Resource Deflation: A New Approach For Transient
Resource Reclamation

Prateek Sharma
Indiana University
prateeks@iu.edu

Abstract

Data centers and clouds are increasingly offering low-cost
computational resources in the form of transient virtual ma-
chines. Whenever demand for computational resources ex-
ceeds their availability, transient resources can reclaimed by
preempting the transient VMs. Conventionally, these tran-
sient VMs are used by low-priority applications that can
tolerate the disruption caused by preemptions.

In this paper we propose an alternative approach for re-
claiming resources, called resource deflation. Resource defla-
tion allows applications to dynamically shrink (and expand)
in response to resource pressure, instead of being preempted
outright. Deflatable VMs allow applications to continue run-
ning even under resource pressure, and increase the utility
of low-priority transient resources. Deflation uses a dynamic,
multi-level cascading reclamation technique that allows ap-
plications, operating systems, and hypervisors to implement
their own policies for handling resource pressure. For dis-
tributed data processing, machine learning, and deep neural
network training, our multi-level approach reduces the per-
formance degradation by up to 2X compared to existing
preemption-based approaches. When deflatable VMs are de-
ployed on a cluster, our policies allow up to 1.6X utilization
without the risk of preemption.

CCS Concepts « Computer systems organization —
Cloud computing; - Software and its engineering —
Virtual machines; Operating systems;

ACM Reference Format:

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. 2019. Re-
source Deflation: A New Approach For Transient Resource Recla-
mation. In Proceedings of EuroSys '19. ACM, New York, NY, USA,
17 pages. https://doi.org/https://doi.org/10.1145/3302424.3303945

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys °19, March 25-28, 2019, Dresden, Germany

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-6281-8/19/03...$15.00
https://doi.org/https://doi.org/10.1145/3302424.3303945

Ahmed Ali-Eldin
University of Massachusetts Amherst
ahmeda@cs.umass.edu

Prashant Shenoy
University of Massachusetts Amherst
shenoy@cs.umass.edu

1 Introduction

A transient computing resource, such as a server or a virtual
machine, is one that can be unilaterally revoked by the cloud
or data center provider for use elsewhere [70, 72, 86]. In
enterprise data centers, low priority applications can be pre-
empted after having their resources revoked, upon resource
pressure from high priority applications [79]. In cloud con-
text, all three major cloud providers, Amazon [1], Azure [6],
and Google [3], offer preemptible instances that can be uni-
laterally revoked during periods of high server demand.

The primary benefit of transient computing is that it en-
ables data center operators and cloud providers to signifi-
cantly increase server utilization. Idling servers can be al-
located to lower priority disruption-tolerant jobs or sold
at a discount to price-sensitive customers. In both cases,
the resource provider has the ability to reclaim these re-
sources when there is increased demand from higher prior-
ity or higher paying applications. Preemptible cloud servers
have become popular in recent years due to their discounted
prices, which can be 7-10x cheaper than conventional non-
revocable servers. A common use case is to run data-intensive
processing tasks on hundreds of inexpensive preemptible
servers to achieve significant cost savings.

Despite the many benefits, the preemptible nature of tran-
sient computing resources remains a key hurdle. From an
application standpoint, server revocations are essentially fail-
stop failures, leading to disruptions and performance degra-
dation. Consequently, recent work has developed transiency-
specific fault-tolerance mechanisms and policies to alleviate
the effects of preemptions for different classes of applica-
tions such as data processing [67, 84], machine learning [40],
batch jobs [74], and scientific computing [56]. In enterprise
data centers, using transient resources to increase utilization
and minimize the performance impact of preemptions re-
mains an important problem [58, 79, 84, 90]. Even with these
proposed solutions, the preemptible nature of transient re-
sources presents a significant burden for many applications
as they require changes to the application (legacy) code in
many cases.

In this paper, we present resource deflation as a new ap-
proach for managing transient computing resources in data
centers and cloud platforms. We argue that resource preemp-
tion is only one approach, and an extreme one, for reclaim-
ing erstwhile surplus resources from low-priority applica-
tions. In resource deflation, transient computing resources

EuroSys ’19, March 25-28, 2019, Dresden, Germany

allocated to an application can be dynamically reduced and
reclaimed. Such reclamation can be done at the operating sys-
tem, the hypervisor, or the application levels, albeit with dif-
ferent tradeoffs. By reclaiming partial resources, applications
can continue execution rather than being forcibly preempted.
This expands the set of applications that can be hosted on
lower priority transient resources. Specifically, applications
without built-in fault-tolerance support, legacy applications
that are not disruption-tolerant, and inelastic applications
that require a fixed set of servers such as MPI and distributed
machine learning—all of which are challenging to run on
preemptible servers—can all seamlessly run on deflatable
transient resources. In fact, resource deflation is a gener-
alization of many other resource management techniques,
including elastic scaling [71], resource overcommitment [76],
application brownout techniques [52], and preemption [79].

