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Abstract

In a recent clone-tracking experiment, millions of uniquely tagged hematopoietic stem
cells (HSCs) and progenitor cells were autologously transplanted into rhesus macaques
and peripheral blood containing thousands of tags were sampled and sequenced over 14
years to quantify the abundance of hundreds to thousands of tags or “clones.” Two major
puzzles of the data have been observed: consistent differences and massive temporal
fluctuations of clone populations. The large sample-to-sample variability can lead clones
to occasionally go “extinct” but “resurrect” themselves in subsequent samples. Although
heterogeneity in HSC differentiation rates, potentially due to tagging, and random
sampling of the animals’ blood and cellular demographic stochasticity might be invoked
to explain these features, we show that random sampling cannot explain the magnitude
of the temporal fluctuations. Moreover, we show through simpler neutral mechanistic and
statistical models of hematopoiesis of tagged cells that a broad distribution in clone sizes
can arise from stochastic HSC self-renewal instead of tag-induced heterogeneity. The
very large clone population fluctuations that often lead to extinctions and resurrections
can be naturally explained by a generation-limited proliferation constraint on the
progenitor cells. This constraint leads to bursty cell population dynamics underlying the
large temporal fluctuations. We analyzed experimental clone abundance data using a
new statistic that counts clonal disappearances and provided least-squares estimates of
two key model parameters in our model, the total HSC differentiation rate and the
maximum number of progenitor-cell divisions.
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Author summary

Hematopoiesis of virally tagged
cells in rhesus macaques is
analyzed in the context of a
mechanistic and statistical model.
We find that the clone size
distribution and the
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temporal variability in the
abundance of each clone (viral
tag) in peripheral blood are
consistent with (i) stochastic HSC
self-renewal during bone
marrow repair, (ii) clonal aging
that restricts the number of
generations of progenitor cells,
and (iii) infrequent and smallsize
samples. By fitting data, we infer
two key parameters that control
the level of fluctuations of clone
sizes in our model: the total HSC
differentiation rate and the
maximum proliferation capacity

of progenitor cells. Our analysis provides insight into the mechanisms of hematopoiesis
and a framework to guide future multiclone barcoding/lineage tracking measurements.

Introduction

Hematopoiesis is a process by which hematopoietic stem cells (HSCs) produce all the
mature blood in an animal through a series of proliferating and differentiating divisions [1].
Maintenance of balanced hematopoietic output is critical for an organism’s survival and
determines its response to disease and clinical procedures such as bone marrow
transplantation [2-5]. How the relatively small HSC population generates more than 10!
cells of multiple types daily over an organism’s lifetime has yet to be fully understood. HSCs
are defined primarily by their function but are often quiescent [6]. In vivo, it is hard to track
the dynamics of individual HSCs, while HSCs in vitro do not typically proliferate or
differentiate as efficiently. Therefore, the dynamics of HSCs can be inferred only from
analyses of populations of progenitors and differentiated blood cells [7] and it is useful to
investigate HSC dynamics through mathematical modeling and simulations [8-10].

While most studies model population-level HSC behavior [5, 11, 12], certain aspects of
HSCs, such as individual-level heterogeneity in repopulation and differentiation dynamics,
have to be studied on a single-cell or clonal level [13]. Single HSC transplant mouse data [14]
and clonal tracking of HSCs [15, 16] in mice have shed some light on repopulation dynamics
under homeostasis and after bone marrow transplantation [5, 17, 18]. However, murine
studies usually involve only one or a few clones. How each individual HSC contributes to the
blood production process over long times in much larger human and non-human primates is
less clear and more difficult to study. Also, unlike in mice, there is no way to isolate and
mark HSC populations in human [19].

Recently, results of a long-term clonal tracking of hematopoiesis in normal-state rhesus
macaques has been made available [13, 20]. The experiment extracted and uniquely
“labelled” hematopoietic stem and progenitor cells (HSPCs) from four rhesus macaques
with viral tags that also carry an enhanced green fluorescent protein gene. After autologous
transplantation, if any of the tagged HSPCs divide and differentiate, its progeny will inherit
their unique tags and ultimately appear in the peripheral blood. Blood samples were drawn
every few months over 4 - 14 years (depending on the animal) and the sampled cells were
counted and sequenced. Of the *10°- 107 unique HSPC tags transplanted, *10?- 10°clones
were detected in the sampled peripheral blood. In the original paper describing the clonal
tracking experiment, Kim et al. [13] observed “A small fraction (4 - 10%) of tagged clones
predominately contribute to a large fraction (25 - 71%) of total blood repopulation.” They
described the fluctuations of tags that appeared in each sample as “waves of clones”, but
did not address why some clones can disappear at certain times and reappear in a latter
sample.

In this study, we seek to better understand the observed clone size distributions and the

large temporal variability in clonal populations. To address these observations, we ask: Is
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heterogeneity in HSCs necessary for peripheral blood clone size heterogeneity, or can a
neutral model explain clone size differences? Are clones that disappear and reappear from
sample to sample simply missed by random blood sampling, or do other mechanisms of
temporal variability need to be invoked?

Unlike other previous models that describe the evolution of lineages of different cell
types and their regulation [8-10, 21], we will consider simpler neutral models that describe
the dynamics of specifically granulocyte populations carrying different tags. Of central
interest is the competition among the thousands of clones under a neutral environment
that gives rise to fluctuations, extinctions, and resurrections in individual clone populations.
Even when considering only one cell type, realistic mathematical models may need to
include complex multilevel biochemical feedback mechanisms of regulation [8, 22-27].
Many mechanisms may contribute to temporal fluctuations, including extrinsic noise and
heterogeneity of HSCs, progenitors, or mature granulocytes. Large time gaps between
samplings (5 - 11 months) and small sample sizes also add to the uncertainty of the
underlying dynamics. Trying to infer all possible mechanisms and associated parameters
from the experimental data would essentially be an overfitting problem. In order to feasibly
compare with experimental data, our modeling philosophy will be to recapitulate these
complexities into simple, effective models and infer parameters that subsume some of
these regulatory effects. This approach and level of modeling are similar to those taken by
e.g., Yang, Sun, and Komarova [28, 29].

After careful consideration of a number of key physiological mechanisms, we hypothesize
that stochastic HSC self-renewal, generation-limited progenitor cell proliferation, and
smallsize sampling frequency statistics provide the simplest reasonable explanation for the
observed clonal size variability and large temporal fluctuations. HSCs that are generated
from self-renewal of the founder population share the same tag as their founder HSC. Thus,
during intense self-renewal after myeloablative treatment and HSPC transplantation, each
originally transplanted HSCs begets a clonal HSC subpopulation. Subsequently,
heterogeneous clone sizes are stochastically generated even though each tag was initially
represented by only a single cell. These expanded HSC clones then go on to repopulate the
clones in the progenitor and mature blood population, which are also distinguishable by
their corresponding tags.

Relative to HSCs, progenitor cells have limited proliferative potential that can explain the
apparent extinctions of clones in blood samples. This limited proliferation potential can be
thought of as an “aging” process. Different types of aging, including organism aging [23, 30,
31], replicative senescence of stem cells [32], and generation-dependent birth and death
rates, have been summarized by Edelstein et al. [33]. Here, the clonal “aging” mechanism
we invoke imposes a limit to the number of generations that can descend from each newly
created (from HSC differentiation) “zeroth generation” progenitor cell. Possible sources of
such a limit include differentiation-induced loss of division potential [34] and telomere
shortening (as in the Hayflick limit) [35—-37]. Mathematically, genealogical aging can be

described by tracking cell populations within each generation. After a certain number of
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generations, progenitor cells of the final generation stop proliferating and can only
differentiate into circulating mature cells or die.

In the following sections, we first present the mathematical equations and corresponding
solutions (whenever possible) of a model that incorporates the above processes. We then
develop a new statistical measure that tracks the numbers of absences of clones across the
samples. Measured clone abundances of animal RQ5427 are statistically analyzed within our
mechanistic model to infer estimates for key model parameters. The data and
corresponding statistical analyses for animals 2RC003 and RQ3570 are also provided in the

Results section.
Materials and methods

Below, we describe available clonal abundance data, mechanistic models, and a statistical

model we will use for parameter inference.

Clone abundance data

In the experiments of Kim et al. [13], cells in samples of peripheral blood were sequenced

and counted to extract ASPdt;b, the total number of EGFP+ tagged cells in sample 1 j Jtaken

/A
at time t;. After PCR amplification and sequencing, f3t}p, the relative abundance of the it

upn

tag among all sampled, tagged cells is also quantified. The notation will henceforth
indicate experimentally measured quantities.

Within mature peripheral blood, lymphocytes such as T cells and B cells proliferate or
transform in response to unpredictable but clone-specific immune signals [38]. They also
vary greatly in their lifespans, ranging from days in the case of regular T and B cells to years
in the case of memory B cells. On the other hand, mature granulocytes do not proliferate in
peripheral blood and have relatively shorter life spans [7]. Granulocyte dynamics can thus

be analyzed with fewer confounding factors [11]. Thus, in this paper, we restrict our analysis

A}
to granulocyte repopulation and extract all variables, including ASk6t;p and f0tp described

above, that are associated exclusively with granulocyte populations.

