSC self-renewal, generation-limited progenitor cell proliferation, and 

smallsize sampling frequency statistics provide the simplest reasonable explanation for the 

observed clonal size variability and large temporal fluctuations. HSCs that are generated 

from self-renewal of the founder population share the same tag as their founder HSC. Thus, 

during intense self-renewal after myeloablative treatment and HSPC transplantation, each 

originally transplanted HSCs begets a clonal HSC subpopulation. Subsequently, 

heterogeneous clone sizes are stochastically generated even though each tag was initially 

represented by only a single cell. These expanded HSC clones then go on to repopulate the 

clones in the progenitor and mature blood population, which are also distinguishable by 

their corresponding tags. 

Relative to HSCs, progenitor cells have limited proliferative potential that can explain the 

apparent extinctions of clones in blood samples. This limited proliferation potential can be 

thought of as an “aging” process. Different types of aging, including organism aging [23, 30, 

31], replicative senescence of stem cells [32], and generation-dependent birth and death 

rates, have been summarized by Edelstein et al. [33]. Here, the clonal “aging” mechanism 

we invoke imposes a limit to the number of generations that can descend from each newly 

created (from HSC differentiation) “zeroth generation” progenitor cell. Possible sources of 

such a limit include differentiation-induced loss of division potential [34] and telomere 

shortening (as in the Hayflick limit) [35–37]. Mathematically, genealogical aging can be 

described by tracking cell populations within each generation. After a certain number of 
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generations, progenitor cells of the final generation stop proliferating and can only 

differentiate into circulating mature cells or die. 

In the following sections, we first present the mathematical equations and corresponding 

solutions (whenever possible) of a model that incorporates the above processes. We then 

develop a new statistical measure that tracks the numbers of absences of clones across the 

samples. Measured clone abundances of animal RQ5427 are statistically analyzed within our 

mechanistic model to infer estimates for key model parameters. The data and 

corresponding statistical analyses for animals 2RC003 and RQ3570 are also provided in the 

Results section. 

Materials and methods 
Below, we describe available clonal abundance data, mechanistic models, and a statistical 

model we will use for parameter inference. 

Clone abundance data 

In the experiments of Kim et al. [13], cells in samples of peripheral blood were sequenced 

and counted to extract ^SþðtjÞ, the total number of EGFP+ tagged cells in sample 1  j  J taken 

at time tj. After PCR amplification and sequencing, 
^

f iðtjÞ, the relative abundance of the ith 

tag among all sampled, tagged cells is also quantified. The “^” notation will henceforth 

indicate experimentally measured quantities. 

Within mature peripheral blood, lymphocytes such as T cells and B cells proliferate or 

transform in response to unpredictable but clone-specific immune signals [38]. They also 

vary greatly in their lifespans, ranging from days in the case of regular T and B cells to years 

in the case of memory B cells. On the other hand, mature granulocytes do not proliferate in 

peripheral blood and have relatively shorter life spans [7]. Granulocyte dynamics can thus 

be analyzed with fewer confounding factors [11]. Thus, in this paper, we restrict our analysis 

to granulocyte repopulation and extract all variables, including ^SþðtjÞ and 
^

f iðtjÞ described 

above, that are associated exclusively with granulocyte populations. 

In Fig 1(a), we plot the total numbers of sampled granulocytes from one of the 

macaques, RQ5427. The subpopulation of EGFP+ granulocytes and the subset of EGFP+ 

granulocytes that were extracted for PCR amplification and analysis are also plotted. Data 

for two other animals, 2RC003 and RQ3570, are qualitatively similar. Blood samples from a 

fourth animal, 95E132, were not separated in to granulocyte and peripheral blood 

mononuclear cells (PBMCs) before sequencing. Thus, clonal abundances for granulocytes 

are not available from 95E132. There are only three animals for which we can analyze clonal 

abundances of granulocytes. For more specifics on the data, see supplemental files of the 

original experimental paper [13]. As shown in Fig 1(b), not only are the clone abundances 
^

f 

iðtjÞ heterogeneous, 
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Fig 1. Blood sample data from animal RQ5427 [13]. (a) The total numbers of sampled granulocytes (blue triangles), EGFP+ granulocytes 

(green squares), and the subset of EGFP+ granulocytes that were properly tagged and quantifiable were extracted for PCR amplification 

and analysis (black circles). This last population defined by ^SþðtjÞ is used to normalize clone cell counts. We excluded the first sample at 

month 2 in our subsequent analysis so, for example, the sample at month 56 is labeled the 7th sample. There were 536 clones detected 

at least once across the eight samples taken over 67 months comprising an average fraction 0.052 of all granulocytes. The abundances 

of granulocyte clones are shown in (b). The relative abundance 
^

f iðtjÞ of granulocytes from the ith clone measured at month tj is 

indicated by the vertical distances between two adjacent curves. The relative abundances of individual clones feature large fluctuations 

over time. “Extinctions” followed by subsequent “resurrections,” were constantly seen in certain clones as indicated by the black circles 

in (b) and in the inset (c). 

 

https://doi.org/10.1371/journal.pcbi.1006489.g001 

but individual clone abundances vary across samples taken at different times. The variation 

is so large that many clones can go extinct and reappear from one sample to another, as 

shown in Fig 1(c). Since large numbers of progenitor and mature cells are involved in blood 

production, the observed clone size fluctuations cannot arise from intrinsic demographic 

stochasticity of progenitor- and mature-cell birth and death. Moreover, we will show later in 

the Results section that random sampling alone cannot explain the observed clonal 

variances and mechanisms that involve other sources of variation are required. 

Nomenclature and lumped mechanistic model 

Fig 2 depicts our neutral model of hematopoiesis which is composed of five successive 

stages, or compartments, describing the initial single-cell tagged HSC clonal populations 

immediately after transplantation (Compartment 0), the heterogeneous HSC clonal 

populations after a short period of intense self-renewal (Compartment 1), the transit-

amplifying progenitor cell compartment (Compartment 2), the peripheral blood pool 

(Compartment 3), and the sampled peripheral blood (Compartment 4), respectively. Each 

distinct color or shape in Fig 2 represents a distinct clone of cells with the same tag. 

In each compartment, relevant parameters include (using Compartment 1 as example): 

the total cell count H(t), the untagged cell count H−(t), the tagged cell count H+(t), the total 

https://doi.org/10.1371/journal.pcbi.1006489.g001
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Fig 2. Schematic of a neutral multi-stage or multi-compartment hematopoiesis model. BM and PB refer to bone marrow and 

peripheral blood, respectively. Cells of the same clone have the same color. White circles represent untagged cells which were 

not counted in the analysis. Stages 0, 1, and 2 describe cell dynamics that occur mainly in the bone marrow. Stage 1 describes 

HSC clones (Ch = 6 in this example) after self-renewal that starts shortly after transplantation with rate rh. After self-renewal, the 

relatively stable 

HSC population (H+ = 20 in this example) shifts its emphasis to differentiation (with per-cell differentiation rate α). Larger clones 

in Stage 1 (e.g., the circular blue clone, hblue = 4) will have a larger total differentiation rate αhblue while smaller clones (e.g., the 

red hexagonal clone, hred = 1) will have smaller αhred. The processes of progenitor-cell proliferation (with rate rn) and maturation 

(with rate ω) in Compartments 2 and 3 are considered deterministic because of the large numbers of cells involved. The darker-

colored symbols correspond to cells of later generations. For illustration, the maximum number of progenitor-cell generations 

allowed is taken to be L = 4. Compartment 4 represents a small sampled fraction (ε(tj)  2.8 × 10−5 − 2 × 10−4) of Compartment 3, 

the entire peripheral blood of the animal. In the example pictured above, Cs = 4. Such small samples can lead to considerable 

sampling noise but is not the key driver of sample-to-sample variability. 

 

https://doi.org/10.1371/journal.pcbi.1006489.g002 

number of tagged clones Ch(t), and the number hi(t) of HSCs carrying the ith tag. These 

quantities are related through PC
i¼h1 hiðtÞ ¼ HþðtÞ  HðtÞ H ðtÞ. 

In the progenitor pool, the total number of cells and the number with tag i are denoted 

N(t) and ni(t), respectively. Further resolving these progenitor populations into those of the 

ℓth generation, we define N(ℓ)(t) and nð
i
‘ÞðtÞ. In the mature granulocyte pool, the total 

granulocyte population and that with tag i are labelled M(t) and mi(t). In the sampled blood 

compartment, we use S(tj), S+(tj), si(tj), and Cs(tj) to denote, at time tj, the total number of 

sampled cells, the number of tagged sampled cells, the total number of tagged cells of clone 

i, and the total number of clones in the sample, respectively. In Compartment 4, we further 

define fi(tj) = si(tj)/S+(tj) to denote the relative abundance of the ith clone among all tagged 

clones. 

https://doi.org/10.1371/journal.pcbi.1006489.g002
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By lumping together all clones (tagged and untagged) in each compartment, we can 

readily model the dynamics of total populations in each pool. After myeloablative 

treatment, the number of BM cells, including HSCs, is severely reduced. Repopulation of 

autogolously transplanted HSCs occurs quickly via self-renewal until their total number H(t) 

reaches a steadystate. The repopulation of the entire HSC population and the subsequent 

entire progenitor and mature cell populations may be described via simple deterministic 

mass-action growth laws 

dHðtÞ 

 ¼ oN ðtÞ mmMðtÞ: dt 

HSC self-renewal is a regulated process involving signaling and feedback [22–24, 39, 40] and 

rh may be a complicated function of many factors; however, we will subsume this 

complexity into a simple population-dependent logistic growth law rh(H(t))  ph(1 − H(t)/Kh) 

and assume a constant death rate μh. Alternatively, other studies have employed Hill-type 

growth functions [12, 28]. 

