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The fundamental challenge to characterize and quantify thermal transport in the
strongly nonlinear regime of Rayleigh–Bénard convection – the buoyancy-driven
flow of a horizontal layer of fluid heated from below – has perplexed the fluid
dynamics community for decades. Rayleigh proposed controlling the temperature of
thermally conducting boundaries in order to study the onset of convection, in which
case vertical heat transport gauges the system response. Conflicting experimental
results for ostensibly similar set-ups have confounded efforts to discriminate between
two competing theories for how boundary layers and interior flows interact to
determine transport through the convecting layer asymptotically far beyond onset.
In a conceptually new approach, Bouillaut, Lepot, Aumaître and Gallet (J. Fluid

Mech., vol. 861, 2019, R5) devised a procedure to radiatively heat a portion of the
fluid domain bypassing rigid conductive boundaries and allowing for dissociation
of thermal and viscous boundary layers. Their experiments reveal a new level of
complexity in the problem suggesting that heat transport scaling predictions of both
theories may be realized depending on details of the thermal forcing.
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1. Introduction

Rayleigh (1916) proposed a model for Bénard’s turn of the 20th century experiments
consisting of the Boussinesq approximation to the Navier–Stokes equations of motion,
wherein the density ρ is fixed in all but the temperature-dependent buoyancy force
term and the fluid’s material properties (viscosity ν, specific heat c and thermal
diffusion and expansion coefficients κ and α) are assumed constant, applied to a layer
of fluid confined between parallel horizontal iso-thermal no-penetration plates. Even
though the actual thermo-capillary mechanism underlying Bénard’s observations –
the Bénard–Marangoni instability – was only properly formulated as a hydrodynamic
problem decades later by Pearson (1958), Rayleigh’s model for buoyancy-driven
thermal convection is still called the Rayleigh–Bénard problem.
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A key feature of interest is the relation between the temperature drop !T across
a fluid layer of thickness h and the resulting heat flux Q. In Rayleigh’s model the
temperature drop is controlled at the boundaries, and the first result of his analysis
was to identify the non-dimensional group determining instability of the quiescent
conduction state: gα!Th3/νκ where g is the acceleration of gravity. Today we call
this the Rayleigh number Ra, leaving the fluid’s Prandtl number Pr = ν/κ as the
other non-dimensional parameter characterizing the particular system at hand. Heat
transport is traditionally measured in units of the conductive heat flux via the Nusselt
number Nu = Qh/ρcκ!T , and the challenge is, for a given domain, to determine Nu

as a function of Ra and Pr thereby quantifying the effective thermal conductivity
of the convecting layer. The strongly nonlinear regime of paramount importance for
geophysical and astrophysical applications corresponds to large Rayleigh numbers
and two distinct theories, conventionally referred to as the ‘classical’ and ‘ultimate’
theories, remain in contention for the asymptotic behaviour of Nu as Ra → ∞.
Mathematical analysis has failed to prove, and experimental studies have failed to
definitively rule out, either of these asymptotic theories for O(1) values of Pr.

The work of Bouillaut et al. (2019), based on the novel experimental approach of
Lepot, Aumaître & Gallet (2018) in which the fluid is radiatively heated rather than
relying on conduction through the rigid boundaries, sheds new light on the conundrum.
Boundaries and boundary layers play key roles in the alternative ‘classical’ and
‘ultimate’ theories for the extreme limit of Rayleigh–Bénard convection and direct
internal heating allows for the disentanglement of velocity and temperature boundary
layers. The experimental data suggest that, depending on details of the structure and
strength of the thermal forcing, the predictions of either competing theory may be
observed.

2. Overview

The ‘classical’ theory asserts that Nu ∼ Ra1/3. It was simultaneously proposed
by Priestly (1954), who argued that Q should be independent of h for turbulent
convection in large aspect ratio domains, and Malkus (1954), whose complicated
maximal dissipation theory also predicted that the scaling is uniform in Pr. A decade
later Howard (1964) reinterpreted the uniform-in-Pr prediction as a marginally stable
thermal boundary layer argument, explicitly neglecting the potential effect of a
velocity boundary layer.