In Fig 1(a), we plot the total numbers of sampled granulocytes from one of the
macaques, RQ5427. The subpopulation of EGFP+ granulocytes and the subset of EGFP+
granulocytes that were extracted for PCR amplification and analysis are also plotted. Data
for two other animals, 2RC003 and RQ3570, are qualitatively similar. Blood samples from a
fourth animal, 95E132, were not separated in to granulocyte and peripheral blood
mononuclear cells (PBMCs) before sequencing. Thus, clonal abundances for granulocytes
are not available from 95E132. There are only three animals for which we can analyze clonal

abundances of granulocytes. For more specifics on the data, see supplemental files of the

A
original experimental paper [13]. As shown in Fig 1(b), not only are the clone abundances f

dt;p heterogeneous,
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Fig 1. Blood sample data from animal RQ5427 [13]. (a) The total numbers of sampled granulocytes (blue triangles), EGFP+ granulocytes

(green squares), and the subset of EGFP+ granulocytes that were properly tagged and quantifiable were extracted for PCR amplification

and analysis (black circles). This last population defined by ASPdt;p is used to normalize clone cell counts. We excluded the first sample at
month 2 in our subsequent analysis so, for example, the sample at month 56 is labeled the 7th sample. There were 536 clones detected

at least once across the eight samples taken over 67 months comprising an average fraction 0.052 of all granulocytes. The abundances

A
of granulocyte clones are shown in (b). The relative abundance f0t}p of granulocytes from the it clone measured at month t;is

indicated by the vertical distances between two adjacent curves. The relative abundances of individual clones feature large fluctuations
over time. “Extinctions” followed by subsequent “resurrections,” were constantly seen in certain clones as indicated by the black circles
in (b) and in the inset (c).

https://doi.org/10.1371/journal.pcbi.1006489.g001
but individual clone abundances vary across samples taken at different times. The variation

is so large that many clones can go extinct and reappear from one sample to another, as
shown in Fig 1(c). Since large numbers of progenitor and mature cells are involved in blood
production, the observed clone size fluctuations cannot arise from intrinsic demographic
stochasticity of progenitor- and mature-cell birth and death. Moreover, we will show later in
the Results section that random sampling alone cannot explain the observed clonal

variances and mechanisms that involve other sources of variation are required.

Nomenclature and lumped mechanistic model

Fig 2 depicts our neutral model of hematopoiesis which is composed of five successive
stages, or compartments, describing the initial single-cell tagged HSC clonal populations
immediately after transplantation (Compartment 0), the heterogeneous HSC clonal
populations after a short period of intense self-renewal (Compartment 1), the transit-
amplifying progenitor cell compartment (Compartment 2), the peripheral blood pool
(Compartment 3), and the sampled peripheral blood (Compartment 4), respectively. Each
distinct color or shape in Fig 2 represents a distinct clone of cells with the same tag.

In each compartment, relevant parameters include (using Compartment 1 as example):
the total cell count H(t), the untagged cell count H™(t), the tagged cell count H*(t), the total
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Fig 2. Schematic of a neutral multi-stage or multi-compartment hematopoiesis model. BM and PB refer to bone marrow and
peripheral blood, respectively. Cells of the same clone have the same color. White circles represent untagged cells which were
not counted in the analysis. Stages 0, 1, and 2 describe cell dynamics that occur mainly in the bone marrow. Stage 1 describes
HSC clones (Cn = 6 in this example) after self-renewal that starts shortly after transplantation with rate rn. After self-renewal, the
relatively stable

HSC population (H* = 20 in this example) shifts its emphasis to differentiation (with per-cell differentiation rate a). Larger clones
in Stage 1 (e.g., the circular blue clone, hoiwe = 4) will have a larger total differentiation rate ahuiwe While smaller clones (e.g., the
red hexagonal clone, hred = 1) will have smaller ahred. The processes of progenitor-cell proliferation (with rate rm) and maturation
(with rate w) in Compartments 2 and 3 are considered deterministic because of the large numbers of cells involved. The darker-
colored symbols correspond to cells of later generations. For illustration, the maximum number of progenitor-cell generations
allowed is taken to be L = 4. Compartment 4 represents a small sampled fraction (&(t;) 2.8 x 10°- 2 x 107#) of Compartment 3,
the entire peripheral blood of the animal. In the example pictured above, Cs= 4. Such small samples can lead to considerable
sampling noise but is not the key driver of sample-to-sample variability.

https://doi.org/10.1371/journal.pcbi.1006489.9002
number of tagged clones Ci(t), and the number hi(t) of HSCs carrying the i"tag. These

guantities are related through Py hdtb Y HvotP HOtb H &tb.

In the progenitor pool, the total number of cells and the number with tag i are denoted
N(t) and ni(t), respectively. Further resolving these progenitor populations into those of the
€™ generation, we define N(t) and n%*dtb. In the mature granulocyte pool, the total
granulocyte population and that with tag i are labelled M(t) and mj(t). In the sampled blood
compartment, we use S(t)), S*(t;), si(t;), and Cs(t;) to denote, at time t;, the total number of
sampled cells, the number of tagged sampled cells, the total number of tagged cells of clone
i, and the total number of clones in the sample, respectively. In Compartment 4, we further
define fi(t)) = si(t;)/S*(t;) to denote the relative abundance of the i clone among all tagged

clones.
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By lumping together all clones (tagged and untagged) in each compartment, we can
readily model the dynamics of total populations in each pool. After myeloablative
treatment, the number of BM cells, including HSCs, is severely reduced. Repopulation of
autogolously transplanted HSCs occurs quickly via self-renewal until their total number H(t)
reaches a steadystate. The repopulation of the entire HSC population and the subsequent
entire progenitor and mature cell populations may be described via simple deterministic

mass-action growth laws

Y 0r,dH8tPP myPHAtP; a1p

dt

aHdtb 8rasor p ManorPNsorOth;

dn
m:atp nd’1p 5 100th 5rna1>b 32p
Mes,ePNsvOth; % 0;
% 2r N ,
dt 1L
2rnoL 10NsL 100tP 00 p montsPNodth;, ‘% L; 1,
dmatp aLp a3b
dHotb

__ _%oN otb mmMGatb: dt

HSC self-renewal is a regulated process involving signaling and feedback [22-24, 39, 40] and
rnmay be a complicated function of many factors; however, we will subsume this
complexity into a simple population-dependent logistic growth law ra(H(t)) pn(1 - H(t)/K»)
and assume a constant death rate un. Alternatively, other studies have employed Hill-type
growth functions [12, 28].

We assume the per cell HSC differentiation rate a'is independent of the tag and that
differentiation is predominantly an asymmetric process by which an HSC divides into one
identical HSC and one progenitor cell that commits to differentiation into granulocytes. An
initial generation-zero progenitor cell further proliferates with rate r,%°, contributing to the
overall progenitor-cell population. Subsequent generation-£ progenitors, with population
N®, proliferate with rate r,3® until a maximum number of generations L is reached. By

keeping track of the generation index € of any progenitor cell, we limit the proliferation
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potential associated with an HSC differentiation event by requiring that any progenitor cell
of the final L™ generation to terminally differentiate into peripheral blood cells with rate w
or to die with rate md,t". For simplicity, we neglect any other source of regulation and
assume a, m%,*% m,, r,%* % r,and w are all unregulated constants.

Our model analysis and data fitting will be performed using clone abundances sampled a
few months after transplantation under the assumption that granulopoiesis in the animals
has reached steady-state [4] after initial intensive HSC self-renewal. Steady-state solutions
of Egs (1), (2) and (3) are defined by Hss, Ni3*, and Mss. The first constraint our model

provides relates these steady-state total populations through

" L#

Mss - -
moOm GoamessaanP I Zbrnmn Amssmb,' 04b %
Mm

0 Nsssip %a

where we have defined

(o) 2r

Ass aHss; andb o
a5p

b manLb I'n bnmn

as the total rate of HSC differentiation and the average number of granulocytes generated
per HSC differentiation, respectively. These constraints also hold for the virally tagged, EGFP
+ subset (about 5% — 10%) of HSCs, e.g., MsP % Abb=my, and AP % aHsP. Since MiPis
inferred from the experiment, Eq (4) places a constraint between the total differentiation
rate of labeled HSCs APy % aH.Pand the typical per-differentiation amplification number £.
This steady-state constraint will eventually be combined with statistics of the fluctuating

clone abundances data to infer estimates for the underlying model parameters.

Clone-resolved mechanistic model
Although the lumped model above provides important constraints among the steady-state
populations within each compartment, the clone-tracking experiment keeps track of the
populations of sampled granulocytes that arise from “founder” HSCs that carry the same
tag. Thus, we need to resolve the lumped model into the clonal subpopulations described
by hi, n#®, and mi.