Since fractional reclamation of resources hampers applica-
tion performance, we design mechanisms and policies that
allow applications and cluster managers to cooperatively re-
claim resources to minimize performance degradation across
applications. We demonstrate the efficacy of our approach
for distributed data processing, distributed machine learning
as well as other clustered applications. In doing so, our paper
makes the following contributions:

1. We develop a multi-level resource reclamation technique
called cascade deflation, that reclaims resources using
reclamation mechanisms found in applications, operat-
ing systems, and hypervisors. Cascade deflation uses a
judicious combination of reclamation mechanisms across
different layers to minimize performance degradation.
Compared to conventional techniques for VM resource
reclamation, cascade deflation improves performance by
up to 6X.

2. We show how the flexibility provided by cascade defla-
tion allows applications to define their own policies for
responding to resource pressure. We design application
deflation policies for a range of applications including
memcached, JVM, and Spark-driven distributed data pro-
cessing and machine learning. Our deflation policy for
Spark voluntarily relinquishes resources to mitigate re-
source contention and stragglers. This policy adjusts ac-
cording to the elasticity of Spark programs to minimize
the expected running time, and is able to reduce perfor-
mance degradation by up to 2X compared to the current
preemption-based resource pressure handling found in
today’s public clouds.

3. We design cluster management policies for deflation, and
show that we can completely remove the risk of preemp-
tion even at cluster utilization levels as high as 1.6x.

2 Background and Overview
In this section we motivate the need for resource deflation as
an alternative to preemption of transient resources. We also

compare our approach to other related resource management
mechansims and disuss its merits.

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy

2.1 Transient Computing

Most data centers today are virtualized where applications
run in either VMs or containers multiplexed on to physical
machines. Since data center capacity is provisioned for peak
demand, the average utilization tends to be low [26, 79]. Data
center operators can increase the overall system utilization
or maximize revenue, in case of the cloud, by offering unused
server capacity transiently to low-priority applications or at
a discounted cost.

Thus, the data center is assumed to host two classes of
applications—high and low priority workloads. Low priority
applications are scheduled whenever there is enough sur-
plus server capacity in the data center; however, resources
allocated to VMs of low priority applications are assumed to
be transient. Some or all of these resources may be reclaimed
at short notice when server demand from high priority ap-
plications starts increasing.

Current systems implement resource reclamation in the
form of revocations, where server resources are reclaimed
through VM preemptions. Cloud offerings such as Amazon
Spot instances [1], Google Preemptible VMs [3], and Azure
batch VMs [6] are examples of such low-cost but preemptible
VMs. Enterprise data centers similarly preempt low-priority
jobs when high priority jobs arrive [79, 84, 90].

Preemptions in public clouds can occur at different fre-
quencies depending on the provider’s preemption policies
and the demand of the non-revocable resources (such as on-
demand and reserved instances). For instance, Google’s poli-
cies for preemptible VMs result in a Mean Time To Failure
(MTTEF) of less than 24 hours [3]. The preemption rate of an
Amazon spot instance depends on the supply and demand of
instances of that particular instance type, and their MTTFs
can range from a few hours to a few days [8]. These pre-
emptions impose additional deployment and performance
overheads on applications. While always-on stateful services
require special fault-tolerance middleware [70], even batch
applications such as distributed data processing can suffer
from a significant (2X) decrease in performance [67] due to
preemption-induced recomputation.

2.2 Resource Reclamation in Clusters

The need for resource reclamation is common in cluster en-
vironments and arises in scenarios such as VM preemptions,
preemption of low-priority jobs, and for system maintenance.
Typically, reclamation through preemptions imposes a high
performance impact on running applications and may also
impact data center goodput. A recent study has shown that
unsuccessful execution accounts for 65% of machine time in a
Google cluster, and a non-trivial fraction of these failures are
cased by job evictions [64]. Preemptions can result in down-
times, loss of state, and starvation of low-priority jobs [21].
Masking the impact of preemptions requires fault tolerance

Resource Deflation

1.0}
0.8+

0.6

e—e Spec)|BB
@ @ Kcompile
0.2} BB Memcached
* % Spark-Kmeans

0.4+

Normalized Performance

0.0

0 20 40 60 80 100
Deflation %
Figure 1. Many applications in virtualized environments
can be deflated with only a small performance degradation.

techniques such as periodic checkpointing [56, 67]. Imple-
menting such methods requires application modification or
the use of middleware systems [70].