We assume the per cell HSC differentiation rate α is independent of the tag and that 

differentiation is predominantly an asymmetric process by which an HSC divides into one 

identical HSC and one progenitor cell that commits to differentiation into granulocytes. An 

initial generation-zero progenitor cell further proliferates with rate rn
ð0Þ, contributing to the 

overall progenitor-cell population. Subsequent generation-ℓ progenitors, with population 

N(ℓ), proliferate with rate rn
ð‘Þ until a maximum number of generations L is reached. By 

keeping track of the generation index ℓ of any progenitor cell, we limit the proliferation 

 ¼ ðrhðHðtÞÞ mhÞHðtÞ; 

dt 

  ð1Þ 

( 

 aHðtÞ ðrnð0Þ þ mðn0ÞÞNð0ÞðtÞ; 

dN 

 ð‘Þ
ð

t
Þ 

nð‘ 1Þ ð‘ 1ÞðtÞ ð
r

nð‘Þ þ 

mðn‘ÞÞNð‘ÞðtÞ; 

 ¼ 2r N 

dt 

 2rnðL 1ÞNðL 1ÞðtÞ ðo þ mðnLÞÞNðLÞðtÞ; 

‘ ¼ 0; 

1  ‘  L 

‘ ¼ L; 1; 

ð2Þ 

 dMðtÞ ðLÞ 

  

ð3Þ 
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potential associated with an HSC differentiation event by requiring that any progenitor cell 

of the final Lth generation to terminally differentiate into peripheral blood cells with rate ω 

or to die with rate mð
n

LÞ. For simplicity, we neglect any other source of regulation and 

assume α, mð
n

‘Þ ¼ mn, rn
ð‘Þ ¼ rn and ω are all unregulated constants. 

Our model analysis and data fitting will be performed using clone abundances sampled a 

few months after transplantation under the assumption that granulopoiesis in the animals 

has reached steady-state [4] after initial intensive HSC self-renewal. Steady-state solutions 

of Eqs (1), (2) and (3) are defined by Hss, Nss
ð‘Þ, and Mss. The first constraint our model 

provides relates these steady-state total populations through 

 "  L# 
Mss  o NssðLÞ ¼ 

mom ðoaþHmssðnLÞÞ rn 2þrnmn  Amssmb; ð4Þ ¼ 
mm 

where we have defined 

  L 

 o 2r 

 Ass  aHss; and b  o  þ mðnLÞ rn þnmn

 ð5Þ 

as the total rate of HSC differentiation and the average number of granulocytes generated 

per HSC differentiation, respectively. These constraints also hold for the virally tagged, EGFP 

+ subset (about 5% − 10%) of HSCs, e.g., Mss
þ ¼ Aþ

ssb=mm and Ass
þ

 ¼ aHss
þ. Since Mss

þ is 

inferred from the experiment, Eq (4) places a constraint between the total differentiation 

rate of labeled HSCs Aþ
ss ¼ aHss

þ and the typical per-differentiation amplification number β. 

This steady-state constraint will eventually be combined with statistics of the fluctuating 

clone abundances data to infer estimates for the underlying model parameters. 

Clone-resolved mechanistic model 

Although the lumped model above provides important constraints among the steady-state 

populations within each compartment, the clone-tracking experiment keeps track of the 

populations of sampled granulocytes that arise from “founder” HSCs that carry the same 

tag. Thus, we need to resolve the lumped model into the clonal subpopulations described 

by hi, ni
ð‘Þ, and mi. 

Even though the total HSC populations H(t) and H±(t) are large, the total number of clones 

Ch  1 in compartment 1 is also large, and the number of cells with any tag (the size of any clone) 

can be small. The population of cells with any specific tag i is thus subject to large demographic 

fluctuations. Thus, we model the stochastic population of HSCs of any tag using a master 

equation for P(h, t), the probability that at time t the number of HSCs of any clone is h: dPðh; 

tÞ 

  ¼ mhðh þ 1ÞPðh þ 1; tÞ þ ðh 1ÞrhðHÞPðh 1; tÞ ½mh þ rhðHÞhPðh; tÞ: ð6Þ 
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dt 

Recall that immediately after transplantation, each HSC carries a distinct tag before 

selfrenewal (hi(0) = 1) leading to the initial condition Pðh;0Þ ¼ 1ðh;1Þ, where the indicator 

function 1ðx;yÞ ¼ 1 if and only if x = y. Because h = 0 is an absorbing boundary, clones start 

to disappear at long times resulting in a decrease in the total number Ch(t) of HSC clones. 

Before this “coarsening” process significantly depletes the entire population, each clone 

constitutes a small subpopulation among all EGFP+ cells, h(t)H(t), and the stochastic 

dynamics of the population h of any clone can be approximated by the solution to Eq (6) 

with the logistic selfrenewal rate rh(H)  ph(1 − H/Kh) replaced by rh(t) = ph(1 − H(t)/Kh). Hence, 

evolution of each HSC clone follows a generalized birth-death process with time-dependent 

birth rate and constant death rate. We show in Appendix A in S1 Appendix that for H  1 the 

solution to Eq (6) can be written in the form [41] 

 Pðh; tÞ ¼ ð1 Pð0; tÞÞð1 lðtÞÞlðtÞh 1; ð7Þ 

where 0  λ(t) < 1 depends on rh(t) and μh. Here, λ(t) determines “broadness” (level of clone 

size heterogeneity) of the clone size distribution. For the relevant initial condition of unique 

tags at t = 0, λ(0) = 0 and λ(t ! 1)!1. When λ(t) is small, the distribution is weighted towards 

small h. For λ(t) = 0, Pðh; tÞ ¼ 1ðh;1Þ which was the limit used in Goyal et al. [4] to assume 

no HSC self-renewal after transplantation. In the limit λ(t)!1, the distribution becomes flat 

and a clone is equally likely to be of any size 1  h  H. 

To further resolve the progenitor population into cells with distinct tags, we define n(ℓ)(t) 

as the number of generation-ℓ progenitor cells carrying any one of the viral tags. The total 

number of progenitor cells with a specific tag is nðtÞ  PL
‘¼0 nð‘ÞðtÞ. Since the sizes hi of 

individual clones may be small, differentiation of HSCs within each clone may be rare. 

However, since the size of each tagged progenitor clone quickly becomes large (n(t)  1), we 

model the dynamics of n(ℓ)(t) using deterministic mass-action growth laws: 

( 

 ð‘ÞðtÞ ¼Poisson2r nð‘ 1ÞððathÞðtÞÞðrn þðrmn nþÞnmð‘nÞÞðntÞð0;ÞðtÞ; ‘1¼0‘; L

 1; ð8Þ 

dn 

 
n 

dt 
 2rnnðL 1ÞðtÞ ðo þ mðnLÞÞnðLÞðtÞ; ‘ ¼ L: 

Our model is neutral (all clones have the same birth, death, and maturation rates), so these 

equations are identical to Eq (2). However, since creation of the zeroth-generation 

subpopulation n(0)(t) derives only from differentiation of HSCs of the corresponding clone, 

which has a relatively small population h(t), we invoke a Poisson process with rate αh(t) to 

describe stochastic “injection” events associated with asymmetric differentiation of HSCs of 

said clone. 
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Each discrete differentiation event leads to a temporal burst in n(ℓ)(t). 

Finally, the dynamics of the population m(t) of any granulocyte clone in the peripheral 

blood are described by an equation analogous to Eq (3): 

dmðtÞ ¼ o ðLÞðtÞ mmmðtÞ; ð9Þ 

n 

dt 

where we have assumed that only the generation-L progenitor cells undergo terminal 

differentiation with rate ω. An alternative model allows progenitor cells of earlier 

generations (ℓ < L) to also differentiate and circulate but does not give rise to qualitatively 

different results (See Appendix B in S1 Appendix). 

To study the dynamics of the burst in nð
b

0ÞðtÞ immediately following a single, isolated 

asymmetric HSC differentiation event at t = 0, we set the initial condition nð
b

0Þð0Þ ¼ 1; 

nð
b

‘Þð0Þ ¼ 0 ð1  ‘  LÞ, remove the Poisson (αh(t)) term in Eq (8) and find, 

 ( ‘ 

 ð 2rntÞ e ðrnþmnÞt; 0  ‘  L 1; 

 nðb‘ÞðtÞ ¼ ‘!Z t ð10Þ 

 2rn nðbL 1ÞðtÞe oðt tÞdt; ‘ ¼ L: 
0 

Bounded analytic solutions to nð
b

LÞðtÞ involving the lower incomplete gamma function can 

be found. Upon using the solution nð
b

LÞðtÞ in Eq (9) the mature blood population within a 

clone associated with a single HSC clone differentiation even is described by 

 mbðtÞ ¼ o
R

0t nðbLÞðtÞe mmðt tÞdt: ð11Þ 

The populations associated with a single HSC differentiation event, nð
b

‘ÞðtÞ and mb(t), are 

plotted below in Fig 3. of the Results section. Then, the total number mi(t) of mature 

granulocytes with the ith tag at time t is obtained by summing up all mb(t − τk) bursts 

initiated by HSC differentiations at separate times τk  t with the ith tag. 