Even though the total HSC populations H(t) and H*(t) are large, the total number of clones
Ch 1in compartment 1is also large, and the number of cells with any tag (the size of any clone)
can be small. The population of cells with any specific tag i is thus subject to large demographic
fluctuations. Thus, we model the stochastic population of HSCs of any tag using a master
equation for P(h, t), the probability that at time t the number of HSCs of any clone is h: dP3h;
th

% mydhb 1pPSh b 1;tb b 8h  1brdHPPSh 1;tb  Y%mub r3HPhPSh; th:  36P
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dt

Recall that immediately after transplantation, each HSC carries a distinct tag before
selfrenewal (hi(0) = 1) leading to the initial condition P8h,0b % 18h;1b, where the indicator
function 16x;yb % 1 if and only if x = y. Because h = 0 is an absorbing boundary, clones start
to disappear at long times resulting in a decrease in the total number Ch(t) of HSC clones.
Before this “coarsening” process significantly depletes the entire population, each clone
constitutes a small subpopulation among all EGFP+ cells, h(t)H(t), and the stochastic
dynamics of the population h of any clone can be approximated by the solution to Eq (6)
with the logistic selfrenewal rate r(H) pn(1 - H/Kh) replaced by m(t) = pn(1 — H(t)/Kx). Hence,
evolution of each HSC clone follows a generalized birth-death process with time-dependent
birth rate and constant death rate. We show in Appendix A in S1 Appendix that for H 1 the
solution to Eqg (6) can be written in the form [41]

Pdh; tp % 81 P8O, tPpd1 I5tPPI&tP"1; a7p

where 0 A(t) < 1 depends on ri(t) and un. Here, A(t) determines “broadness” (level of clone
size heterogeneity) of the clone size distribution. For the relevant initial condition of unique
tagsat t =0, A(0) =0 and A(t ! 1)!1. When A(t) is small, the distribution is weighted towards
small h. For A(t) = 0, P8h; tb % 18h;1b which was the limit used in Goyal et al. [4] to assume
no HSC self-renewal after transplantation. In the limit A(t)!1, the distribution becomes flat
and a clone is equally likely to be of any size 1 h H.

To further resolve the progenitor population into cells with distinct tags, we define n®(t)
as the number of generation-€ progenitor cells carrying any one of the viral tags. The total
number of progenitor cells with a specific tag is ndtb P+,n%?dtb. Since the sizes hjof
individual clones may be small, differentiation of HSCs within each clone may be rare.
However, since the size of each tagged progenitor clone quickly becomes large (n(t) 1), we

model the dynamics of n®)(t) using deterministic mass-action growth laws:

(

sv0tb ¥Poisson2r ns 11ddathbdtbbdra pdrm,npbnms,pP3ntb%;*3tb; “1%0% L
1; asp
dn

n

dt
2ranse 1:0tb - 60 p Menwbnstrdtp; ‘Yo L:

Our model is neutral (all clones have the same birth, death, and maturation rates), so these
equations are identical to Eg (2). However, since creation of the zeroth-generation
subpopulation n(t) derives only from differentiation of HSCs of the corresponding clone,
which has a relatively small population h(t), we invoke a Poisson process with rate ah(t) to
describe stochastic “injection” events associated with asymmetric differentiation of HSCs of

said clone.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1006489 October 18, 2018 9/26




®PLOS

COMPUTATIONAL

BIOLOGY

Clonal tracking of hematopoiesisin rhesus macaque

Each discrete differentiation event leads to a temporal burst in n‘)(t).
Finally, the dynamics of the population m(t) of any granulocyte clone in the peripheral
blood are described by an equation analogous to Eq (3):

—— dmdtb % o swdtb mmmotb; a9p
n
dt

where we have assumed that only the generation-L progenitor cells undergo terminal
differentiation with rate w. An alternative model allows progenitor cells of earlier
generations (€ < L) to also differentiate and circulate but does not give rise to qualitatively
different results (See Appendix B in S1 Appendix).

To study the dynamics of the burst in n%,%°dtb immediately following a single, isolated

asymmetric HSC differentiation event at t = 0, we set the initial condition n%,°60b % 1,

n%,®30b % 0 81 ‘ LP, remove the Poisson (ah(t)) term in Eq (8) and find,

(

0 2nth e Srnpmnbt, 0L 1,

nobpOth % 172+ d10p

2rn nebL 100tPe oot todt; ‘Yal:

Bounded analytic solutions to nd,*dtb involving the lower incomplete gamma function can
be found. Upon using the solution n3,t*dtb in Eq (9) the mature blood population within a

clone associated with a single HSC clone differentiation even is described by

myoth % oRornaprGtPe mmot tpd t: 011p

The populations associated with a single HSC differentiation event, n%,*6tb and my(t), are
plotted below in Fig 3. of the Results section. Then, the total number mi(t) of mature
granulocytes with the /" tag at time t is obtained by summing up all my(t - ) bursts
initiated by HSC differentiations at separate times t« t with the i tag.

Besides the burst dynamics described above, the data shown in Fig 1(a) are subject to the
effects of small sampling size, uncertainty, and bias induced by experimental processing

such
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Fig 3. (a) A burst of cells is triggered by a single HSC differentiation event at time t = 0. A plot of representative solutions
to Eqgs (10) and (11) for rn=2.5, L = 24, mn % m%* % 0, um = 1, APss% 14:7, and w = 0.16. Curves of different colors
represent ny3*3tb, the progenitor cell population within each generation € =0, 1, 2, ..., L, and my(t), the number of
mature granulocytes associated with the differentiation burst. All populations rise and fall. (b) Realizations of peripheral
blood (PB) populations in a single clone arising from multiple successive differentiation events. The fluctuating
populations are generated by adding together my(t) associated with each differentiation event. Time series resulting
from small (hi/H*=0.0003) and large (hi/H*=0.03) HSC clones are shown. Small clones are characterized by separated
bursts of cells, after which the clone vanishes for a relatively long period of time. The number of mature peripheral
blood cells of large clones reaches a relatively constant level and almost never vanishes.

https://doi.org/10.1371/journal.pcbi.1006489.g003

as PCR amplification, and data filtering. In this experimental system, PCR generates a smaller
uncertainty than blood sampling so we focus on the statistics of random sampling. Each
blood sample drawn from monkey RQ5427 contains about 10ug of genomic DNA [13]. After
PCR

amplification, deep sequencing, and data filtering, the total number ASP3t;p of quantifiable
tags corresponds to *5 x 10% - 3 x 10*tagged cells. The sample ratio is defined by &t}p
ASPJtP=M" b % 3 10° 2 10 *where M7 P 1:6 108is the estimated total number of

tagged granuloctyes in the peripheral blood. The number of sampled cells with the /" tag

from

the /" sample then approximately follows a Binomial distribution B SPat;p; mizogtP

Bdm,otp,;dtpb in our model. To quantitatively explore the feature of apparent extinctions
of clones from a sample, we calculate the probability that no peripheral blood cell from

cloneiis found in a sample of size
I
b b
ot b M

SpOtip < Mssp: POfiOtip % Ojmidtipb % MsspOmtpi j = SpOsstjp exp M i§tMjbSsspbdtib .
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mdtp < £1% MM b =ASPEtP 2 10%the it clone is likely to be missed in the sample. The value

£lis also used to threshold the population mp(t) to define the measurable duration Ar, of a
burst (as indicated in Fig 3(a)).

Parameter values

Parameters determined by the experimental procedure or estimated directly from the
experiments include the weight of the animal, the sampling times t;, the EGFP+ ratio, and
the total number of tagged cells detected in each sample ASPdtp. Since the tagged
granulocyte population M” b3t;p does not fluctuate much across samples, we use its average
for M* b, and the relevant experimental parameters for each animal become e, %4 fM?

b, ASP;Ot;b; tig. These will also be used as inputs to our models.

Table 1. Summary of parameters, including their biological interpretation, ranges of values, and references. All
rate parameters are quoted in units of per day. Other parameters are chosen to be within their corresponding
reported ranges from the referenced literature. How variations in parameter values affect our analysis will be
described in the subsequent sections.

Parameter | Interpretation Values & References
[ —

HSC pool (Compartment 1)

Hss total number of HSCs at steady state 1.1x10%-1.1x108[4,11,12]
a per-cell HSC differentiation rate 5.6 x10%-0.02 [4, 11, 12]
M HSC death rate 103-0.1[12, 34]

Transit-Amplifying Progenitor pool (Compartment 2)

ro growth rate of progenitor cell 2-3[12]

Hn death rate of progenitor cell (generation € < L) 0[12, 34]

Méntp death rate of progenitor cell (generation € = L) 0-0.27[12, 34]

w maturation rate of generation-L cells 0.15-0.17 [43, 44]
L maximum generation of progenitor cells 15-21[12,34]

Peripheral Blood pool (Compartment 3)

Mss total number of peripheral blood granulocytes at steady state | (2.5 -5) x 10°[13, 42]

e death rate of peripheral blood granulocytes 0.2 -2 (34, 44, 45]
https://doi.org/10.1371/journal.pcbi.1006489.t001

Our multi-stage model also contains many other intrinsic parameters, including Ymode % fl;
Ch,a; ryma,moitP; L:0;,mng. We first found parameter values that have been reliably
independently measured. Some parameters were measured in human clinical studies rather
than in rhesus macaques but can nonetheless serve as reasonable approximations for
nonhuman primates due to multiple physiological similarities [42]. These estimates can
certainly be improved once direct measurements on rhesus macaques become available.
Model parameters, their estimates, and the associated references are given in Table 1

below.
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Model properties and implementation

Using parameter estimates, we summarize the dynamical properties of our model and
describe how the key model ingredients including stability of HSC clone distributions and
subsequent “bursty” clone dynamics that follow differentiation can qualitatively generate
the observed clone-size variances.