In this paper, we consider partial reclamation of a resource
such as a server or virtual machine, rather than “full” recla-
mation though preemptions. Our hypothesis is that partial
reclamation, which we refer to as resource deflation, reduces
the reclamation impact on applications when compared to
preemption, and also enables a broader range of applica-
tions to run on transient resources. Resource reclamation at
a cluster level has not received much attention, when com-
pared to cluster-based resource allocation, which has been
widely studied [34, 37]. We can view cluster-based resource
reclamation as the inverse of cluster resource allocation. At
an individual VM-level, partial resource reclamation can be
implemented through VM overcommitment. Our work views
VM overcommitment as a mechanism, available at the gran-
ularity of a single machine, for implementing cluster-wide
reclamation policies. We also argue that VM overcommit-
ment alone is not a sufficient mechanism for effective recla-
mation of resources from applications and present more
general mechanisms for doing so.

2.3 Resource Overbooking and Elasticity

There are a number of cluster-wide resource management
mechanisms related to resource reclamation. Resource over-
booking is one approach where the cumulative peak re-
sources needed by applications in the cluster exceed the total
allocated resources [76, 77]; overbooking tends to be feasi-
ble since not all applications require their peak requested
allocation at the same instant, allowing for statistical mul-
tiplexing of resources. VM overcommitment is an example
of overbooking at the granularity of a single physical ma-
chine. Cluster-wide overbooking policies must consider care-
ful placement and co-location of applications to minimize
chances of overload due to concurrent peak demand. Effec-
tive overbooking typically requires knowledge of application
workload characteristics and SLOs. In contrast, resource de-
flation does not require applications to specify explicit SLOs.
Further, during periods of overload, overbooking techniques
use these SLOs to degrade application performance. While
deflation also degrades application performance during re-
source pressure, our methods are SLO agnostic in nature.

EuroSys 19, March 25-28, 2019, Dresden, Germany

Elastic scaling [55] is another dynamic resource manage-
ment technique where the capacity of a clustered applica-
tion is varied dynamically based on workload fluctuations.
This approach has been explored for web clusters [15, 33],
Hadoop [32], Spark [28], and scientific workflows [44]. While
shrinking an application in horizontal scaling is a form
of reclamation, it typically requires knowledge of appli-
cation SLOs and reduces allocation to match a lower de-
mand [36, 48, 60]. In contrast, deflation under resource pres-
sure can, and often will, reduce the allocation to a level far
below the application’s current demand. Thus, despite some
similarities, neither overbooking nor elastic scaling are di-
rectly applicable for transient resource deflation.

Many applications deployed in clouds and data centers
are deflation friendly and can tolerate significant amounts of
deflation without the proportional decrease in performance.
For instance, Figure 1 shows the performance degradation of
four applications, namely, SPEC-JBB, Kernel-Compile, Mem-
cached, and Spark, when the VMs are deflated by different
amounts!. We see that the in many cases, even when 50%
of all resources (CPU, memory, and I/O bandwidth) are re-
claimed, the decrease in performance is less than 30%.

Furthermore, a majority of VMs are usually overprovi-
sioned and have a surplus of free and unused resources,
thereby giving deflation enough “headroom”, and avoiding
severe performance degradation. A recent resource usage
study of VMs in Microsoft Azure cloud [26] shows that more
than half the VMs had an average CPU utilization of less
than 30%, and a 95%ile utilization of less than 70%. Thus in
many cases, deflation can reclaim unused resources with
minimal performance degradation.

Thus, deflation allows resource providers to increase the
availability of low-priority resources, and also increase the
overall goodput of virtualized clusters. In many cases, per-
formance degradation, rather than outright termination and
downtimes, may be acceptable even for many interactive
applications except for the most mission-critical ones. Batch
application may also prefer temporary deflation to preemp-
tion to avoid wasteful restarts. Furthermore, our work shows
resource deflation is a feasible approach even for inelastic
applications (e.g., ones that are incompatible with horizontal
scaling) and enables a broad range of workloads to exploit
transient resources in cluster environments.