Besides the burst dynamics described above, the data shown in Fig 1(a) are subject to the 

effects of small sampling size, uncertainty, and bias induced by experimental processing 

such 
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Fig 3. (a) A burst of cells is triggered by a single HSC differentiation event at time t = 0. A plot of representative solutions 

to Eqs (10) and (11) for rn = 2.5, L = 24, mn ¼ mð
n

LÞ ¼ 0, μm = 1, Aþ
ss

 ¼ 14:7, and ω = 0.16. Curves of different colors 

represent nb
ð‘ÞðtÞ, the progenitor cell population within each generation ℓ = 0, 1, 2, ..., L, and mb(t), the number of 

mature granulocytes associated with the differentiation burst. All populations rise and fall. (b) Realizations of peripheral 

blood (PB) populations in a single clone arising from multiple successive differentiation events. The fluctuating 

populations are generated by adding together mb(t) associated with each differentiation event. Time series resulting 

from small (hi/H+ = 0.0003) and large (hi/H+ = 0.03) HSC clones are shown. Small clones are characterized by separated 

bursts of cells, after which the clone vanishes for a relatively long period of time. The number of mature peripheral 

blood cells of large clones reaches a relatively constant level and almost never vanishes. 

 

https://doi.org/10.1371/journal.pcbi.1006489.g003 

as PCR amplification, and data filtering. In this experimental system, PCR generates a smaller 

uncertainty than blood sampling so we focus on the statistics of random sampling. Each 

blood sample drawn from monkey RQ5427 contains about 10μg of genomic DNA [13]. After 

PCR 

amplification, deep sequencing, and data filtering, the total number ^SþðtjÞ of quantifiable 

tags corresponds to *5 × 103 − 3 × 104 tagged cells. The sample ratio is defined by εðtjÞ  

^SþðtjÞ=M^ þ
ss ¼ 3  10 5  2  10 4 where M^ ss

þ
  1:6  108 is the estimated total number of 

tagged granuloctyes in the peripheral blood. The number of sampled cells with the ith tag 

from 

   

 the jth sample then approximately follows a Binomial distribution B SþðtjÞ; m
MiðssþtjÞ  

BðmiðtjÞ;εðtjÞÞ in our model. To quantitatively explore the feature of apparent extinctions 

of clones from a sample, we calculate the probability that no peripheral blood cell from 

clone i is found in a sample of size 

   ! ! 
 þ þ   
 ðt Þ M 

 SþðtjÞ⪡ Mssþ : PðfiðtjÞ ¼ 0jmiðtjÞÞ ¼ Mss þðmtjÞi j = SþðsstjÞ  exp m iðtMjÞSssþþðtjÞ . 

Thus, if 

S 

https://doi.org/10.1371/journal.pcbi.1006489.g003
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miðtjÞ < ε 1 ¼ M^ þ
ss=^SþðtjÞ  2  104 the ith clone is likely to be missed in the sample. The value 

ε−1 is also used to threshold the population mb(t) to define the measurable duration Δτb of a 

burst (as indicated in Fig 3(a)). 

Parameter values 

Parameters determined by the experimental procedure or estimated directly from the 

experiments include the weight of the animal, the sampling times tj, the EGFP+ ratio, and 

the total number of tagged cells detected in each sample ^SþðtjÞ. Since the tagged 

granulocyte population M^ þðtjÞ does not fluctuate much across samples, we use its average 

for M^ ss
þ, and the relevant experimental parameters for each animal become yexp ¼ fM^ 

þ
ss;^Sþ

i ðtjÞ; tjg. These will also be used as inputs to our models. 

Table 1. Summary of parameters, including their biological interpretation, ranges of values, and references. All 

rate parameters are quoted in units of per day. Other parameters are chosen to be within their corresponding 

reported ranges from the referenced literature. How variations in parameter values affect our analysis will be 

described in the subsequent sections. 

 

HSC pool (Compartment 1) 

Hss total number of HSCs at steady state 1.1 × 104 − 1.1 × 106 [4, 11, 12] 

α per-cell HSC differentiation rate 5.6 × 10−4 − 0.02 [4, 11, 12] 

μh HSC death rate 10−3 − 0.1 [12, 34] 

Transit-Amplifying Progenitor pool (Compartment 2) 

rn growth rate of progenitor cell 2 − 3 [12] 

μn death rate of progenitor cell (generation ℓ < L) 0 [12, 34] 

mðnLÞ death rate of progenitor cell (generation ℓ = L) 0 − 0.27 [12, 34] 

ω maturation rate of generation-L cells 0.15 − 0.17 [43, 44] 

L maximum generation of progenitor cells 15 − 21 [12, 34] 

Peripheral Blood pool (Compartment 3) 

Mss total number of peripheral blood granulocytes at steady state (2.5 − 5) × 109 [13, 42] 

μm death rate of peripheral blood granulocytes 0.2 − 2 [34, 44, 45] 

https://doi.org/10.1371/journal.pcbi.1006489.t001 

Our multi-stage model also contains many other intrinsic parameters, including ymodel ¼ fl; 

Ch;a; rn;mn;mð
n

LÞ; L;o;mmg. We first found parameter values that have been reliably 

independently measured. Some parameters were measured in human clinical studies rather 

than in rhesus macaques but can nonetheless serve as reasonable approximations for 

nonhuman primates due to multiple physiological similarities [42]. These estimates can 

certainly be improved once direct measurements on rhesus macaques become available. 

Model parameters, their estimates, and the associated references are given in Table 1 

below. 

    References 

https://doi.org/10.1371/journal.pcbi.1006489.t001
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Model properties and implementation 

Using parameter estimates, we summarize the dynamical properties of our model and 

describe how the key model ingredients including stability of HSC clone distributions and 

subsequent “bursty” clone dynamics that follow differentiation can qualitatively generate 

the observed clone-size variances. 

Slow homeostatic birth-death of HSCs—The first important feature to note is the slow 

homeostatic birth-death of HSCs. After the bone marrow is quickly repopulated, rh(H(t)) − 

μh  0, and stochastic self-renewal slows down. Because h = 0 is an absorbing state, the size 

distribution of the clones may still slowly evolve and coarsen due to stochastic dynamics, 

leading to the slow successive extinction of smaller clones. The typical timescale for 

overall changes in h can be estimated by approximating rh(Hss)  μh [46] and considering the 

mean 

time T(h) of extinction of a clone initially at size h ⪡ Hss. The standard result given in 

Gardiner  

[47] and also derived in Appendix C in S1 Appendix is TðhÞ  m
h

h 1 þ ln h months 

(for μh = 10−2, Hss = 104, h = 101; see Table 1 for applicable values). Since this timescale is 

larger than the time of the experiment (67 months for monkey RQ5427), mean HSC clone 

sizes do not change dramatically during the experiment, consistent with the stable number 

of clones observed in the samples shown in Fig 1(b). Thus, as a first approximation, we will 

use a static configuration {hi} drawn from P(h) to describe how, through differentiation, HSC 

clones feed the progenitor pool. 

Fast clonal aging of progenitors—In contrast to slow HSC coarsening, progenitor cells 

proliferate “transiently.” In Fig 3(a) we plot a single population burst of progenitor and 

mature granulocytes, given by Eqs (10) and (11) and using the parameter values listed in 

Table 1. The characteristic duration, or “width” Δτb associated with each temporal burst of 

cells is defined as the length of time during which the number mb(t) is above the detection 

threshold within a sample of peripheral blood: ε 1 ¼ M^ þ
ss=^Sþ  2  104. 

According to Eq (11), the burst width and height depend nonlinearly on the parameters L, 

rn, μn, μm, and ω in their physiological ranges (see Table 1). The characteristic width of a 

burst scales as Δτb * L/rn + 1/ω + 1/μm. This estimate is derived by considering the L rounds 

of progenitor cell division, each of which takes time * 1/rn. Terminal-generation progenitors 

then require time *1/ω to mature, after which mature granulocytes live for time * 1/μm. In 

total, the expected life span of * L/rn + 1/ω + 1/μm approximates the timescale of a HSC-

differentiation-induced burst of cells fated to be granulocytes. Using realistic parameter 

values, the typical detectable burst duration Δτb * 1 − 2 months is much shorter than the 

typical sampling gaps Δtj = 5 − 11 months. 

With this “burst” picture in mind, we now show how fluctuations of sampled clone sizes 

can be explained. Small-h (where the clone-wise HSC differentiation rate ahi ⪡ D
1

tb) clones 

rarely appear in blood samples. Their appearance also depends on whether sampling is 

frequent and sensitive enough to catch the burst of cells after rare HSC differentiation 

events. On the other hand, large-h (ahi  D
1

tb) clones differentiate frequently and consistently 
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appear in the peripheral blood. Their populations in blood samples are less sensitive to the 

frequency of taking samples. Fig 3(b) shows two multi-burst realizations of peripheral-blood 

populations mi(t) of clone i corresponding to a small clone and a large clone. The 2000-day 

trajectories were simulated by fixing hi and stochastically initiating the progenitor 

proliferation process. Population bursts described by Eq (11) were added after each 

differentiation event distributed according to Poisson(αhi). Using simulations, we confirm 

that the statistics of clone extinctions and resurrections are more sensitive to the overall 

clonal differentiation rate αhi than to the precise shape of a mature cell burst, allowing a 

reduction in the number of effective parameters (Appendix D in S1 Appendix). 