Slow homeostatic birth-death of HSCs—The first important feature to note is the slow
homeostatic birth-death of HSCs. After the bone marrow is quickly repopulated, ra(H(t)) -
un 0, and stochastic self-renewal slows down. Because h = 0 is an absorbing state, the size
distribution of the clones may still slowly evolve and coarsen due to stochastic dynamics,
leading to the slow successive extinction of smaller clones. The typical timescale for
overall changes in h can be estimated by approximating r(Hss) un[46] and considering the
mean

time T(h) of extinction of a clone initially at size h < Hss. The standard result given in

Gardiner

[47] and also derived in Appendix Cin S1 Appendix is T6hP 21 In B o onihs
(for un=1072, Hss= 10% h = 10%; see Table 1 for applicable values). Since this timescale is
larger than the time of the experiment (67 months for monkey RQ5427), mean HSC clone
sizes do not change dramatically during the experiment, consistent with the stable number
of clones observed in the samples shown in Fig 1(b). Thus, as a first approximation, we will
use a static configuration {h;} drawn from P(h) to describe how, through differentiation, HSC
clones feed the progenitor pool.

Fast clonal aging of progenitors—In contrast to slow HSC coarsening, progenitor cells
proliferate “transiently.” In Fig 3(a) we plot a single population burst of progenitor and
mature granulocytes, given by Eqs (10) and (11) and using the parameter values listed in
Table 1. The characteristic duration, or “width” At associated with each temporal burst of
cells is defined as the length of time during which the number my(t) is above the detection
threshold within a sample of peripheral blood: £1% M b =ASP 2 104,

According to Eqg (11), the burst width and height depend nonlinearly on the parameters L,
I'n, Un, Um, and w in their physiological ranges (see Table 1). The characteristic width of a
burst scales as Aty * L/rn+ 1/w + 1/um. This estimate is derived by considering the L rounds
of progenitor cell division, each of which takes time * 1/r.. Terminal-generation progenitors
then require time *1/w to mature, after which mature granulocytes live for time * 1/um. In
total, the expected life span of * L/ra+ 1/w + 1/um approximates the timescale of a HSC-
differentiation-induced burst of cells fated to be granulocytes. Using realistic parameter
values, the typical detectable burst duration At, * 1 - 2 months is much shorter than the
typical sampling gaps Atj=5 - 11 months.

With this “burst” picture in mind, we now show how fluctuations of sampled clone sizes
can be explained. Small-h (where the clone-wise HSC differentiation rate ah; < pis) clones
rarely appear in blood samples. Their appearance also depends on whether sampling is
frequent and sensitive enough to catch the burst of cells after rare HSC differentiation

events. On the other hand, large-h (ah; pl») clones differentiate frequently and consistently
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appear in the peripheral blood. Their populations in blood samples are less sensitive to the
frequency of taking samples. Fig 3(b) shows two multi-burst realizations of peripheral-blood
populations mi(t) of clone i corresponding to a small clone and a large clone. The 2000-day
trajectories were simulated by fixing hiand stochastically initiating the progenitor
proliferation process. Population bursts described by Eg (11) were added after each
differentiation event distributed according to Poisson(ahi). Using simulations, we confirm
that the statistics of clone extinctions and resurrections are more sensitive to the overall
clonal differentiation rate ahithan to the precise shape of a mature cell burst, allowing a
reduction in the number of effective parameters (Appendix D in S1 Appendix).

We can further pare down the number of remaining parameters by finding common
dependences in the model and defining an effective maximum generation number. We can
rewrite Eq (5) as b 2!, where

mp mn 0 b montp d12p

log,
I o

Ll Llog,

is an effective (and noninteger) maximum generation parameter. Later in Appendix D in S1
Appendix, we show that uncertainties of the model structure, alternative mechanisms, and
parameter values can be subsumed into Le. Henceforth, in our quantitative data analysis, we
will set the unmeasurable parameters m,% m?,*% 0 and subsume their uncertainties into

an effective maximum generation Le. Finally, we will invoke Eq (4) to find the constraint

Abssb Ya AbssZLe% MsspmMm: 013p

Since we can estimate M. of the animals in the experiment and the death rate of mature
granulocytes um has been reliably measured in the literature, Eq (13) provides a relationship
between the total steady-state differentiation rate Ab,;and the maximum number of
progenitor generations Le.

After assigning values to parameters using Table 1 (setting un=0, w = 0.16 and um=1),
subsuming parameters into Le (setting m?,:»% 0), describing the configuration {hi} through
the distribution shape factor A and the total number of HSC clones Ci (setting the HSC death
rate un=0), and applying the constraint AP, 2Le ¥4 MA b m,,, we are left with four effective
model parameters Umodel = {A, Ch, n, Le}. Here we have included rmin the key model
parameters since it is not reliably measured and the cell burst width is sensitive to rn. Once
Leis inferred, Eq (13) can be used to find AP % 2 LeMA bmy,.

Statistical model

The total number of tags observed across all samples (obtained by summing up the

observed numbers of unique tags over J samples) can be used as a lower bound on Ci. Even
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though estimates for animal RQ5427 give Gy * 550 - 1100, uncertainties in the HSC self-
renewal rate parameters pn, Kn, and the initial HSC population H(0) make A and P(h, t)
difficult to quantify. Even if P(h, t) were known, it is unlikely that the drawn {h;} would
accurately represent those in the monkey, especially when A 1 and P(h) becomes extremely
broad (the variance of P(h) approaches infinity). Thus, we are motivated to find a statistical
measure of the data that is insensitive to the exact configuration of {hi}. The goal is to study
the statistical correlations between various features of only the outputs, which should be
insensitive to the input configuration {hi} but still encode information about the

differentiation dynamics.

/A
Two such features commonly used to fit simulated fi(tj) to measured f8t;p are the mean

P/ 2% 1Py, 8f0tp  yp2 However, the small number of
yival m1fOtp and the variance s;; measurement time points J and the frequent

disappearance of clones motivated us to propose an even more convenient statistic that is
based on
X z;% 106f0t;p,0b; 014p

J

the number of absences across all samples of a clone rather than on oi. Here, the indicator
function 16x;x°p % 1 when x = x°and 13x,x°b % 0 otherwise. In Appendix E in S1 Appendix,
we illustrate alternatives such as data fitting based on o;and on an autocorrelation function
but also describe the statistical insights gained from using statistics of z.

The level of correlation between the observed number *z;of absences of clone i and its
average abundance "y;is measured by the average of Ay;conditioned on ”z;(dashed curve).
In Fig 4, the distribution of the values of Ay;at each 7z;is clearly shown. To combine the
correlated stochastic quantities ziand yiinto a useful objective function, we take the
expectation of yiover only those clones that have a specific number z;= z absences across

the time samples:

P
— 18z zb 015p
Y:% P
10z ;zb:
P
The normalizing denominator i10z;,zP is simply the number of clones with exactly z

absences. In case no simulated or data-derived trajectories fi(tj) exhibit exactly z absences,
we set Y;=0or Y*,% 0. We then determine Yz(Jmodel) from simulating our model and Y*,
from experiment and use the mean squared error (MSE) between the two as the objective

function:
X1
MSEéymodelp Ya yzYzaymodelp YA 22, d16b

Zhl
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where Gmodel = {A, Cn, ', Le}. Yois excluded from the MSE calculation because the yivalues of

L

Fig 4. Scatterplot of clone trajectories of animal RQ5427 displayed in terms of In 2y ;, the log mean abundance of
clone i, and ~z ;, the number of samples in which clone i is undetected. The trajectory of each clone i is
represented by a symbol located at a coordinate determined by its value of In Ay ;and 7z . A trajectory of a clone
that exhibits one absence within months 8 - 67 is shown in the inset. The first sample at month 2 is excluded
because only long-term repopulating clones are considered. Clones that are absent in all eight samples are also
excluded, so the largest number of absences considered for animal RQ5427 is 7. The dashed black line denotes In
Y7;, where Y”;is the average of Ay ;calculated over i within each bin of zas shown in Eq (15). When later analyzing
YA;, Yo (red circles) is not included.

https://doi.org/10.1371/journal.pcbi.1006489.9004

clones that have z;= 0 are not constrained by the burstiness of the model and Yocan be
sensitive to the underlying configuration {h;} (see the Discussion and Appendix E in S1
Appendix).

We are now in a position to compare results of our model with experimental data. The
general approach will be to choose a set of parameters, simulate the forward model
(including sampling) to generate clone abundances {fi(t;)}, number of absences z;, and
ultimately Yz(Fmoder), Which is then compared to data-derived Y” ,. By minimizing Eqg (16) with
respect to Umodel, We obtain the least square estimates (LSE) of Omodel. A schematic of our

workflow is shown in Fig 5. We describe the details of the simulation of our model in

Appendix F in S1 Appendix.