3 Multi-level Resource Reclamation

Our approach for increasing the utilization and performance
of computing resources entails running virtualized clusters
that run low-priority deflatable VMs and high-priority non-
deflatable VMs. Launching applications on such a cluster
can create resource pressure, if the resources (CPU, memory,
I/0O) required exceed their availability. Our deflation-aware
cluster manager (§5) places newly launched VMs according

Details about workloads and execution environment can be found in §6

EuroSys ’19, March 25-28, 2019, Dresden, Germany

Application

1:Application deflation
2:0S-level deflation
3:Hypervisor-level deflation

\ VM

/ A\
Cascade Deflation ’J—‘
Controller Hypervisor

Server
VM placement and allocation

[Cluster Management Software]

Figure 2. Overview of deflation-based cluster management

to deflation-aware bin-packing policies, and proportionally
reclaims resources from all the deflatable VMs on a server.
To reclaim resources from a VM, we employ a new technique
called cascade deflation that allows applications, operating
systems, and hypervisors to work together to reclaim large
amounts of resources, while minimizing performance degra-
dation faced by the VM (Figure 2). Deflation allows appli-
cations the flexibility to define and implement their own
policies to respond to resource pressure, and we describe
application-level deflation policies for different applications
in §4. Performance degradation due to dynamic resource
reclamation is a primary concern with deflation, which we
address through multi-level cascade deflation in this section.

3.1 Why multi-level reclamation?

Cluster resources in virtualized data centers and clouds are al-
located and reclaimed by cluster managers based on resource
availability and application priorities. VM-level cluster man-
agers (like VMware vCenter [38] or OpenStack [12]) reclaim
resources through hypervisor-level overcommitment tech-
niques. On the other hand, bare-metal cluster managers such
as Mesos [41], rely on applications to relinquish resources.
Current cluster managers thus rely on a single reclamation
technique (i.e., either hypervisor-level or application-level
reclamation). This binary approach leads to two drawbacks:
first, the reclamation functionality present in modern guest
operating systems remains unused. Second, as we shall elab-
orate below, the reclamation mechanisms provided by differ-
ent software layers expose different tradeoffs in their perfor-
mance and safety, and relying on any single mechanism is
sub-optimal.

VM overcommitment can degrade performance. A com-
mon technique for fractional resource reclamation in virtual-
ized clusters is to use hypervisor-level VM overcommitment.
Since hypervisors virtualize resources and offer them to vir-
tual machines, they can also overcommit these resources by
multiplexing virtual resources onto physical ones. For exam-
ple, CPU resources can be reclaimed by remapping a VM’s
vCPUs onto a smaller number of physical cores, and sharing
the capacity of these cores using the hypervisor’s built-in
scheduling mechanism. Hypervisor-level VM overcommit-
ment mechanisms treat the guest OS and the application as a

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy

“black box”, and the VM itself has no knowledge of the defla-
tion, which is done at the hypervisor level “outside” the VM.
This allows resources to be reclaimed from all applications,
including unmodified, inelastic ones.

However, black-box reclamation techniques can lead to
significant performance degradation. Since the hypervisor
has no knowledge of the relative importance of different
resources to the application, it may overcommit the “wrong”
resources. This problem frequently arises in memory over-
commitment where the hypervisor (unknowingly because
of the black box nature) swaps application pages to disk, in-
stead of free pages. Similarly, overcommitting CPUs leads to
complications like spin-lock preemption [29, 62, 75], wherein
the multiplexing of vCPUs onto a smaller number of physical
cores leads to excessive waiting for lock acquisition when
the vCPUs holding locks get preempted by the hypervisor.
Reclaiming from higher layers is not always feasible.
The performance concerns of black-box VM overcommit-
ment can be alleviated by reclaiming resources from higher
layers, i.e., the guest OS and the application. These higher
layers have better knowledge of actual resource use, and
can use control mechanisms to adjust resource usage in
an application-aware manner. For instance, the OS can re-
duce the size of their disk caches instead of hypervisor-level
swapping [16]. Similarly, distributed applications can reduce
the number of parallel tasks to reduce resource contention,
and mitigate lock holder preemptions mentioned previously.
Thus, it is desirable and feasible to incorporate application
support and cooperation in resource reclamation—something
not currently used in VM-level cluster management.

However, reclaiming resources from applications alone is
not sufficient in virtualized environments—resources freed
by the application are not considered free by the hypervisor
and cannot be directly reclaimed. Furthermore, relying on
application support for reclamation may not always be fea-
sible: the application may not have the control mechanisms,
or may choose not to exercise them.

Thus, the current cluster management techniques that
restrict resource reclamation to a single level are sub-optimal.
We propose a multi-level reclamation policy that seeks to
use the relative strengths of the different layers to deflate
applications safely and gracefully, which we describe next.