We can further pare down the number of remaining parameters by finding common 

dependences in the model and defining an effective maximum generation number. We can 

rewrite Eq (5) as b  2Le, where 

     

 rn þ mn o þ mðnLÞ ð12Þ 

 Le ¼ L Llog 2  log 2  

 rn o 

is an effective (and noninteger) maximum generation parameter. Later in Appendix D in S1 

Appendix, we show that uncertainties of the model structure, alternative mechanisms, and 

parameter values can be subsumed into Le. Henceforth, in our quantitative data analysis, we 

will set the unmeasurable parameters mn ¼ mð
n

LÞ ¼ 0 and subsume their uncertainties into 

an effective maximum generation Le. Finally, we will invoke Eq (4) to find the constraint 

 Aþssb ¼ Aþss2Le ¼ Mssþmm: ð13Þ 

Since we can estimate Mss
þ of the animals in the experiment and the death rate of mature 

granulocytes μm has been reliably measured in the literature, Eq (13) provides a relationship 

between the total steady-state differentiation rate Aþ
ss and the maximum number of 

progenitor generations Le. 

After assigning values to parameters using Table 1 (setting μn = 0, ω = 0.16 and μm = 1), 

subsuming parameters into Le (setting mð
n

LÞ ¼ 0), describing the configuration {hi} through 

the distribution shape factor λ and the total number of HSC clones Ch (setting the HSC death 

rate μh = 0), and applying the constraint Aþ
ss2Le ¼ M^ þ

ssmm, we are left with four effective 

model parameters θmodel = {λ, Ch, rn, Le}. Here we have included rn in the key model 

parameters since it is not reliably measured and the cell burst width is sensitive to rn. Once 

Le is inferred, Eq (13) can be used to find Aþ
ss ¼ 2 LeM^ þ

ssmm. 

Statistical model 

The total number of tags observed across all samples (obtained by summing up the 

observed numbers of unique tags over J samples) can be used as a lower bound on Ch. Even 
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though estimates for animal RQ5427 give Ch * 550 − 1100, uncertainties in the HSC self-

renewal rate parameters ph, Kh, and the initial HSC population H(0) make λ and P(h, t) 

difficult to quantify. Even if P(h, t) were known, it is unlikely that the drawn {hi} would 

accurately represent those in the monkey, especially when λ  1 and P(h) becomes extremely 

broad (the variance of P(h) approaches infinity). Thus, we are motivated to find a statistical 

measure of the data that is insensitive to the exact configuration of {hi}. The goal is to study 

the statistical correlations between various features of only the outputs, which should be 

insensitive to the input configuration {hi} but still encode information about the 

differentiation dynamics. 

Two such features commonly used to fit simulated fi(tj) to measured 
^

f iðtjÞ are the mean 

 PJ 2 ¼ 1 PJ
j¼1 ðfiðtjÞ yiÞ2. However, the small number of 

yi ¼ 1
J j¼1 fiðtjÞ and the variance si J measurement time points J and the frequent 

disappearance of clones motivated us to propose an even more convenient statistic that is 

based on 

X zi ¼ 1ðfiðtjÞ;0Þ; ð14Þ 
j 

the number of absences across all samples of a clone rather than on σi. Here, the indicator 

function 1ðx;x0Þ ¼ 1 when x = x0 and 1ðx;x0Þ ¼ 0 otherwise. In Appendix E in S1 Appendix, 

we illustrate alternatives such as data fitting based on σi and on an autocorrelation function 

but also describe the statistical insights gained from using statistics of zi. 

The level of correlation between the observed number ^zi of absences of clone i and its 

average abundance ^yi is measured by the average of ^yi conditioned on ^zi (dashed curve). 

In Fig 4, the distribution of the values of ^yi at each ^zi is clearly shown. To combine the 

correlated stochastic quantities zi and yi into a useful objective function, we take the 

expectation of yi over only those clones that have a specific number zi = z absences across 

the time samples: 

P 

 iyi 1ðzi; zÞ ð15Þ 

Yz ¼ P 
1ðz ;zÞ: 

i i 

P 

The normalizing denominator i1ðzi;zÞ is simply the number of clones with exactly z 

absences. In case no simulated or data-derived trajectories fi(tj) exhibit exactly z absences, 

we set Yz = 0 or Y^ z ¼ 0. We then determine Yz(θmodel) from simulating our model and Y^ z 

from experiment and use the mean squared error (MSE) between the two as the objective 

function: 

 XJ 1 

 MSEðymodelÞ ¼ ½YzðymodelÞ Y^ z 2; ð16Þ 
z¼1 
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where θmodel = {λ, Ch, rn, Le}. Y0 is excluded from the MSE calculation because the yi values of 

 

Fig 4. Scatterplot of clone trajectories of animal RQ5427 displayed in terms of ln ^y i, the log mean abundance of 

clone i, and ^z i, the number of samples in which clone i is undetected. The trajectory of each clone i is 

represented by a symbol located at a coordinate determined by its value of ln ^y i and ^z i. A trajectory of a clone 

that exhibits one absence within months 8 − 67 is shown in the inset. The first sample at month 2 is excluded 

because only long-term repopulating clones are considered. Clones that are absent in all eight samples are also 

excluded, so the largest number of absences considered for animal RQ5427 is 7. The dashed black line denotes ln 

Y^z, where Y^z is the average of ^y i calculated over i within each bin of z as shown in Eq (15). When later analyzing 

Y^z, Y^0 (red circles) is not included. 

 

https://doi.org/10.1371/journal.pcbi.1006489.g004 

clones that have zi = 0 are not constrained by the burstiness of the model and Y0 can be 

sensitive to the underlying configuration {hi} (see the Discussion and Appendix E in S1 

Appendix). 

We are now in a position to compare results of our model with experimental data. The 

general approach will be to choose a set of parameters, simulate the forward model 

(including sampling) to generate clone abundances {fi(tj)}, number of absences zi, and 

ultimately Yz(θmodel), which is then compared to data-derived Y^ z. By minimizing Eq (16) with 

respect to θmodel, we obtain the least square estimates (LSE) of θmodel. A schematic of our 

workflow is shown in Fig 5. We describe the details of the simulation of our model in 

Appendix F in S1 Appendix. 

Results 
By implementing the protocol outlined in Fig 5, we find a number of results including 

leastsquares-estimates (LSE) of the parameters, their sensitivity to other model features, 

validation of the mechanistic model, and robustness of our statistical methods to missing 

data and clone sampling thresholds. Our analyses allow us to effectively compare the results 

from the three different animals. 

https://doi.org/10.1371/journal.pcbi.1006489.g004
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MSE function and estimates of Le and Aþ
ss for animal RQ5427 

We first fix the HSC distribution shape parameter λ = 0.99 and the total number of HSC 

clones Ch = 500; this choice will be justified in the next subsection. The MSE objective 

function can now be plotted as a function of the proliferation rate rn 2 [0.01, 10] and 

proliferation potential Le 2 [19, 28] of progenitor cells in their respective biologically relevant 

ranges. Even after specifying θmodel = {λ = 0.99, Ch = 500, rn, Le}, there is still uncertainty in 

the simulated values of Yz = {Y1, Y2, ..., Y7} due to the uncertainty in the drawn configuration 

of HSC clone sizes {hi}, the intrinsic stochastic mechanisms of the model (Poissonian HSC 

differentiation events), and random peripheral blood sampling. Therefore, we performed 

200 simulations for each 

 

Fig 5. Workflow for comparing parameter-dependent simulated data with measured clone abundances. The first 

step is drawing a configuration {hi}, which is experimentally unmeasurable, from the HSC clone distribution P(h). To 

define P(h) requires an initial estimate of λ and Ch. Using known experimental parameters θexp and choosing rn, Le 2 

θmodel, we compute the theoretical quantities yi and zi by simulating the multi-compartment mechanistic model and 

the peripheral-blood sampling. The corresponding ^y i and ^z i are extracted from data, and the theoretical Yz(θmodel) 

and the experimental Y^ z are compared through the MSE defined in Eq (16). The MSE is then minimized to find 

least squares estimates for θmodel. 

 

https://doi.org/10.1371/journal.pcbi.1006489.g005 

set of {rn, Le}, producing 200 sets of Yz. The means of Yz are used to construct the mean of 

MSE(λ = 0.99, Ch = 500, rn, Le), plotted in Fig 6. 

In the reported progenitor growth rate range of rn = 2 − 3 (Table 1), the MSE function is 

quite insensitive to Le. To interpret this observation, note that rn does not affect the 

absolute value of β according to Eq (13), but it affects the typical time * L/rn + 1/ω it takes 

for a generation 0 progenitor cell to form a mature granulocyte. When rn < μm, the 

proliferation of progenitors cannot “catch up” with the loss of granulocytes, resulting in a 

quickly vanishing burst in the granulocyte population mb(t) arising from a single-

differentiation event mb(t). A larger Le would be required to compensate. When rn  μm, the 

growth of any clone is much quicker 

https://doi.org/10.1371/journal.pcbi.1006489.g005
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Fig 6. Dependence of the mean MSE defined in Eq (16) on rn and Le. For visualization purposes, we took the natural 

logarithms of MSE values and plotted them as a function of Le and rn. Blue areas denotes smaller MSE values, thus 

better fitting. This energy surface was generated by averaging over 200 simulations using Ch = 500 and λ = 0.99. 