Results

By implementing the protocol outlined in Fig 5, we find a number of results including
leastsquares-estimates (LSE) of the parameters, their sensitivity to other model features,
validation of the mechanistic model, and robustness of our statistical methods to missing
data and clone sampling thresholds. Our analyses allow us to effectively compare the results

from the three different animals.
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MSE function and estimates of L. and AP for animal RQ5427

We first fix the HSC distribution shape parameter A = 0.99 and the total number of HSC
clones Ch = 500; this choice will be justified in the next subsection. The MSE objective
function can now be plotted as a function of the proliferation rate r,2 [0.01, 10] and
proliferation potential Le 2 [19, 28] of progenitor cells in their respective biologically relevant
ranges. Even after specifying Omodel = {A =0.99, Ch = 500, rn, Le}, there is still uncertainty in
the simulated values of Y;={Y1, Y>, ..., Y7} due to the uncertainty in the drawn configuration
of HSC clone sizes {hi}, the intrinsic stochastic mechanisms of the model (Poissonian HSC
differentiation events), and random peripheral blood sampling. Therefore, we performed
200 simulations for each

Experiment

_ . i
?——> | O = MES5 40 —>Zj

L

|

I
Simulating {h;} from P(h) IMSE

i

y

i

h; A% =aH .
Hij' ——> Omodel = {’L Chy Ty Lo} —_— %
sS ~ A z
Bexp = {Mg;, Sj+J tj}
Model

Fig 5. Workflow for comparing parameter-dependent simulated data with measured clone abundances. The first
step is drawing a configuration {h;}, which is experimentally unmeasurable, from the HSC clone distribution P(h). To
define P(h) requires an initial estimate of A and Ci. Using known experimental parameters Jexp and choosing rn, Le 2
Fmodel, We compute the theoretical quantities y;and z;by simulating the multi-compartment mechanistic model and
the peripheral-blood sampling. The corresponding Ay jand ~z ;are extracted from data, and the theoretical Y:(Omodel)
and the experimental Y” ;are compared through the MSE defined in Eq (16). The MSE is then minimized to find
least squares estimates for Omodel.

https://doi.org/10.1371/journal.pcbi.1006489.9005

set of {rn, Le}, producing 200 sets of Y.. The means of Y;are used to construct the mean of
MSE(A = 0.99, Ch= 500, rm, Le), plotted in Fig 6.
In the reported progenitor growth rate range of rn=2 - 3 (Table 1), the MSE function is
quite insensitive to Le. To interpret this observation, note that rndoes not affect the
absolute value of Saccording to Eq (13), but it affects the typical time * L/ra+ 1/w it takes
for a generation 0 progenitor cell to form a mature granulocyte. When r, < um, the
proliferation of progenitors cannot “catch up” with the loss of granulocytes, resulting in a
quickly vanishing burst in the granulocyte population my(t) arising from a single-
differentiation event mo(t). A larger Le would be required to compensate. When rn um, the
growth of any clone is much quicker
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Fig 6. Dependence of the mean MSE defined in Eq (16) on ryand Le. For visualization purposes, we took the natural
logarithms of MSE values and plotted them as a function of Le and r,. Blue areas denotes smaller MSE values, thus
better fitting. This energy surface was generated by averaging over 200 simulations using C,= 500 and A = 0.99.

https://doi.org/10.1371/journal.pcbi.1006489.9006
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Fig 7. Finding the least squares estimate (LSE) L. for animal RQ5427 by fitting the simulated Y:to the experimental

YA .. The values of (A, Ch, rn) are chosen to be (0.99, 500, 2.5). Simulations with {h;} set to fAy igHssP instead of drawing
from P(h) generate similar results. (a) The LSE is L% 23:4. Averages and standard deviations (error bars) of the 200
MSEs are plotted. (b) Comparisons between the experimental (solid) Y» ;and simulated (dashed) Y, with fixed L. % 23:4.
The error bars are determined by considering the standard deviation of the average abundances (yior *y ) of all clones
exhibiting z absences.

https://doi.org/10.1371/journal.pcbi.1006489.9007

than its loss, so the burst size is relatively stable and L. is not very sensitive to rn. Thus, the

MSE objective function is fairly insensitive to rain its biologically meaningful value range.

We then fix the progenitor proliferation rate rn= 2.5 and plot the mean MSE(A =0.99, Ch
=500, rn= 2.5, Le) in Fig 7(a), which indicates a clear minimum at L. % 23:4 0:12. The error
bars denote the standard deviation of MSEs obtained from the 200 simulations at different
values of Leand show that the variability is negligible for the purpose of determining the
minimum. Upon applying the steady-state granulocyte balance constraint in Eq (13), we
obtain a total HSC differentiation rate dAP,p %4 14:7.

If we approximate m,;m%,*% 0, Le L. Substituting LSE values L.% 23:4 for L into the model
for the peripheral blood bursts (the analytic solutions to n')(t) and mw(t) in Eqs (10) and (11))
yields a single burst duration of At, 32 days, consistent with our assumption Aty <Atj=5 -
11 months. Note that even though L is interpreted as an integer in Eq (8), analytic solutions
of Eqs (10) and (11), n%®d8tb and ms(t), depend on L in a continuous manner, interpolating

the behavior to arbitrary values of L. Fig 7(b) shows how one simulation of

Y,0L. % 23:4b fits the experimentally measured Y” ,. Here, each error bar denotes the

standard deviation across all mean abundances yi(or *y;) within each value of z absences.

Insensitivity of analysis to HSC configurations

In Fig 8, we demonstrate the weak dependence of our least-squares estimate to A, the

parameter controlling the shape of the probability distribution of HSC clone sizes P(h, t). For
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each A, we sample a fixed number (G, = 500) of HSC clones from the theoretical distribution
P(h, t), fix ra=2.5, and let Le vary between 19 and 28. The averages of the 200 simulated
MSEs at each value of Leare compared and the L.that corresponds to the minimal average
MSE is selected. The selected L. as a function of A is plotted in Fig 8(a). Fig 8(b) shows the

averages and standard deviations of MSE 3L.P at each value of A. We then repeat the

simulations with Ch=1000. These results together show that L.is insensitive to the
distribution of hi. This insensitivity might be understood by noticing that the quantity Yzis
defined as the mean of the values of y;that are associated with z absences (dashed curve in
Fig 4) and is not necessarily sensitive to

Fig 8. The LSE L.is insensitive to the geometric distribution factor A > 0 and to Ch 1. This implies that for a wide range of
values of A and C the LSEs are insensitive to the HSC configuration {h}. (a) Le s found at each value of A. (b) Averages and
standard deviations (error bars) of MSE 8Lcp as a function of A. The LSE and MSE(Le) values associated with self-
consistently using fhig=Hr % fAy jg from experimental data are marked by arrows and “exp.”

https://doi.org/10.1371/journal.pcbi.1006489.9008

how these values are distributed (vertically distributed markers at each value of z in Fig 4).
Instead, Y:zincorporates the intrinsic relationship between a clone’s mean abundance yiand
its number of absences z;, averaged over all clones. It thus also encodes how heterogeneity
in the HSC clone populations is translated into the burstiness seen in the sampled clone
abundances fi(tj). Although it is generally impossible to recover the exact {h;} configuration,
we find the HSC self-renewal-induced geometric distribution described by Eq (7) generally
generates better fits to the sampled data when A is large (= 0.5), suggesting significant

heterogeneity in values of h..

Comparison of variability from simple sampling and best-fit model
We can check how our LSE result performs against the null hypothesis that clone size
variations arise only from random sampling. An estimate of sampling-induced variability can

be obtained by assuming a specific number of peripheral blood granulocytes of tag i and
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randomly drawing an experimentally determined fraction &(t;) of peripheral
blood cells. This is repeated J times from a constant peripheral pool {mj}. Each draw results
in si(t;) cells of clone i in the simulated sample. Normalizing by S*(t;), the total number of
tagged cells in the sample, we obtain simulated fi(t;) from which we extract the mean

abundance yiand its standard devia-

offiffiffiffiffiffiffiffiffiffitfifitfitfirfirfififfiffiiefitfitfirfirfififfifirfirfiefiffiffirfiffirtilp, ofiotp

yib2for each clone i. The simulated quantities In y;and oiassociated

. S
tion i% J %1

with each clone j are indicated by the green triangles in Fig 9(a). The corresponding values
In*y;and s”;derived from the data shown in Fig 1(b) are indicated by the blue dots. This
simple heuristic test shows that the experimental fluctuations in clone abundances are
significantly larger than those generated from random sampling alone and that additional
mechanisms are responsible for the fluctuation of clone abundances in peripheral blood.
Using LSE parameter values, Fig 9(b) shows the fluctuations in clone abundances obtained
from random sampling of fluctuating mature clones simulated from our model. Here, the
variability is a convolution of the fluctuations arising from intrinsic burstiness and from
random sampling. The total variability fits those of the experimental data well except for

several large-sized outlier clones.

Fig 9. (a) A plot of the standard deviation s” ;vs. the log of the mean *y ;, extracted from abundance data (blue
dots). For comparison, clonal tags distributed within the peripheral blood cells were randomly sampled (with the
same sampling fraction &t;) at times t;as in the experiment). The analogous quantity ishown by the green
triangles indicates a much lower standard deviation for a given value of In y;. This simple test implies that the clonal
variability across time cannot be explained by random sampling. (b) The same test is performed after applying our
model with the LSE parameter L. = 23.4 (and the average of parameters listed in Table 1).

https://doi.org/10.1371/journal.pcbi.1006489.9g009

Robustness of L.to sampling frequency and threshold

We checked the robustness of our inference by leaving out time points from the
experiment. Recall that the experimental data matrix for animal RQ5427 contains 536 rows,
each representing a clone, and 8 columns, each representing a time point measured by
month. By using only the first j = 8, 7, ...1 time points of data (leaving out 8 - j time points),
seven additional simulation studies to find L. were performed. As shown in Fig. G1 in
Appendix G of S1 Appendix, reduction in the number of time samples flattens the MSE but
preserves its minimum near L. 23:4 23:6 provided at least 2-3 samples are used. We
have also excluded intermediate samples to mimic larger sampling gaps At;jand found

similar results.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006489 October 18, 2018 21/26



https://doi.org/10.1371/journal.pcbi.1006489.g009

@'PLOS COMPUTATIONAL
2z BIOLOGY Clonal tracking of hematopoiesisin rhesus macaque

Next, we examined the effects of sample thresholding on our parameter inference. By
eliminating clones whose average abundances are under a certain threshold, we will
observe fewer clones in the large-z bins depicted in Fig 4. Since larger clones with fewer
absences contribute most to the MSE, our results will not be affected as long as the
threshold is not too large. Provided we apply the same threshold to both the simulated and
experimental data, there should not be systematic bias in our results. The MSEs generated
using different thresholds are plotted in Fig. G2 in Appendix G of S1 Appendix and show that
the inferred value L. 23:4 remains essentially unchanged provided the threshold level is low
enough to retain approximately at least 40% (about 200) of the clones (see Fig. G2(a-f) in
Appendix G). With fewer clones retained (< 200), the LSE of Le shifts only modestly to L.
24:3. Thus, we conclude that our inference of Leis robust to increases in sampling threshold

as along as a reasonable number of clones (= 200) are counted.