3.2 Cascade Deflation

Our multi-level reclamation approach is called cascade defla-
tion and determines how resources of different types (CPU,
memory, I/O) are reclaimed across multiple software layers.
Cascade deflation allows applications, operating systems,
and hypervisors to define and use their own reclamation
mechanisms and policies, as part of a common framework
for reclaiming resources across multiple levels. The flow of re-
source reclamation across various layers is shown as pseudo-
code in Figure 3. When resources need to be reclaimed from
a VM, cascade deflation starts by applying resource pressure

Resource Deflation

#Reclamation target is vector of (CPU, Memory, Disk, Network)
def Deflate_VM(target):
app_r = application_self_deflate(target)
unplug_r = hot_unplug(app_r, target)
hypervisor_overcommit(unplug_r, target)
return

def hot_unplug(app_r, target):
unplug_target = max(app_r, get_system_free())
#get_system_free() determines safely unpluggable resources
unplug_target = min(unplug_target, target)
unplug_r = try_unplug(unplug_target)
#If resource is busy, unplug_r < unplug_target
return unplug_r

def hypervisor_overcommit(unplug_r, target):
if (unplug_r < target):
#Unplugged resources released automatically
VM_overcommit_mechanism(target — unplug_r)

Figure 3. Pseudo-code for cascade deflation

at the highest layer (the application), and moves downwards
to the OS and the hypervisor. The application may be able
to free only some (or even none) of the resources, in which
case the lower layers (the OS and hypervisor) are asked to
reclaim the remaining amount of resources.

Thus, the reclamation cascades and moves down to the
lower layers. If a layer fails to meet the reclamation target,
then the lower layers pick up the slack. Having reclamation
“fall-through” to the lower layers allows for safer deflation
since applications and the OS can ignore excessive and unsafe
reclamation requests. Thus, higher layers can free resources
in a “best effort” manner in order to maximize their perfor-
mance, while the lower layers seek to reclaim remaining
resources to meet the reclamation target.

The intuition behind starting at the higher layers is that
since applications and OSes have better knowledge of un-
used and underutilized resources, relinquishing them reduces
performance degradation. With cascade deflation, different
amounts of resources can be reclaimed at different levels.
Different layers can use their own reclamation mechanisms,
as well as define policies on how to use those mechanisms.
These policies are implemented by the different layers, and in-
teract using the control-flow outlined in Figure 3. We present
details on reclamation mechanisms and policies for the dif-
ferent layers below.

3.2.1 Application-level Reclamation

Mechanisms: Applications can partake in cascade deflation
by relinquishing resources in response to deflation requests,
by using their own resource control mechanisms and policies.
Many distributed applications such as web server clusters,
map-reduce style processing, key-value stores, etc., are elas-
tic, and have mechanisms to adjust resource usage. For exam-
ple, application-level caches (such as memcached, redis, etc.)
can be shrunk using LRU-based object eviction. Similarly,
web-clusters can reduce their CPU utilization by reducing

EuroSys 19, March 25-28, 2019, Dresden, Germany

Application & Resource type | Reclamation Mechanisms

LRU object eviction to reduce memory foot-
print

Memcached - memory

JVM - memory Trigger GC and reduce maximum heap size

Web servers - CPU Reduce size of thread pool

Reduce number of tasks used

Spark/Hadoop - All

Table 1. Application-level deflation mechanisms for differ-
ent application types

the number of worker threads, and adjust the load-balancing
rules accordingly (serve less traffic from deflated servers).
Distributed data and numerical processing applications can
control their resource usage by adding and removing parallel-
tasks and workers. Examples of deflation mechanisms for
different application classes are presented in Table 1. Appli-
cations can use and combine these different mechanisms for
reclaiming different resources (CPU, memory, I/O).
Policies: Application deflation policies determine how many
resources (if any) to voluntarily relinquish. For inelastic ap-
plications that do not support dynamic reclamation mech-
anisms (synchronous MPI programs, single-VM legacy ap-
plications, etc.), the application deflation policy is to simply
ignore the deflation request, and let the OS and hypervisor
take care of the deflation. Elastic applications on the other
hand can use application-level mechanisms to free resources
and to self-deflate. Of course, even elastic applications can
choose to only partially deflate, or ignore the request entirely.
Since application self-deflation involves relinquishing re-
sources, the degree of self-deflation is ultimately determined
by safety and performance concerns. Applications can stop
self-deflating if they risk loss of functionality or applica-
tion failure. In some scenarios, even though the application
may have the mechanisms for reclamation, doing so leads
to excessive performance degradation. The degree of per-
formance degradation depends on the application’s perfor-
mance model, and is determined by two main factors:

1. Short-term impact of deflation mechanism
2. Long-term impact of running on reduced resources

The short-term performance degradation is due to the
overhead of the deflation mechanism itself. For example,
some applications deflate by terminating tasks (such as in
the case of Hadoop and Spark), which requires recomputing
the lost program state, which increases the running time
of the program. Similarly, the high garbage collection activ-
ity required to shrink the JVM heap size can temporarily
degrade the performance of JVM-based applications. The
long-term performance impact is due to the application run-
ning on reduced amount of resources, and depends on the
application’s utility curves (such as those shown in Figure 1)
and the reclamation mechanism used.