 

https://doi.org/10.1371/journal.pcbi.1006489.g006 

https://doi.org/10.1371/journal.pcbi.1006489.g006
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Fig 7. Finding the least squares estimate (LSE) Le for animal RQ5427 by fitting the simulated Yz to the experimental 

Y^ z. The values of (λ, Ch, rn) are chosen to be (0.99, 500, 2.5). Simulations with {hi} set to f^y igHss
þ instead of drawing 

from P(h) generate similar results. (a) The LSE is Le ¼ 23:4. Averages and standard deviations (error bars) of the 200 

MSEs are plotted. (b) Comparisons between the experimental (solid) Y^ z and simulated (dashed) Yz with fixed Le ¼ 23:4. 

The error bars are determined by considering the standard deviation of the average abundances (yi or ^y i) of all clones 

exhibiting z absences. 

 

https://doi.org/10.1371/journal.pcbi.1006489.g007 

than its loss, so the burst size is relatively stable and Le is not very sensitive to rn. Thus, the 

MSE objective function is fairly insensitive to rn in its biologically meaningful value range. 

We then fix the progenitor proliferation rate rn = 2.5 and plot the mean MSE(λ = 0.99, Ch 

= 500, rn = 2.5, Le) in Fig 7(a), which indicates a clear minimum at Le ¼ 23:4  0:12. The error 

bars denote the standard deviation of MSEs obtained from the 200 simulations at different 

values of Le and show that the variability is negligible for the purpose of determining the 

minimum. Upon applying the steady-state granulocyte balance constraint in Eq (13), we 

obtain a total HSC differentiation rate ðAþ
ssÞ ¼ 14:7. 

If we approximate mn;mð
n

LÞ ¼ 0, Le  L. Substituting LSE values Le ¼ 23:4 for L into the model 

for the peripheral blood bursts (the analytic solutions to n(L)(t) and mb(t) in Eqs (10) and (11)) 

yields a single burst duration of Δτb  32 days, consistent with our assumption Δτb ⪡Δtj = 5 − 

11 months. Note that even though L is interpreted as an integer in Eq (8), analytic solutions 

of Eqs (10) and (11), nð
b

‘ÞðtÞ and mb(t), depend on L in a continuous manner, interpolating 

the behavior to arbitrary values of L. Fig 7(b) shows how one simulation of 

YzðLe ¼ 23:4Þ fits the experimentally measured Y^ z. Here, each error bar denotes the 

standard deviation across all mean abundances yi (or ^yi) within each value of z absences. 

Insensitivity of analysis to HSC configurations 

In Fig 8, we demonstrate the weak dependence of our least-squares estimate to λ, the 

parameter controlling the shape of the probability distribution of HSC clone sizes P(h, t). For 

https://doi.org/10.1371/journal.pcbi.1006489.g007
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each λ, we sample a fixed number (Ch = 500) of HSC clones from the theoretical distribution 

P(h, t), fix rn = 2.5, and let Le vary between 19 and 28. The averages of the 200 simulated 

MSEs at each value of Le are compared and the Le that corresponds to the minimal average 

MSE is selected. The selected Le as a function of λ is plotted in Fig 8(a). Fig 8(b) shows the 

averages and standard deviations of MSE ðLeÞ at each value of λ. We then repeat the 

simulations with Ch = 1000. These results together show that Le is insensitive to the 

distribution of hi. This insensitivity might be understood by noticing that the quantity Yz is 

defined as the mean of the values of yi that are associated with z absences (dashed curve in 

Fig 4) and is not necessarily sensitive to 

Fig 8. The LSE Le is insensitive to the geometric distribution factor λ > 0 and to Ch 1. This implies that for a wide range of 

values of λ and Ch the LSEs are insensitive to the HSC configuration {hi}. (a) Le s found at each value of λ. (b) Averages and 

standard deviations (error bars) of MSE ðLeÞ as a function of λ. The LSE and MSE(Le) values associated with self-

consistently using fhig=Hþ ¼ f^y ig from experimental data are marked by arrows and “exp.” 

 

https://doi.org/10.1371/journal.pcbi.1006489.g008 

how these values are distributed (vertically distributed markers at each value of z in Fig 4). 

Instead, Yz incorporates the intrinsic relationship between a clone’s mean abundance yi and 

its number of absences zi, averaged over all clones. It thus also encodes how heterogeneity 

in the HSC clone populations is translated into the burstiness seen in the sampled clone 

abundances fi(tj). Although it is generally impossible to recover the exact {hi} configuration, 

we find the HSC self-renewal-induced geometric distribution described by Eq (7) generally 

generates better fits to the sampled data when λ is large (≳ 0.5), suggesting significant 

heterogeneity in values of hi. 

Comparison of variability from simple sampling and best-fit model 

We can check how our LSE result performs against the null hypothesis that clone size 

variations arise only from random sampling. An estimate of sampling-induced variability can 

be obtained by assuming a specific number of peripheral blood granulocytes of tag i and 

https://doi.org/10.1371/journal.pcbi.1006489.g008
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drawing an experimentally determined fraction ε(tj) of peripheral randomly 

blood cells. This is repeated J times from a constant peripheral pool {mi}. Each draw results 

in si(tj) cells of clone i in the simulated sample. Normalizing by S+(tj), the total number of 

tagged cells in the sample, we obtain simulated fi(tj) from which we extract the mean 

abundance yi and its standard devia- 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 PJ ðfiðtjÞ

yiÞ2 for each clone i. The simulated quantities ln yi and σi associated 

 tion 
s

i ¼ J j¼1 

with each clone i are indicated by the green triangles in Fig 9(a). The corresponding values 

ln^yi and s^i derived from the data shown in Fig 1(b) are indicated by the blue dots. This 

simple heuristic test shows that the experimental fluctuations in clone abundances are 

significantly larger than those generated from random sampling alone and that additional 

mechanisms are responsible for the fluctuation of clone abundances in peripheral blood. 

Using LSE parameter values, Fig 9(b) shows the fluctuations in clone abundances obtained 

from random sampling of fluctuating mature clones simulated from our model. Here, the 

variability is a convolution of the fluctuations arising from intrinsic burstiness and from 

random sampling. The total variability fits those of the experimental data well except for 

several large-sized outlier clones. 

Fig 9. (a) A plot of the standard deviation s^ i vs. the log of the mean ^y i, extracted from abundance data (blue 

dots). For comparison, clonal tags distributed within the peripheral blood cells were randomly sampled (with the 

same sampling fraction ε(tj) at times tj as in the experiment). The analogous quantity σi shown by the green 

triangles indicates a much lower standard deviation for a given value of ln yi. This simple test implies that the clonal 

variability across time cannot be explained by random sampling. (b) The same test is performed after applying our 

model with the LSE parameter Le = 23.4 (and the average of parameters listed in Table 1). 

 

https://doi.org/10.1371/journal.pcbi.1006489.g009 

Robustness of Le to sampling frequency and threshold 

We checked the robustness of our inference by leaving out time points from the 

experiment. Recall that the experimental data matrix for animal RQ5427 contains 536 rows, 

each representing a clone, and 8 columns, each representing a time point measured by 

month. By using only the first j = 8, 7, ...1 time points of data (leaving out 8 − j time points), 

seven additional simulation studies to find Le were performed. As shown in Fig. G1 in 

Appendix G of S1 Appendix, reduction in the number of time samples flattens the MSE but 

preserves its minimum near Le  23:4 23:6 provided at least 2-3 samples are used. We 

have also excluded intermediate samples to mimic larger sampling gaps Δtj and found 

similar results. 

https://doi.org/10.1371/journal.pcbi.1006489.g009
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Next, we examined the effects of sample thresholding on our parameter inference. By 

eliminating clones whose average abundances are under a certain threshold, we will 

observe fewer clones in the large-z bins depicted in Fig 4. Since larger clones with fewer 

absences contribute most to the MSE, our results will not be affected as long as the 

threshold is not too large. Provided we apply the same threshold to both the simulated and 

experimental data, there should not be systematic bias in our results. The MSEs generated 

using different thresholds are plotted in Fig. G2 in Appendix G of S1 Appendix and show that 

the inferred value Le  23:4 remains essentially unchanged provided the threshold level is low 

enough to retain approximately at least 40% (about 200) of the clones (see Fig. G2(a-f) in 

Appendix G). With fewer clones retained (< 200), the LSE of Le shifts only modestly to Le  

24:3. Thus, we conclude that our inference of Le is robust to increases in sampling threshold 

as along as a reasonable number of clones (≳ 200) are counted. 

Data analysis and fitting for animals 2RC003 and RQ3570 

The data from the three different monkeys vary in their numbers of tagged clones 

transplanted and the lengths of the experiments. For animal RQ5427/2RC003/RQ3570, 

there are 536/1371/ 442 clones that are detected at least once within 67/103/38 months. 

The fraction of cells in all tracked clones in animal RQ5427/2RC003/RQ3570 was 

approximated by the average fraction of cells that were EGFP+ marked over time, around 

0.052/0.049/0.086 (the ratios between 
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Fig 10. (a-b) Experimental data for animal 2RC003. (c) Difference between experimental Y^ z and simulated Yz(Le) as a 

function of Le. The values of his are set to be equal to Hþ^y i, and the model was simulated 200 times at each value of Le. 

Other parameters are taken from Tables 1 and 2. The LSE Le ¼ 25:0 and ðAþssÞ ¼ 6:7. (d) Comparison of the optimal Yz to 

the experimental Y^ z. 

 

https://doi.org/10.1371/journal.pcbi.1006489.g010 

green square and blue triangle markers in Figs 1(a), 10(a) and 11(a)), respectively. Figs 10 

and 11 also show the clone abundances, the MSE functions, and the statistics of Y(z). 