Data analysis and fitting for animals 2RC003 and RQ3570

The data from the three different monkeys vary in their numbers of tagged clones
transplanted and the lengths of the experiments. For animal RQ5427/2RC003/RQ3570,
there are 536/1371/ 442 clones that are detected at least once within 67/103/38 months.
The fraction of cells in all tracked clones in animal RQ5427/2RC003/RQ3570 was
approximated by the average fraction of cells that were EGFP+ marked over time, around
0.052/0.049/0.086 (the ratios between
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Fig 10. (a-b) Experimental data for animal 2RC003. (c) Difference between experimental YA ;and simulated Y;(Le) as a

function of Le. The values of his are set to be equal to HPy ;, and the model was simulated 200 times at each value of Le.
Other parameters are taken from Tables 1 and 2. The LSE L. % 25:0 and 8APsb % 6:7. (d) Comparison of the optimal Y to

the experimental Y~ ..

https://doi.org/10.1371/journal.pcbi.1006489.9010

green square and blue triangle markers in Figs 1(a), 10(a) and 11(a)), respectively. Figs 10
and 11 also show the clone abundances, the MSE functions, and the statistics of Y(z).

Despite differences among the animals and the large variability in the estimated values
of arand Hssindividually reported in the literature [4, 11, 12], the estimates of dAsPPand L.
are rather similar across the three animals. For animal 2RC003, the optimal estimates are L.
25:0, while for animal RQ3570, L.% 24:0. The corresponding estimates for A, after
considering the constraint Eq (13) and the EGFP+ ratios in Table 2, are 282.7, 136.7, and
224.4.

We also compared how the simulated LSE Y,0L.p fits the experimental Y ,for all three
animals. Note that for each specific z, the value of Y:is the conditional mean of the values of
yifor which each clone i exhibits exactly z absences. Even though for any specific z, the

distribution of the corresponding yis is unknown, their mean Y;should follow a normal
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distribution according to the central limit theorem. We use a one-sample t-test to compare
YA ,against the mean of the Y,0L.P s generated from 10000 simulations using the optimal L
% Le. For animal RQ5427, we actually performed seven one-sample t-tests on the Y:={Y1, Y2,
..., Y7} to find the seven p-values {0.69, 0.53, 0.58, 0.17, 0.68, 0.01, 3 x 107°}. Except for the
last two p-values (corresponding to the bins z = 6 and z = 7), all other bins easily pass the

one-sample t-test at a significance level of 0.05. Clones with z =6, 7 are much smaller and

more severely corrupted

https://doi.org/10.1371/journal.pcbi.1006489.9011

by noise, such as that induced during PCR amplification, and thus provide less reliable
information.

Comparisons of the test results among the three animals, together with comparisons among
Figs 7(b), 10(d) and 11(d), show qualities of fit ordered according to RQ3570 < RQ5427 <
2RC003. This sequence of fitting qualities is consistent with the increasing experimental

times

Table 2. Summary of specific parameter values for monkeys 2RC003 and RQ3570 derived from experimental
measurements [13] or obtained by calculations (L. and 3APssP).
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Parameter Reference range or LSE value
RQ5427 2RC003 RQ3570
Chs 536 442 1371
OApssP 14.7 6.7 19.3
Ass 282.7 136.7 224.4
Le 234 25.0 24.0
Mss 3.2x10° 4.6 x 10° 3.8 x10°
SH(t) (5.0 - 30) x 103 (2.1-8.6) x 10 (7.0 - 10.8) x 103
EGFP+ ratio 0.052 0.049 0.086
At) (2.8-20) x 10° (1.2-4.2)x 107 (2.4-3.0)x 10"
At; 150 - 330 180 - 660 150 - 260

https://doi.org/10.1371/journal.pcbi.1006489.t002
RQ3570 > RQ5427 > 2RC0O03, suggesting that age-associated changes of stem cell clone sizes
cannot be fully neglected (which we did by fixing {h;}) [48]. As is evident from Fig 10(a),

several clones start to dominate after month 64; this coarsening phenomenon is not

evident in the data of the other two animals. Animal RQ3570 was sacrificed at month 38, so
no obvious coarsening is observed and no clones strongly dominate (see Fig 11). A summary

of the parameters and fitting results for all animals is given in Table 2.

Discussion

In this study, we analyzed a decade-long clonal tracking experiment in rhesus macaques and
developed mechanistic and statistical models that helped us understand two salient
features of clone abundance data: the heterogeneous (nonuniform) distribution of clone
sizes and the temporal fluctuation of clone sizes. Below, we further discuss the implications
of our results, the structure of our mechanistic model, and the potential effects of including

additional biological processes.

Comparison to previous studies

The long-term clonal tracking data we analyzed were generated from a huge number of
initially tagged HSPCs (Cn(0) * 10°- 107) [13], a large humber of observed clones (Cs * 102 -
103), small numbers of sequenced cells that carry tags (ASPdtp 103104), and infrequent

sampling

(At;> 5 months). These features present significant challenges to the modeling and analysis
over previous studies that mostly focused on one or a few clones [5, 15, 17, 18].

In a previous analysis, Goyal et al. [4] aggregated the clone abundance data across all
mature cell types and studied the distribution of the number of clones of specific size. At
each time point, they ordered the clones according to their sizes. Thus, the ordering can
change across samples as some clones expand while others diminish. They found that the

cumulative clone-number distribution (defined as the number of clones of a specific size or
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less) of the size-ordered clones becomes stationary as soon as a few months after
transplantation. They proposed a neutral birth-death description of progenitor cells and
fitted the expected value of clone counts in each sample by assuming h; 18i8Pdh; tb %
16h,1PP and tuning parameters in the downstream progenitor and mature-cell
compartments. By focusing on aggregate clone counts, this study could not distinguish the
dynamics of individual clones, nor could it predict the persistence of clone sizes over time.
Since individual clone sizes (hi, ni, mi, siof the same tag i) were not tracked, mechanisms
driving the dynamics, and in particular, the variability and fluctuations of individual clone
sizes that drive disappearances and reappearances, remain unresolved [4].

In our model, heterogeneity of clone sizes is explicitly generated by stochastic HSC
selfrenewal of cells of each tag, and extinctions and resurrections arise from a generation-
limited progenitor proliferation assumption. We infer model parameters as listed in Table 2.
Combining the results with previous experimental and theoretical estimates of Hss 1.1 x 10*
-2.2x10%[4, 49] results in ar=0.0045 - 0.027, slightly larger than, but still consistent with,
the estimates a'=0.0013 - 0.009 by Shepherd et al. [11]. Previous studies that modeled
total peripheral blood population estimated a 0.022 and Hss 1.1 x 108/kg for dogs and
0.044 and Hss 1.1 x 10%/kg for humans [12]. These estimates yield a value of aHssabout 102 -
10%times greater than ours, which is nonetheless consistent with our steady-state
constraint Eq (13) because they assumed a much smaller L 15 - 18 for dog and 16 - 21 for
human. This difference in the estimates of L may be partially attributed to the transplant
conditions under which the rhesus macaque experiments were performed [13]. Alternative
model assumptions and differing values of other parameters may also contribute to this
difference. For example, the extremely large value of Hss 107 used in [34] will naturally

decrease their estimate for L. relative to that of our analysis.

Model structure, sensitivity to parameters, and cellular heterogeneity
Uncertainties in values of parameters such as un, pn, Kh, and other factors that tune the
symmetric-asymmetric modes of HSC differentiation or involve HSC activation processes
[50] will impart uncertainty in determining P(h) and {h;}. We have assumed P(h) satisfies a
master equation and depends on only two effective parameters A and C». However, we
have demonstrated that the statistical properties of Y:are quite insensitive to the upstream

configuration {hi} and hence to A and Cnfor a wide range of their values (see Fig 8). In other

/A
words, very little information in {h} is retained in the sampled abundances f dt;p after HSCs

differentiate and trigger random bursty peripheral blood-cell population dynamics.
Another feature we have ignored in our neutral model is cellular heterogeneity such as
tagdependent differentiation, proliferation, and death rates. Cellular heterogeneity in HSC
differentiation rates could be described by different aifor each clone i, and the total
differentiation
PCh
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rate would be AP % i1 ah;. Differences in aican be subsumed into a modified
configuration {h;} which, as we have seen, does not strongly influence our parameter
estimation based on the Y;statistics. Thus, given the available data and how information is
lost along the stages of hematopoiesis and sampling, the present quasi-steady-state
analyses cannot resolve heterogeneity across HSC clones.