Thus when determining the magnitude of self-deflation,
application-level policies must account for both the short and
long-term performance degradation, along with any safety
constraints. Since the magnitude of deflation is fixed and

EuroSys ’19, March 25-28, 2019, Dresden, Germany

decided by the cluster manager, application-level policies
only need to compare the performance degradation for the
different deflation options, and thus utility curves are not re-
quired in our approach. Incorporating deflation mechanisms
and policies requires minor application modifications, and
we develop policies for different application types in §4. We
also develop models for short and long term performance
degradation for distributed data-parallel data processing and
machine learning applications, and use them to design a dy-
namic running-time minimizing deflation policy for Spark.

Cascade deflation’s multi-layer design is modular: it is not
necessary for every layer to implement reclamation mecha-
nisms for all resource types. If a reclamation mechanism is
not implemented by a layer, the reclamation falls through
to the lower layer. Thus, although it is beneficial to have
application and OS level deflation, it is not necessary. We
evaluate the performance of cascade deflation with and with-
out application-level policies later in Section 6.

3.2.2 OS-level Reclamation

Mechanisms: Surplus resources in the VM, or those relin-
quished through application-level deflation, must still be
reclaimed and released by the guest OS, since free resources
inside a VM cannot be directly reclaimed by the hypervi-
sor. To reclaim resources from the OS, we utilize resource
hot-plug and hot-unplug mechanisms. Modern operating
systems and hypervisors now support the ability to hot plug
(and unplug) resources [4, 24], and these mechanisms can be
used to explicitly change the resource allocation. Resources
that are free or that have been recently relinquished by the
application are “unplugged” from the VM, and returned to
the hypervisor. Hot unplugging a resource (such as vCPUs)
invokes the equivalent OS resource reclamation mechanisms.
Hot-unplug also updates the resource allocation observed by
the OS and applications (actual number of CPUs and memory
available)—improving resource management at these layers.
Policies: For CPU reclamation, we unplug vCPUs until the
CPU deflation target is reached. Hot plugging and unplug-
ging is only possible at coarse granularity—it is not possible
to unplug fractional CPUs. Therefore, the final amount of
resources unplugged can be at most | unplug_target|. In case
of memory, we use memory unplugging to explicitly reduce
the memory seen by the guest OS. We don’t hot unplug NICs
and disks because it is generally unsafe.

In practice, hot unplugging of resources may fail or only
succeed in partial reclamation, if the OS observes the re-
sources to be busy. For instance, CPUs with tasks pinned
on them are generally not safely unpluggable. Similarly, un-
plugging memory entails identifying blocks of free pages,
and migrating pages to create a contiguous zone of pages
that can be freed and unplugged. This operation may fail or
result in a smaller amount of unplugged memory than the
target. Our policy for hot-unplug based reclamation prior-
itizes safety and is best-effort: if an unplug operation fails

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy

due to busy resources, we seek to unplug a smaller target,
and reclaim the rest with hypervisor-level reclamation.

3.2.3 Hypervisor level Reclamation

Mechanisms: Hypervisor level multiplexing of resources al-
lows us to reclaim resources via traditional VM overcommit-
ment mechanisms. We use CPU and I/O bandwidth throttling
to reclaim CPU and I/O resources respectively [23]. Memory
can be reclaimed through host-swapping or ballooning [80].
Policy: Cascade deflation invokes hypervisor deflation as
the last step to reclaim remaining resources, and seeks to
minimize its use because of its high performance degradation.
The goal of hypervisor level reclamation is to simply reclaim
all the resources to reach the deflation target. Resources
freed through the OS-level reclamation are already freed
and do not need reclamation. Reclaiming resources through
hypervisor overcommitment is transparent to the application
and the guest OS, and poses no direct risk to application
availability, thus allowing us to reclaim large amounts of
resources if required.

4 Application Deflation Policies

Cascade deflation allows applications, operating systems,
and hypervisors to cooperate in the resource reclamation
process and define and use their own reclamation mecha-
nisms and policies. In this section, we will illustrate how elas-
tic applications can develop and define deflation policies. We
have developed deflation policies for multiple applications
including memcached, JVM, and distributed data processing
with Spark, to show that it is feasible to develop simple ap-
plication deflation policies for a wide range of applications,
with relatively modest implementation effort. For Spark ap-
plications, we present an online, running-time minimizing
deflation policy that can serve as a case-study for distributed
application deflation.