Despite differences among the animals and the large variability in the estimated values 

of α and Hss individually reported in the literature [4, 11, 12], the estimates of ðAss
þÞ and Le 

are rather similar across the three animals. For animal 2RC003, the optimal estimates are Le  

25:0, while for animal RQ3570, Le ¼ 24:0. The corresponding estimates for A, after 

considering the constraint Eq (13) and the EGFP+ ratios in Table 2, are 282.7, 136.7, and 

224.4. 

We also compared how the simulated LSE YzðLeÞ fits the experimental Y^ z for all three 

animals. Note that for each specific z, the value of Yz is the conditional mean of the values of 

yi for which each clone i exhibits exactly z absences. Even though for any specific z, the 

distribution of the corresponding yis is unknown, their mean Yz should follow a normal 

https://doi.org/10.1371/journal.pcbi.1006489.g010
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distribution according to the central limit theorem. We use a one-sample t-test to compare 

Y^ z against the mean of the YzðLeÞ s generated from 10000 simulations using the optimal Le 

¼ Le. For animal RQ5427, we actually performed seven one-sample t-tests on the Yz = {Y1, Y2, 

..., Y7} to find the seven p-values {0.69, 0.53, 0.58, 0.17, 0.68, 0.01, 3 × 10−5}. Except for the 

last two p-values (corresponding to the bins z = 6 and z = 7), all other bins easily pass the 

one-sample t-test at a significance level of 0.05. Clones with z = 6, 7 are much smaller and 

more severely corrupted 

 

https://doi.org/10.1371/journal.pcbi.1006489.g011 

by noise, such as that induced during PCR amplification, and thus provide less reliable 

information. 

Comparisons of the test results among the three animals, together with comparisons among 

Figs 7(b), 10(d) and 11(d), show qualities of fit ordered according to RQ3570 < RQ5427 < 

2RC003. This sequence of fitting qualities is consistent with the increasing experimental 

times 

Table 2. Summary of specific parameter values for monkeys 2RC003 and RQ3570 derived from experimental 

measurements [13] or obtained by calculations (Le and ðAþssÞ). 

https://doi.org/10.1371/journal.pcbi.1006489.g011


 

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006489 October 18, 2018 25 / 26 

Clonal tracking of hematopoiesis in rhesus macaque 

Parameter  Reference range or LSE value 

RQ5427 2RC003 RQ3570 

C^ s 536 442 1371 

ðAþssÞ 14.7 6.7 19.3 

Ass 282.7 136.7 224.4 

Le 23.4 25.0 24.0 

Mss 3.2 × 109 4.6 × 109 3.8 × 109 

S+(tj) (5.0 − 30) × 103 (2.1 − 8.6) × 103 (7.0 − 10.8) × 103 

EGFP+ ratio 0.052 0.049 0.086 

ε(tj) (2.8 − 20) × 10−5 (1.2 − 4.2) × 10−5 (2.4 − 3.0) × 10−5 

Δtj 150 − 330 180 − 660 150 − 260 

https://doi.org/10.1371/journal.pcbi.1006489.t002 

RQ3570 > RQ5427 > 2RC003, suggesting that age-associated changes of stem cell clone sizes 

cannot be fully neglected (which we did by fixing {hi}) [48]. As is evident from Fig 10(a), 

several clones start to dominate after month 64; this coarsening phenomenon is not 

evident in the data of the other two animals. Animal RQ3570 was sacrificed at month 38, so 

no obvious coarsening is observed and no clones strongly dominate (see Fig 11). A summary 

of the parameters and fitting results for all animals is given in Table 2. 

Discussion 
In this study, we analyzed a decade-long clonal tracking experiment in rhesus macaques and 

developed mechanistic and statistical models that helped us understand two salient 

features of clone abundance data: the heterogeneous (nonuniform) distribution of clone 

sizes and the temporal fluctuation of clone sizes. Below, we further discuss the implications 

of our results, the structure of our mechanistic model, and the potential effects of including 

additional biological processes. 

Comparison to previous studies 

The long-term clonal tracking data we analyzed were generated from a huge number of 

initially tagged HSPCs (Ch(0) * 106 − 107) [13], a large number of observed clones (Cs * 102 − 

103), small numbers of sequenced cells that carry tags (^SþðtjÞ  103 104), and infrequent 

sampling 

(Δtj > 5 months). These features present significant challenges to the modeling and analysis 

over previous studies that mostly focused on one or a few clones [5, 15, 17, 18]. 

In a previous analysis, Goyal et al. [4] aggregated the clone abundance data across all 

mature cell types and studied the distribution of the number of clones of specific size. At 

each time point, they ordered the clones according to their sizes. Thus, the ordering can 

change across samples as some clones expand while others diminish. They found that the 

cumulative clone-number distribution (defined as the number of clones of a specific size or 

https://doi.org/10.1371/journal.pcbi.1006489.t002
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less) of the size-ordered clones becomes stationary as soon as a few months after 

transplantation. They proposed a neutral birth-death description of progenitor cells and 

fitted the expected value of clone counts in each sample by assuming hi  18iðPðh; tÞ ¼ 

1ðh;1ÞÞ and tuning parameters in the downstream progenitor and mature-cell 

compartments. By focusing on aggregate clone counts, this study could not distinguish the 

dynamics of individual clones, nor could it predict the persistence of clone sizes over time. 

Since individual clone sizes (hi, ni, mi, si of the same tag i) were not tracked, mechanisms 

driving the dynamics, and in particular, the variability and fluctuations of individual clone 

sizes that drive disappearances and reappearances, remain unresolved [4]. 

In our model, heterogeneity of clone sizes is explicitly generated by stochastic HSC 

selfrenewal of cells of each tag, and extinctions and resurrections arise from a generation-

limited progenitor proliferation assumption. We infer model parameters as listed in Table 2. 

Combining the results with previous experimental and theoretical estimates of Hss  1.1 × 104 

− 2.2 × 104 [4, 49] results in α = 0.0045 − 0.027, slightly larger than, but still consistent with, 

the estimates α = 0.0013 − 0.009 by Shepherd et al. [11]. Previous studies that modeled 

total peripheral blood population estimated α  0.022 and Hss  1.1 × 106/kg for dogs and α  

0.044 and Hss  1.1 × 106/kg for humans [12]. These estimates yield a value of αHss about 102 − 

103 times greater than ours, which is nonetheless consistent with our steady-state 

constraint Eq (13) because they assumed a much smaller L  15 − 18 for dog and 16 − 21 for 

human. This difference in the estimates of L may be partially attributed to the transplant 

conditions under which the rhesus macaque experiments were performed [13]. Alternative 

model assumptions and differing values of other parameters may also contribute to this 

difference. For example, the extremely large value of Hss  107 used in [34] will naturally 

decrease their estimate for Le relative to that of our analysis. 

Model structure, sensitivity to parameters, and cellular heterogeneity 

Uncertainties in values of parameters such as μh, ph, Kh, and other factors that tune the 

symmetric-asymmetric modes of HSC differentiation or involve HSC activation processes 

[50] will impart uncertainty in determining P(h) and {hi}. We have assumed P(h) satisfies a 

master equation and depends on only two effective parameters λ and Ch. However, we 

have demonstrated that the statistical properties of Yz are quite insensitive to the upstream 

configuration {hi} and hence to λ and Ch for a wide range of their values (see Fig 8). In other 

words, very little information in {hi} is retained in the sampled abundances 
^

f ðtjÞ after HSCs 

differentiate and trigger random bursty peripheral blood-cell population dynamics. 

Another feature we have ignored in our neutral model is cellular heterogeneity such as 

tagdependent differentiation, proliferation, and death rates. Cellular heterogeneity in HSC 

differentiation rates could be described by different αi for each clone i, and the total 

differentiation 

PCh 



 

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006489 October 18, 2018 27 / 26 

Clonal tracking of hematopoiesis in rhesus macaque 

rate would be Aþ
ss ¼ i¼1 aihi. Differences in αi can be subsumed into a modified 

configuration {hi} which, as we have seen, does not strongly influence our parameter 

estimation based on the Yz statistics. Thus, given the available data and how information is 

lost along the stages of hematopoiesis and sampling, the present quasi-steady-state 

analyses cannot resolve heterogeneity across HSC clones. 

We have not investigated how cellular heterogeneity in progenitor and mature cells 

would affect our results, but clone-dependences in their birth and death rates could affect 

sizes and durations of population bursts and quantitatively affect our analysis. However, 

unless the statistics of inter-burst times are highly variable across clones, we do not expect 

cellular heterogeneity to qualitatively affect our conclusions. 

Changing downstream parameters such as μm or invoking alternative mechanisms of 

terminal differentiation (see Appendix B in S1 Appendix) can affect the shape of clonal 

bursts. We show in Appendix D in S1 Appendix that these effects can be subsumed into the 

effective maximum progenitor generation Le. We have performed additional simulations to 

confirm that changing μm = 2 will not influence the fitting of Aþ
ss but increases Le by one. In 

other words, inference of ðAþ
ssÞ is robust against many upstream and downstream 

parameters, indicating that the intrinsic clone size fluctuations observed in the experimental 

data strongly constrain the total rate of HSC differentiation. On the other hand, uncovering 

the actual maximal generation L from Le is possible only when uncertainties in these other 

parameters are resolved. 