We have not investigated how cellular heterogeneity in progenitor and mature cells
would affect our results, but clone-dependences in their birth and death rates could affect
sizes and durations of population bursts and quantitatively affect our analysis. However,
unless the statistics of inter-burst times are highly variable across clones, we do not expect
cellular heterogeneity to qualitatively affect our conclusions.

Changing downstream parameters such as um or invoking alternative mechanisms of
terminal differentiation (see Appendix B in S1 Appendix) can affect the shape of clonal
bursts. We show in Appendix D in S1 Appendix that these effects can be subsumed into the
effective maximum progenitor generation Le. We have performed additional simulations to
confirm that changing um= 2 will not influence the fitting of AP, but increases L. by one. In
other words, inference of 8APbis robust against many upstream and downstream
parameters, indicating that the intrinsic clone size fluctuations observed in the experimental
data strongly constrain the total rate of HSC differentiation. On the other hand, uncovering
the actual maximal generation Lfrom L.is possible only when uncertainties in these other

parameters are resolved.

Clonal stability vs clonal succession

Our model reduction was based on the separation of timescales of the slow HSC dynamics
and the fast clonal aging dynamics. Since HSC clone sizes vary extremely slowly for primates
( 08102P months), we ignored the homeostatic births/deaths of HSCs when fitting the
temporal clonal variations. This is partially justified by visual inspection of Figs 1(b), 10(b)
and 11(b) that show no significant variations of large clones’ abundances is observed before
60 months. Instead, the random intermittent HSC differentiation events induce relatively
short ( O81b months) bursts of granulopoietic progeny that contribute strongly to temporal
fluctuations of clone sizes. Such behavior are consistent to the “clonal stability” hypothesis
[51-53], which assumes that a fixed group of HSCs randomly contributes to an organism’s
blood production at all times.

The alternative hypothesis of “clonal succession” [16, 54, 55] assumes that different
groups of HSCs are sequentially recruited to the blood production at different times. This
hypothesis would be consistent with our model only under a different set of parameters
where HSCs selfrenew/die at a rate comparable to that of Ar,, the duration of a granulocyte
burst. For example, murine HSC turnover rates pnare hypothesized to be 10-fold higher
than those in primates while the clonal aging dynamics (and its timescale Aty) are relatively
conserved across species [56]. According to our result in Appendix Cin S1 Appendix, such a

10-fold increase in HSC death rate would lead to a 10-fold increase in HSC clone extinction
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rate, bringing the lifespans of HSC clones closer to the (progenitor) clonal aging timescale
Aty This interpretation is consistent with the fact that hematopoiesis in large primates has
been described in terms of “clonal stability” while hematopoiesis in mice has been
described in terms of “clonal succession” [16, 51-55]. We thus predict that with even longer
tracking (> 100 months), the “clonal succession” mechanism could be significant in primates

also.

Summary and future directions

In summary, we have built mechanistic and statistical models that enable the quantitative
analysis of noisy and infrequent clonal tracking data. We focused on the huge temporal
variability observed in the sampled clone abundances and defined a robust statistical
measure Y;of sample-to-sample clone size variability through the number of clonal
disappearances. Of course, there is a nearly endless list of details such cellular
heterogeneity and more complex biology that we did not include, but given the noisy data,
we propose and quantify the simplest explanation for the observed heterogeneous clone
abundances and the temporal “extinctions and resurrections”. The key ingredients in our
mechanistic model are HSC self-renewal (quantified by the effective parameter A),
intermittent HSC differentiation (quantified by the parameter Ab), and an effective
maximum progenitor generation (quantified by the effective parameter Le). Although we
cannot fully resolve A from data, the obvious mismatch between experiment and our model
when A is small shows that a certain level of HSC clone-size heterogeneity (larger A 1) is

necessary to match the sampled data. Similarly, we cannot fully resolve arand H, but their
product, the total tagged HSC differentiation rate AP, % aH., is one of the key parameters
constrained by our modeling. By minimizing an objective function of Y; over effective model
parameters, we found LSE values L. % 23 25 and dAb,b % 100 300 for the
three rhesus macaques. These quantities could not be inferred from the total, more static
cell populations. These results also imply that true dynamical changes in Abi;and Le could be
masked by the intrinsically bursty dynamics of each clone but provide a framework for
future study into extrinsic perturbations.

Our analysis provides insight into the variables and experimental conditions to which
parameter inference is most sensitive, possibly guiding the design of future experiments.
The approach and models can also be readily extended to quantify white blood cells of
other types. For example, the mechanistic model can be directly applied to monocytes since
they also have relatively simple dynamics and do not proliferate in the periphery [57].
Peripheral lymphocytes, however, would require additional experimental information
because their populations are more sensitive to the state of the animal and can

homeostatically proliferate [38].
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A Stochastic evolution of HSC clone sizes

To solve Eq. (6) in the main text for P(h,t), we transform the equation using the probability generating function

. We have also neglected the subscript i because our model is “neutral” and P(h,t) can
describe the size of any HSC clone i. If the HSC self-renewal rate is approximated as rw(H(t)) = ru(t), the solution
for Q(s,t) takes on the following form [1]:

B ..

where
-k =

These solutions obey the initial condition P(h,0) = 1(h,1) and as t =0, Y(t) = () € (0,1), ¢ =0, and P(h,t) = 0.
For and P(0,t »o0) - 1, indicating eventual extinction at long times [1, 2].
Using forms given in Eq. (A3), since both ¢ and i are independent of h, we can define

M
I .

Thus, the probability distribution P(h,t) can be written as

B Alternative model of progenitor aging

An alternative model to the one we have analyzed allows younger-generation progenitor cells (£ < L) to
differentiate into peripheral blood. Since each generation can differentiate with rate w, the progenitor cell
dynamics are slightly modified from those in our main model:

Poisson(ah(t)) - (rn+ pn+
w)nO(t), £=0,




I , -

Moreover, the dynamics of the mature peripheral blood population obey

L
ﬂdt@ =X w0 - pmm(®)
(B2)
£=0

The solution to Egs. (B1) and (B2) following a single differentiation event is

(B3)

These results can be applied to the model and analyzed and simulated using the same procedures as described
in the main text. However, certain parameters have to be re-interpreted. For example, using the same value of
w = 0.16 will significantly increase the effective death rate for progenitor cells of each generation. Fortunately,
as we will show later, this alternative mechanism should not affect our main conclusion as the parameter-fitting
results are not sensitive to the exact shape of cell bursts.

C Mean extinction time for a clone

As a function of the initial number h of HSCs in a clone, the mean extinction time (MET) T(h) under the steady-
state approximation rn= un obeys [3, 4]
[T(h +1) = T(h)]unh = [T(h) = T(h - 1)]unh = -1. (C1)

with an absorbing boundary condition T(0) = 0. By iterating Eq. (C1), we find

To solve for T(1), we invoke a reflecting boundary condition T(Hss) — T(Hss— 1) = 1/(unHss) [5], where

which can be again iterated to obtain

to find

Upon using Eqg. (C5) in Eq. (C3), we find

_ = Tdiscrete(h); (C6)

which is the MET for a discrete system.



We can also approximate T(h) by considering h as a continuous variable, and replace the summations in Eq.
(C6) by integrations to find a simpler, more insightful approximation to T(h):

h uw d¢f 1 h1 kdf
Tcontinous(h) =Zs«—7Z-dkZ __fh {’=1_’f_,uh k=1¢=1¢

= hlnHss— (h- 1)In(h - 1) + h - 2 (€7)

Uh

-,

where we have used R¥(1/x")dx = Inx and R*Inx'dx’ = xInx — x. The continuous approximation to the MET matches

the exact result quite well (relative error . 5%) for all values of h.

D Effective parameters and symmetric HSC differentiation

There are differing reports on the measured death rates for circulating granulocytes. We have used the most
recently reported value um = 1 per day for humans. The effect of changing the value of ym — um' on our analysis

is a reinterpretation of Le. By rewriting Eq. (13) as , we rearrange the

expression to_ and find-e_). For example, M- 2 would lead to

I 1, where one additional round of progenitor doubling compensates for the doubled loss rate of
mature granulocytes. One may argue that the change in um can also be compensated for by doubling A*ss, which
would have a different effect on the burstiness of the model compared to doubling L.. However, when re-fitting
the data with ll= 2 or 0.2, we observed that (4*ss)* did not change much, with most of the effect of modifying
umabsorbed by changes in Le*.

Similarly, uncertainties in other parameters can also be subsumed into Le. For example, setting -w >0

implies that only half of the generation-L progenitors contribute to the peripheral blood. For a model with -
= 0 to generate an equivalent effect, we can halve the number of mature cells by using an effective maximum
generation parameter_ 1. This indicates that the intrinsic clone size fluctuations demonstrated in the
experimental data strongly constrain A*ss.