The ‘ultimate’ theory asserts Nu ∼ Pr1/2Ra1/2 for Pr ! O(1). It was originally
proposed by Spiegel (1963) based on the idea that buoyant fluid elements transport
heat at the free-fall velocity U ∼ (gα!Th)1/2 so that Q becomes independent of
the material transport coefficients ν and κ . (Spiegel’s theory actually predates this
reference as evidenced in the testimony of Batchelor 1961.) Spiegel referred to this
approach as a ‘mixing length’ theory without reference to the nature of boundaries or
boundary layers. But soon thereafter his postdoc mentor Kraichnan (1962) considered
ultra-high Ra situations when velocity boundary layers at the rigid plates presumably
transition to shear turbulence, postulating logarithmic corrections to the asymptotic
Ra1/2 scaling. The moniker ‘ultimate’ was first used by Chavanne et al. (1997)
referring to Kraichnan’s modification of Spiegel’s theory and has since been adopted
by the community for an asymptotic state with predominant 1/2 scaling. Moreover,
Nu ∼ Ra1/2 scaling, albeit uniform in Pr, is mathematically ‘ultimate’ in the sense
that it is a rigorous upper bound for heat transport in Rayleigh’s model (Howard
1963; Doering & Constantin 1996).
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Rather than fixing the temperature and inserting and removing heat at the top
and bottom boundaries, Bouillaut et al. (2019) heat the bottom of the layer by
illuminating the fluid, which is treated with optically absorbing dye, from below.
The optical absorption length ! can be varied by adjusting the dye concentration
to control the spatial profile of heat injection into the container. The container is
thermally insulated on all boundaries so the bulk temperature increases linearly
with time as the experiment proceeds. As long as the Boussinesq approximation
remains valid, however, the difference between the local temperature and the linearly
increasing-in-time bulk temperature behaves as if the system is heated near the bottom
and cooled in the bulk above. In this set-up, distinct from the set-up of Rayleigh’s
model, the heat flux Q is controlled and temperature drop "T across the layer must
be measured. That is, both the Nusselt and Rayleigh numbers are emergent quantities.

Controlling the heat flux through, rather than the temperatures at, the rigid
boundaries has been considered before. While this variation of Rayleigh’s model
profoundly changes the nature of the bifurcation at onset (Hurle, Jakeman & Pike
1967) it does not apparently affect the Nu–Ra relation for high Ra turbulent convection
(Johnston & Doering 2009). Internal heating or cooling – regulating heat flux into or
out of the system in the bulk – while correspondingly extracting or injecting heat via
conduction at at least one rigid boundary has also been considered (Goluskin 2016).
But in all these cases the interplay of thermal and velocity boundary layers cannot
be separated somewhere in the system.

Bouillaut et al. (2019) control the thermal injection length scale directly via the
optical absorption length, introducing the fundamentally new dimensionless parameter
!/h into the problem. The limit of small !/h corresponds to fixing the heat flux at the
rigid bottom boundary while finite !/h maintains heat input in a portion of the domain
well outside any potentially shrinking velocity boundary layer. Their experimental data
for various values of Nu, Ra and !/h collapse in the form (!/h)2Nu = f [(!/h)6Ra]

with scaling function f satisfying f [x] ∼ x1/3 for x " 1 and f [x] ∼ x1/2 for x # 1.
(Impressively, the data collapse appears over nearly twenty decades of (!/h)6Ra.) This

implies ‘classical’ Nu ∼ Ra1/3 scaling when the absorption length ! "
√

hδ, where
δ ≡ h/2Nu is the apparent thermal boundary layer thickness, and ‘ultimate’ Nu ∼ Ra1/2

scaling for fixed non-zero !/h as Ra → ∞.

3. Future

The work of Bouillaut et al. (2019) opens new directions for Rayleigh–Bénard
research. It should stimulate new experimental investigations aimed both at independent
confirmation and at understanding Prandtl number influence on the empirical scaling
function. The corresponding class of mathematical models for Rayleigh–Bénard
convection, with internal heat sources and sinks rather than conduction boundaries,
presents new challenges for computation, theory and analysis.

The most obvious theoretical approach to bypass complicating boundary layer
effects is to consider the Boussinesq equations with an imposed thermal gradient in a
fully periodic domain (Borue & Orszag 1997), but that turns out to be an unphysical
idealization: there is no limit to the resulting flows’ energy due to unbounded runaway
solutions that inevitably pollute simulations and obviate analysis (Calzavarini et al.

2006). The generalized models proposed by Lepot et al. (2018) and Bouillaut et al.

(2019), however, are physically well defined in the sense that energy in all solutions
remains uniformly bounded for all times (Fantuzzi & Doering 2018; Lepot 2018),
even in idealized fully periodic domains (Muite et al. 2017). Perhaps surprisingly
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these studies also show that, in terms of sensible definitions of Nu and Ra in this
setting, asymptotic heat transport scaling as high as Nu ∼ Ra [sic] may be realized.
That is, the ‘mixing-length’ theory Nu ∼ Ra1/2 scaling is no longer ‘ultimate’ in the
sense of ‘maximal’ for these internally thermally driven systems.
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