Clonal stability vs clonal succession 

Our model reduction was based on the separation of timescales of the slow HSC dynamics 

and the fast clonal aging dynamics. Since HSC clone sizes vary extremely slowly for primates 

( Oð102Þ months), we ignored the homeostatic births/deaths of HSCs when fitting the 

temporal clonal variations. This is partially justified by visual inspection of Figs 1(b), 10(b) 

and 11(b) that show no significant variations of large clones’ abundances is observed before 

60 months. Instead, the random intermittent HSC differentiation events induce relatively 

short ( Oð1Þ months) bursts of granulopoietic progeny that contribute strongly to temporal 

fluctuations of clone sizes. Such behavior are consistent to the “clonal stability” hypothesis 

[51–53], which assumes that a fixed group of HSCs randomly contributes to an organism’s 

blood production at all times. 

The alternative hypothesis of “clonal succession” [16, 54, 55] assumes that different 

groups of HSCs are sequentially recruited to the blood production at different times. This 

hypothesis would be consistent with our model only under a different set of parameters 

where HSCs selfrenew/die at a rate comparable to that of Δτb, the duration of a granulocyte 

burst. For example, murine HSC turnover rates μh are hypothesized to be 10-fold higher 

than those in primates while the clonal aging dynamics (and its timescale Δτb) are relatively 

conserved across species [56]. According to our result in Appendix C in S1 Appendix, such a 

10-fold increase in HSC death rate would lead to a 10-fold increase in HSC clone extinction 
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rate, bringing the lifespans of HSC clones closer to the (progenitor) clonal aging timescale 

Δτb. This interpretation is consistent with the fact that hematopoiesis in large primates has 

been described in terms of “clonal stability” while hematopoiesis in mice has been 

described in terms of “clonal succession” [16, 51–55]. We thus predict that with even longer 

tracking (> 100 months), the “clonal succession” mechanism could be significant in primates 

also. 

Summary and future directions 

In summary, we have built mechanistic and statistical models that enable the quantitative 

analysis of noisy and infrequent clonal tracking data. We focused on the huge temporal 

variability observed in the sampled clone abundances and defined a robust statistical 

measure Yz of sample-to-sample clone size variability through the number of clonal 

disappearances. Of course, there is a nearly endless list of details such cellular 

heterogeneity and more complex biology that we did not include, but given the noisy data, 

we propose and quantify the simplest explanation for the observed heterogeneous clone 

abundances and the temporal “extinctions and resurrections”. The key ingredients in our 

mechanistic model are HSC self-renewal (quantified by the effective parameter λ), 

intermittent HSC differentiation (quantified by the parameter Aþ
ss), and an effective 

maximum progenitor generation (quantified by the effective parameter Le). Although we 

cannot fully resolve λ from data, the obvious mismatch between experiment and our model 

when λ is small shows that a certain level of HSC clone-size heterogeneity (larger λ  1) is 

necessary to match the sampled data. Similarly, we cannot fully resolve α and Hss
þ, but their 

product, the total tagged HSC differentiation rate Aþ
ss ¼ aHss

þ, is one of the key parameters 

constrained by our modeling. By minimizing an objective function of Yz over effective model 

parameters, we found LSE values Le ¼ 23 25 and ðAþ
ssÞ ¼ 100 300 for the 

three rhesus macaques. These quantities could not be inferred from the total, more static 

cell populations. These results also imply that true dynamical changes in Aþ
ss and Le could be 

masked by the intrinsically bursty dynamics of each clone but provide a framework for 

future study into extrinsic perturbations. 

Our analysis provides insight into the variables and experimental conditions to which 

parameter inference is most sensitive, possibly guiding the design of future experiments. 

The approach and models can also be readily extended to quantify white blood cells of 

other types. For example, the mechanistic model can be directly applied to monocytes since 

they also have relatively simple dynamics and do not proliferate in the periphery [57]. 

Peripheral lymphocytes, however, would require additional experimental information 

because their populations are more sensitive to the state of the animal and can 

homeostatically proliferate [38]. 
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A Stochastic evolution of HSC clone sizes 

To solve Eq. (6) in the main text for P(h,t), we transform the equation using the probability generating function 

. We have also neglected the subscript i because our model is “neutral” and P(h,t) can 

describe the size of any HSC clone i. If the HSC self-renewal rate is approximated as rh(H(t)) ≡ rh(t), the solution 

for Q(s,t) takes on the following form [1]: 

, (A1)  and . (A2) 

where 

Note that for h ≥ 1, 

  and . (A3) 

These solutions obey the initial condition P(h,0) = 1(h,1) and as t →∞, ψ(t) → ψ(∞) ∈ (0,1), φ →∞, and P(h,t) → 0. 

For  and P(0,t →∞) → 1, indicating eventual extinction at long times [1, 2]. 

Using forms given in Eq. (A3), since both φ and ψ are independent of h, we can define 

. (A4) 

. (A5) 

Thus, the probability distribution P(h,t) can be written as 

B Alternative model of progenitor aging 

An alternative model to the one we have analyzed allows younger-generation progenitor cells (ℓ < L) to 

differentiate into peripheral blood. Since each generation can differentiate with rate ω, the progenitor cell 

dynamics are slightly modified from those in our main model: 

 Poisson(αh(t)) − (rn + µn + 

ω)n(0)(t), ℓ = 0, 



 

2 

  , (B1) 
 n n 
Moreover, the dynamics of the mature peripheral blood population obey 

d 

 .

 (B2) 
ℓ=0 

The solution to Eqs. (B1) and (B2) following a single differentiation event is 

, 

(B3) 

These results can be applied to the model and analyzed and simulated using the same procedures as described 

in the main text. However, certain parameters have to be re-interpreted. For example, using the same value of 

ω = 0.16 will significantly increase the effective death rate for progenitor cells of each generation. Fortunately, 

as we will show later, this alternative mechanism should not affect our main conclusion as the parameter-fitting 

results are not sensitive to the exact shape of cell bursts. 

C Mean extinction time for a clone 

As a function of the initial number h of HSCs in a clone, the mean extinction time (MET) T(h) under the steady-

state approximation rh = µh obeys [3, 4] 

[T(h + 1) − T(h)]µhh − [T(h) − T(h − 1)]µhh = −1. 

with an absorbing boundary condition T(0) = 0. By iterating Eq. (C1), we find 

(C1) 

, (C2) . (C3) 

, (C4) 

. (C5) 

which can be again iterated to obtain 

To solve for T(1), we invoke a reflecting boundary condition T(Hss) − T(Hss − 1) = 1/(µhHss) [5], where 

to find 

Upon using Eq. (C5) in Eq. (C3), we find 

  ≡ Tdiscrete(h), (C6) 

which is the MET for a discrete system. 

m ( t ) 

d t 
= 

L 
X ωn ( ℓ ) ( t ) − µ m m ( t ) 



 

3 

We can also approximate T(h) by considering h as a continuous variable, and replace the summations in Eq. 

(C6) by integrations to find a simpler, more insightful approximation to T(h): 

 h H dℓ 1 h 1 k dℓ 

Tcontinous(h) = Z ss − Z − dkZ µh ℓ=1 ℓ µh k=1 ℓ=1 ℓ 

 = hlnHss − (h − 1)ln(h − 1) + h − 2 (C7) 

 

µh 

, 

where we have used Rx(1/x′)dx′ = lnx and Rx lnx′dx′ = xlnx − x. The continuous approximation to the MET matches 

the exact result quite well (relative error . 5%) for all values of h. 

D Effective parameters and symmetric HSC differentiation 

There are differing reports on the measured death rates for circulating granulocytes. We have used the most 

recently reported value µm = 1 per day for humans. The effect of changing the value of µm → µm′ on our analysis 

is a reinterpretation of Le. By rewriting Eq. (13) as , we rearrange the 

expression to  and find e ). For example, = 2 would lead to 

+ 1, where one additional round of progenitor doubling compensates for the doubled loss rate of 

mature granulocytes. One may argue that the change in µm can also be compensated for by doubling A+ss, which 

would have a different effect on the burstiness of the model compared to doubling Le. However, when re-fitting 

the data with = 2 or 0.2, we observed that (A+ss)∗ did not change much, with most of the effect of modifying 

µm absorbed by changes in Le∗. 

Similarly, uncertainties in other parameters can also be subsumed into Le. For example, setting ω > 0 

implies that only half of the generation-L progenitors contribute to the peripheral blood. For a model with 

= 0 to generate an equivalent effect, we can halve the number of mature cells by using an effective maximum 

generation parameter  1. This indicates that the intrinsic clone size fluctuations demonstrated in the 

experimental data strongly constrain A+ss. 

Another possible modification of our mechanistic model is to allow for the possibility of symmetric HSC 

differentiation. The effect of symmetric differentiation can again be subsumed into the parameter Le without 

qualitatively affecting our analysis. Assume a proportion 0 ≤ q ≤ 1 of HSC differentiations are symmetric, 

producing on average 1+q generation-0 progenitor cells. After Le rounds of proliferation, the 1+q generation0 

progenitors produce on average (1+q)×2Le mature cells. This is equivalent to an exclusively asymmetric 

differentiation model (q = 0) with + 1). We also expect symmetric differentiation to slightly 

increase the speed of coarsening since each HSC differentiation is also accompanied by the HSC’s death and 

clones represented by a single HSC would disappear under symmetric differentiation. However, given the small 

rate α of HSC differentiation, the large number Ch of clones, and the insensitivity of our results to the distribution 

hi, the data cannot quantitatively resolve the symmetric-asymmetric modes of HSC differentiation. 