Another possible modification of our mechanistic model is to allow for the possibility of symmetric HSC
differentiation. The effect of symmetric differentiation can again be subsumed into the parameter Le without
qualitatively affecting our analysis. Assume a proportion 0 < g < 1 of HSC differentiations are symmetric,
producing on average 1+q generation-0 progenitor cells. After L. rounds of proliferation, the 1+q generation0
progenitors produce on average (1+q)x2L mature cells. This is equivalent to an exclusively asymmetric
differentiation model (q = 0) with + 1). We also expect symmetric differentiation to slightly
increase the speed of coarsening since each HSC differentiation is also accompanied by the HSC’s death and
clones represented by a single HSC would disappear under symmetric differentiation. However, given the small
rate a of HSC differentiation, the large number Ch of clones, and the insensitivity of our results to the distribution
hi, the data cannot quantitatively resolve the symmetric-asymmetric modes of HSC differentiation.



E Alternative objective functions and statistical insights

We developed our data analysis based on the statistics of the quantity y;, the time averaged relative clone sizes
for those clones exhibiting z absences across their longitudinal samples. While reasonable parameter estimates
were obtained from fitting to data, we also considered alternative objective functions. Specifically, we looked

at the standard deviation _ quantifying the temporal fluctuations of the relative

sizes of each clone i. The way we construct an alternative objective function is similar to the way we constructed
Y.. Recall for Yz, we calculated the average abundance across only those clones with the same zi= z absences
across time. However, unlike ziwhich takes a finite set of discrete values {1, 2, ..., ] - 1}, oiis a continuous variable
so we have to artificially bin their values. Instead, we bin clones with similar y;and study the average of their
associated oi’s. Since the distribution y:is non-linear with a long tail, we evaluated Iny:to obtain the near-linear
distribution shown in Fig. E1(a), sorted Iny:into equal-width bins, and calculated the average of the associated
ois. Dividing the values of Iny:into bins labeled by k, we compute

U= p ioil(clonei € bink) (E1)
P 1(clonei € bink) i

in analogy with the definition of Yz. The objective function can be straightforwardly defined as

MSEa(emodel) = X(Uk(@model) - Uk)Z. (EZ)

k

Itis also unclear how to set upper and lower bounds on the range of yifor comparison (in contrast to the natural
bound on 1 <z <] - 1) because an unconstrained set of clones will be sensitive to the underlying h;distribution
(an undesirable property). In Fig. E1(b), we fit the data from animal RQ5427 using MSEs and find I
consistent with our previous estimate using Y-.
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Figure E1: Statistics of the two alternative fluctuation measures and their fitting results. Each dot represents a
clone. (a) Log standard deviation plotted against log average abundances. Clones are near-linearly distributed
in the log average abundance space. (b) Objective function MSEs vs. Le. Clones of similar y:are binned, and their
averaged oi were used to compute Uk. (c) Autocorrelations Rivs. log of average abundances u:. There is no clear
pattern in the distribution of Ris. (d) MSEgrvs. Le. This objective function cannot resolve the LSE Le*.

While it is also possible to choose oias a measure of clone population fluctuations, we list several advantages
of “ziover oifor the current dataset. Note that the number of disappearances ziof each individual clone is defined
on a finite set of integers (unlike the continuously measured o), making it easier to bin clones with the same z
values. Different clones i will exhibit different time-averaged abundances y;but may have the same value of zi.
As shown in Fig. 4 in the main text, the larger "ziis, the smaller the corresponding In “yitends to be. The robust
correlation between z:and y:encodes the level of fluctuations for a clone of certain size. For a given y;, the larger
zi, the “burstier” the dynamics, implying a smaller number of tagged HSC differentiations per unit time (a
smaller A*ss).

Another advantage of using z; statistics emerges when fitting model results to the pattern of the measured
data in Fig. 4 in the main text. Average sizes yi(and the underlying h:) associated with clones having 1 <z <7 all
contain at least one absence. This constraint naturally controls the upper and lower bounds of h:in a particular
zbin (1 <z <7), based on the burstiness of the model. Exact knowledge of the configuration {hi} is not required
for fitting these y: data.

Thus, dividing clones into z bins provides us with a natural way to exclude unconstrained clone sizes. In
other words, the theoretical values of yi (and the underlying h;) associated with bin z;= 0 can be arbitrarily and
unreasonably large, and such a possibility should be excluded. Similarly, all yibelow a threshold size generate
zi=] (clones that never appeared in the sampled blood) and do not provide any statistical power. This advantage
of using zican also be confirmed by visual inspection of Fig. 9(b) in the main text. Several very large clones do
not follow the general statistical pattern and show extremely large variances. Without manually filtering out
these clones, our fitting in Fig. 1(b) results in a larger Le* = 24.4 than the Le* = 23.4 obtained in the main text
using Y; statistics. Finally, another option for comparing model with data is to use correlation functions. In this
approach, the sampling gap At;varies between 5 and 11 months, so the usual autocorrelation function with
equal time gaps cannot be rigorously defined. We use the one-sample-gap autocorrelation function

and bin values of Inyiin analogy to Eq. (E1) to define

P
and construct an autocorrelation-based objective function
MSER(@model) = X(Wk(@model) - Wk)Z. (ES)

Wie= i Ril(clonei € bink) (E4)
1(clonei € bink)

1

k

Since the inter-sample intervals At;jare larger than a typical burst size Aty 32 days, cells in different samples
likely originate from different HSC differentiation events. Thus, the fluctuations of clone sizes are uncorrelated



from sample to sample, as shown in Fig. E1(c). Randomly distributed between -1 and 1, the values of R;are

centered about the line-, corresponding to the majority of clones that have zi= /-1 (only 1 non-zero
sample). Data fitting using R;and MSEris ill-conditioned and cannot resolve Le*, as shown in Fig. E1(d).

F Simulation of the forward model

To generate predictions, we first choose values of Omodel = {A,ChmLe} and simulate our model, including
sampling, to find si(¢;). To simulate each realization of our model we

1. Specify the static HSC clone size distribution P(h) by choosing the pair (4,Ch) and draw {h;} from the
geometric distribution Cntimes using the Python package np.random.geometric. Normalize to construct

the configuration . Alternatively, we can also use the data "y to approximate the
configuration {h;}/Hss*.

2. Fix all parameters Omodel, construct the total clone i differentiation rate _

for each clone i. Generate realizations of sets of HSC differentiation event times -for each clone i
based on the rate ah;= A*sshi/Hss".
3. Evaluate Egs. (10) and (11) in the main text. Sum up the peripheral blood bursts initiated by

eachdifferentiation event of each clone i to find|

4. Sample a fraction _ of the total peripheral cell count M*(¢;) = Pi mi(t)). Here,

S*(t), M" +(t), and the times ¢t are defined by the experiment. We used the Python package

numpy.random.binomial. The cell counts of each clone are si(¢;). Use the simulated total tagged cell counts

in the samples S*(t) = Pisi(t;) to normalize_). Up to this point, we have generated a data

matrix fi(t;) of size Cnx J.

5. Increment Le within the desired interval and repeat steps 2-4 200 times. For each value of Le, the 200
simulations generate 200 fi(¢t)) matrices. These repeats are to ensure that the noise induced from drawing
values of hifrom P(h) and sampling si(¢;) from mi(t;) do not significantly corrupt our parameter estimation.

The simulated, model-derived configurations fi(t;) are then compared with experimentally measured values
fi(t)). The parameter Lethat minimizes the mean-squared error will be chosen as the least-squares estimate Le*.

G Robustness to samping frequency and threshold

The robustness of our inference of Le* to sampling frequency is demonstrated for animal RQ5427 by excluding
some time samples. In Figs. G1(a-h), we plot the MSE function by including only the first j = (8,7,..,1) time
samples of the data. In this data set (animal RQ5427), the MSE remains meaningful, and the reconstruction of
Le*is unchanged as long as at least four or five time samples are used. This conclusion is independent of which
sampling time points are excluded. Since the system is well-approximated by a statistical steady state, the key
determinant for robust inference is the number of samples included in the analysis.
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Figure G1: Simulated MSEs with A = 0.99,Ch = 500,rm = 2.5 for different numbers of time samples. From (a-h),
only the firstj = (8,7,..,1) time samples are used to fit the model. Provided at least two time samples are used,
the reconstruction of Le* = 23.4 - 23.6 remains fairly robust.

Robustness to a larger threshold of clone sizes is also demonstrated by eliminating clones whose average
abundances are under a certain threshold in both the experimental and simulated data. In Figs. G2(a-h), we plot
the MSE corresponding to the clone frequency thresholds 1.16 x 10-52.03-5,3.41 x 10-58.84 x
10-51.66x10-43.30x10-46.78x10-4,1.46x10-3, respectively. Using these thresholds, the numbers of clones
retained in the analysis are 482, 428, 375, 322, 268, 215, 159, and 107, corresponding to 90%, 80%, 70%, 60%,
50%, 40%, 30%, and 20% of the 536 total number of clones detected in animal RQ5427. Figs. G2 show that as
long as & 200 clones are included (a-f), the MSE yields a clear LSE I Only at very high
thresholds, where only 20-30% of the clones are retained, does the minimum of the MSE shift to slightly higher
values INIINIEEEIN: s shown in Figs. G2(g-h), respectively. Thus, we conclude that the inference of Le* from
the data is fairly insensitive to sampling threshold provided a reasonable number of clones (typically & 200)
are included in the analysis.
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Figure G2: MSEs for animal RQ5427 using successively higher clone detection thresholds. Unique
reconstruction of Le* is robust (a-f) even if only 40-50% of the clones are counted. (g-h) At even higher
thresholds, the LSE for Le*increases only very slightly.
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