Memcached. Memcached is a popular user-space in-memory
key-value store [5]. In conventional operation, the mem-
cached server is started with a fixed, maximum cache size.
Our application level policy for memcached dynamically ad-
justs the maximum cache size based on the memory availabil-
ity inside the VM. When shrinking the cache size, the mem-
cached object eviction algorithm (LRU) is invoked. Shrinking
the cache size may result in a lower object hit-rate, but avoids
paging in memory pages from the slow swap disk. This mod-
ification allows memcached to serve more traffic even when
the memory is deflated to below the original cache size. Thus,
because the long-term performance degradation with mem-
ory self-deflation is lower than VM-level deflation, our defla-
tion policy for memcached uses application-level deflation
for memory, and uses VM-level deflation for other resources.
Our implementation is based on memcached v.1.3 and a pre-
vious dynamic memory-size version [42], and comprises of
about 500 lines of modifications to the memcached server.
JVM. Application level deflation policies can also be imple-
mented for garbage collected run-time environments such

Resource Deflation

as Java Virtual Machines (JVM). In response to memory
deflation, our application policy for JVM reduces the heap
size by triggering garbage collection. Reducing the heap size
results in increased garbage collection overhead, but is nev-
ertheless favorable to fetching pages from the swap disk.
Prior work on JVM heap sizing have also explored this trade-
off [19, 85]. Our deflation-aware JVM allows the large class
of JVM based applications to be made memory-deflation
aware. Our deflation-policy for JVM-based applications uses
application-level deflation for memory, and VM-level defla-
tion for other resources. Of course, Java applications can
specify their own application deflation policies to augment
the JVM deflation policies. We use IBM’s J9 JVM [7] that
has the ability to change the maximum heap size during
run-time. We set the max heap size to the actual physical
memory availability to avoid swapping. We implement this
in the application deflation agent using the JMX API in about
30 lines of Java code.

4.1 Spark

We now focus on distributed data processing and machine
learning workloads, and use Spark as the representative data-
parallel framework. Spark [88] is a general-purpose, widely
used framework that is used for a wide range of applications
like map-reduce style data processing, graph analytics [83],
machine learning [57], deep learning [59, 82], relational data
processing [17], interactive data mining, etc. The long and
short-term performance degradation for Spark is thus highly
variable and depends on the specific workload.

We design a general self-deflation policy for Spark that
works across workload types, and is able to dynamically de-
termine the extent of self-deflation required to minimize the
running time of the workload. To do so, our policy uses sim-
ple models developed from first principles, and we therefore
provide a brief discussion of Spark’s runtime model next.
Spark Background. Spark uses Resilient Distributed Datasets
(RDDs) [87] as the abstraction for data partitions, and RDDs
are designed to be stored in a combination of memory and
disk. Spark jobs are comprised of multiple data processing
operations, and each operation (such as a map) operates on an
RDD partition. Spark jobs can be viewed as a directed acyclic
graph of RDD partition dependencies (Figure 4). If the output
of a task is lost (due to task failure or termination), then Spark
uses the RDD dependency graph to recursively recompute
all missing RDD partitions. Of course, this recomputation
may substantially increase the job running time.

A wide range of distributed data processing and compute-
intensive applications have been built on top of Spark’s RDD
abstractions and data operations. These applications have
different RDD dependency graph structures, demand for com-
puting resources, and tolerance to deflation. While specific
applications (such as parallel K-means, a popular machine
learning workload) can define their policies for cascade de-
flation, Spark’s common runtime environment presents an

EuroSys 19, March 25-28, 2019, Dresden, Germany

Partitions
1 1 1
¥
2 2 1
=
3 3 3
RDD-A RDD-B RDD-C

Figure 4. Spark jobs create a directed acyclic graph of RDD
partitions. Partitions are computed by tasks that run on dif-
ferent VMs. Loss of a partition (RDD-B’s 3rd partition) ne-
cessitates recomputing its dependencies.

opportunity for a common, general application deflation pol-
icy that can work across multiple applications.

Another class of applications that the Spark framework
supports is distributed deep neural network training and
inference. A popular technique for parallelizing these appli-
cations is to use data-parallel architectures such as parame-
ter servers [53], and optimize the network model iteratively.
During training, data is partitioned across workers, and the
network model parameters are updated in a distributed fash-
ion using optimization techniques such as stochastic gradient
descent. At the end of each iteration, workers share and up-
date model parameters. However, these updates are typically
synchronous in nature, to ensure that all workers start with
the same model state before each iteration [25]. Since a large
portion of the training job is synchronous, the job is inelastic
and cannot scale easily. However, the combination of cascade
deflation and the model-driven Spark deflation policy allows
us deflate deep-learning applications (along with other Spark
applications), and run them on low-cost transient resources.