 

4 

E Alternative objective functions and statistical insights 

We developed our data analysis based on the statistics of the quantity yi, the time averaged relative clone sizes 

for those clones exhibiting z absences across their longitudinal samples. While reasonable parameter estimates 

were obtained from fitting to data, we also considered alternative objective functions. Specifically, we looked 

at the standard deviation  quantifying the temporal fluctuations of the relative 

sizes of each clone i. The way we construct an alternative objective function is similar to the way we constructed 

Yz. Recall for Yz, we calculated the average abundance across only those clones with the same zi = z absences 

across time. However, unlike zi which takes a finite set of discrete values {1, 2, ..., J − 1}, σi is a continuous variable 

so we have to artificially bin their values. Instead, we bin clones with similar yi and study the average of their 

associated σi’s. Since the distribution yi is non-linear with a long tail, we evaluated lnyi to obtain the near-linear 

distribution shown in Fig. E1(a), sorted lnyi into equal-width bins, and calculated the average of the associated 

σis. Dividing the values of lnyi into bins labeled by k, we compute 

i σi1(clonei ∈ bink) (E1)  Uk = 

1(clonei ∈ bink) i 

in analogy with the definition of Yz. The objective function can be straightforwardly defined as 

 MSEσ(θmodel) = X(Uk(θmodel) − Uˆk)2. (E2) 

k 

It is also unclear how to set upper and lower bounds on the range of yi for comparison (in contrast to the natural 

bound on 1 ≤ z ≤ J − 1) because an unconstrained set of clones will be sensitive to the underlying hi distribution 

(an undesirable property). In Fig. E1(b), we fit the data from animal RQ5427 using MSEσ and find 4, 

consistent with our previous estimate using Yz. 

 

P 

      

      

P 
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Figure E1: Statistics of the two alternative fluctuation measures and their fitting results. Each dot represents a 

clone. (a) Log standard deviation plotted against log average abundances. Clones are near-linearly distributed 

in the log average abundance space. (b) Objective function MSEσ vs. Le. Clones of similar yi are binned, and their 

averaged σi were used to compute Uk. (c) Autocorrelations Ri vs. log of average abundances ui. There is no clear 

pattern in the distribution of Ris. (d) MSER vs. Le. This objective function cannot resolve the LSE Le∗. 

While it is also possible to choose σi as a measure of clone population fluctuations, we list several advantages 

of ̂ zi over σi for the current dataset. Note that the number of disappearances zi of each individual clone is defined 

on a finite set of integers (unlike the continuously measured σi), making it easier to bin clones with the same z 

values. Different clones i will exhibit different time-averaged abundances yi but may have the same value of zi. 

As shown in Fig. 4 in the main text, the larger ˆzi is, the smaller the corresponding ln ˆyi tends to be. The robust 

correlation between zi and yi encodes the level of fluctuations for a clone of certain size. For a given yi, the larger 

zi, the “burstier” the dynamics, implying a smaller number of tagged HSC differentiations per unit time (a 

smaller A+ss). 

Another advantage of using zi statistics emerges when fitting model results to the pattern of the measured 

data in Fig. 4 in the main text. Average sizes yi (and the underlying hi) associated with clones having 1 ≤ z ≤ 7 all 

contain at least one absence. This constraint naturally controls the upper and lower bounds of hi in a particular 

z bin (1 ≤ z ≤ 7), based on the burstiness of the model. Exact knowledge of the configuration {hi} is not required 

for fitting these yi data. 

Thus, dividing clones into z bins provides us with a natural way to exclude unconstrained clone sizes. In 

other words, the theoretical values of yi (and the underlying hi) associated with bin zi = 0 can be arbitrarily and 

unreasonably large, and such a possibility should be excluded. Similarly, all yi below a threshold size generate 

zi = J (clones that never appeared in the sampled blood) and do not provide any statistical power. This advantage 

of using zi can also be confirmed by visual inspection of Fig. 9(b) in the main text. Several very large clones do 

not follow the general statistical pattern and show extremely large variances. Without manually filtering out 

these clones, our fitting in Fig. 1(b) results in a larger Le∗ = 24.4 than the Le∗ = 23.4 obtained in the main text 

using Yz statistics. Finally, another option for comparing model with data is to use correlation functions. In this 

approach, the sampling gap ∆tj varies between 5 and 11 months, so the usual autocorrelation function with 

equal time gaps cannot be rigorously defined. We use the one-sample-gap autocorrelation function 

 ) (E3) 

and bin values of lnyi in analogy to Eq. (E1) to define 

 Wk = i Ri1(clonei ∈ bink) (E4) 

1(clonei ∈ bink) 
i 

k 

Since the inter-sample intervals ∆tj are larger than a typical burst size ∆τb ≈ 32 days, cells in different samples 

likely originate from different HSC differentiation events. Thus, the fluctuations of clone sizes are uncorrelated 

P 

and construct an autocorrelation-based objective function 

 

MSER(θmodel) = X(Wk(θmodel) − Wˆk)2. (E5) 

P 
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from sample to sample, as shown in Fig. E1(c). Randomly distributed between -1 and 1, the values of Ri are 

centered about the line , corresponding to the majority of clones that have zi = J−1 (only 1 non-zero 

sample). Data fitting using Ri and MSER is ill-conditioned and cannot resolve Le∗, as shown in Fig. E1(d). 

F Simulation of the forward model 

To generate predictions, we first choose values of θmodel = {λ,Ch,rn,Le} and simulate our model, including 

sampling, to find si(tj). To simulate each realization of our model we 

1. Specify the static HSC clone size distribution P(h) by choosing the pair (λ,Ch) and draw {hi} from the 

geometric distribution Ch times using the Python package np.random.geometric. Normalize to construct 

the configuration . Alternatively, we can also use the data ˆyi to approximate the 

configuration {hi}/Hss+. 

2. Fix all parameters θmodel, construct the total clone i differentiation rate 

for each clone i. Generate realizations of sets of HSC differentiation event times for each clone i 

based on the rate αhi = A+sshi/Hss+. 

3. Evaluate Eqs. (10) and (11) in the main text. Sum up the peripheral blood bursts initiated by 

eachdifferentiation event of each clone i to find  

 4. Sample a fraction  of the total peripheral cell count M+(tj) = Pi mi(tj). Here, 

Sˆ+(tj), Mˆ +(tj), and the times tj are defined by the experiment. We used the Python package 

numpy.random.binomial. The cell counts of each clone are si(tj). Use the simulated total tagged cell counts 

in the samples S+(tj) = Pi si(tj) to normalize ). Up to this point, we have generated a data 

matrix fi(tj) of size Ch × J. 

5. Increment Le within the desired interval and repeat steps 2-4 200 times. For each value of Le, the 200 

simulations generate 200 fi(tj) matrices. These repeats are to ensure that the noise induced from drawing 

values of hi from P(h) and sampling si(tj) from mi(tj) do not significantly corrupt our parameter estimation. 

The simulated, model-derived configurations fi(tj) are then compared with experimentally measured values 

fˆi(tj). The parameter Le that minimizes the mean-squared error will be chosen as the least-squares estimate Le∗. 

G Robustness to samping frequency and threshold 

The robustness of our inference of Le∗ to sampling frequency is demonstrated for animal RQ5427 by excluding 

some time samples. In Figs. G1(a-h), we plot the MSE function by including only the first j = (8,7,...,1) time 

samples of the data. In this data set (animal RQ5427), the MSE remains meaningful, and the reconstruction of 

Le∗ is unchanged as long as at least four or five time samples are used. This conclusion is independent of which 

sampling time points are excluded. Since the system is well-approximated by a statistical steady state, the key 

determinant for robust inference is the number of samples included in the analysis. 

 all 8 time pts first 7 time pts first 6 time pts first 5 time pts 
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Figure G1: Simulated MSEs with λ = 0.99,Ch = 500,rm = 2.5 for different numbers of time samples. From (a-h), 

only the first j = (8,7,...,1) time samples are used to fit the model. Provided at least two time samples are used, 

the reconstruction of Le∗ ≈ 23.4 − 23.6 remains fairly robust. 

Robustness to a larger threshold of clone sizes is also demonstrated by eliminating clones whose average 

abundances are under a certain threshold in both the experimental and simulated data. In Figs. G2(a-h), we plot 

the MSE corresponding to the clone frequency thresholds 1.16 × 10−5,2.03−5,3.41 × 10−5,8.84 × 

10−5,1.66×10−4,3.30×10−4,6.78×10−4,1.46×10−3, respectively. Using these thresholds, the numbers of clones 

retained in the analysis are 482, 428, 375, 322, 268, 215, 159, and 107, corresponding to 90%, 80%, 70%, 60%, 

50%, 40%, 30%, and 20% of the 536 total number of clones detected in animal RQ5427. Figs. G2 show that as 

long as & 200 clones are included (a-f), the MSE yields a clear LSE 6. Only at very high 

thresholds, where only 20-30% of the clones are retained, does the minimum of the MSE shift to slightly higher 

values 3 as shown in Figs. G2(g-h), respectively. Thus, we conclude that the inference of Le∗ from 

the data is fairly insensitive to sampling threshold provided a reasonable number of clones (typically & 200) 

are included in the analysis. 
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Figure G2: MSEs for animal RQ5427 using successively higher clone detection thresholds. Unique 

reconstruction of Le∗ is robust (a-f) even if only 40-50% of the clones are counted. (g-h) At even higher 

thresholds, the LSE for Le∗ increases only very slightly. 
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