4.1.1 Cascade Deflation Policy For Spark

Our Spark deflation policy tries to minimize the perfor-
mance impact of deflation. The basic mechanism we use
for application-level deflation is terminating Spark tasks.
Terminating tasks allows Spark to reduce its degree of paral-
lelism, and the freed resources are returned to the hypervisor
via cascade deflation. However, terminating tasks can trigger
expensive recomputation of dependent tasks and results in
high short-term performance degradation. With cascade de-
flation, if the application does not relinquish resources, then
resources have to be reclaimed by the OS and hypervisor.
We refer to the combination of OS and hypervisor level defla-
tion as “VM-level deflation” for ease of exposition. However,
with VM-level deflation, tasks on deflated VMs can turn into
stragglers and result in a higher long-term impact.

Since different deflation mechanisms impose different
tradeoffs for Spark application performance, we design a
cascade deflation policy for Spark that is able to choose the
“right” deflation mechanism. Our cascade deflation policy

EuroSys ’19, March 25-28, 2019, Dresden, Germany

estimates the running time with application-level and VM-
level deflation, and chooses the mechanism that minimizes
the expected running time. Based on the application’s recent
execution history, we use simple performance models to es-
timate Ty a1, the running time with VM-level deflation, and
Tseif, the running time with self-deflation.

Our deflation policy for Spark is general-purpose and on-

line, and does not require offline profiling or pilot jobs. When
VMs of a Spark application are deflated, they send their
reclamation targets to the Spark master, that executes the
deflation policy and determines if application-level deflation
would be desirable. We do not deflate the Spark master, and
run it on a high-priority VM. Since multiple VMs may be
deflated simultaneously, the Spark master collects all the de-
flation requests into the deflation vector d, with d; represent-
ing the deflation desired on VM-i. We model the slowdown
of Spark applications using a simple performance model for
VM and self deflation below:
Running Time With VM Overcommitment. When VM
overcommitment is used, the deflated VMs will execute tasks
slower than the non-deflated VMs, leading to resource con-
tention on the deflated VMs and stragglers. Due to stragglers
and BSP execution model [22], the running-time will be de-
termined by the VM deflated the most. If the deflation occurs
when c fraction of the job has finished, then the reminder of
the job will be slowed down by a factor of (1—c)/(1-max {d}).
Thus we assume that the job will be slowed down linearly
due to reduced resource availability. Furthermore, we model
Spark jobs as a sequence of Bulk Synchronous Parallel (BSP)
stages, and thus deflating even a single VM can result in a
large slowdown because tasks on other non-deflated VMs
need to “wait” for the slower tasks on the deflated VM. If T
is the running time of the job without deflation, then the the
total running time with VM-level deflation is:

1-c¢
c+1—max{d}] W

Running Time With Self-deflation. Spark self-deflation
involves terminating tasks/executors. This controls the de-
gree of parallelism, and can also mitigate stragglers, since
it removes the imbalance caused by deflation of a subset
of VMs. However, recursively recomputing output of ter-
minated tasks increases the short-term cost of deflation. In
general, the recomputation cost can be expressed as:

Tym=T-

Recomputation cost = rcT (2)

Here, r determines the fraction of the job that will be recom-
puted, and depends on the nature of the RDD DAG, whether
the dependencies are already cached and do not require re-
computation, and other application-specific factors. In the
worst-case, r = 1, and the entire job so far has be recomputed.
Since the Spark master has knowledge of the DAG, the
time required for various tasks, and the cached state of vari-
ous RDDs, it can determine the recomputation cost by recur-
sively tracing the DAG, and adding the recomputation cost

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy

for the various dependent tasks. However, a simple heuristic
Synchronous execution time

can also be used instead: r = - -
Total running rime

The intuition behind this heuristic is that in general, a
larger number of (synchronous) shuffle stages implies a
higher recomputation cost. Shuffle operations have a larger
number of dependencies, and hence higher likelihood of
missing dependencies which have to be recomputed. Spark
applications thus have a choice of different recomputation
cost estimates. They can either compute accurate estimates
using the knowledge of the DAG and other execution char-
acteristics; or use the worst-case estimate (r = 1); or use the
synchronous execution time heuristic discussed above.

We use the synchronous execution time heuristic because
it represents a middle ground between the application obliv-
ious worst-case estimate, and the application-specific DAG-
based estimate, and is general enough to work across a range
of Spark applications. Our policy also determines if a shuffle
operation is scheduled in the immediate future by looking at
the RDD DAG, and accounts for that by setting r = 1, since
the terminated tasks will not have their RDDs cached, and
will require recomputation.

Note that the degree of slowdown with self-deflation and
VM overcommitment is different. The Spark task scheduler
scales back the number of tasks on deflated VMs, allowing
for an even load distribution, and the degree of slowdown is
the average of the deflation for each VM ((_1) In contrast, VM
overcommitment faces a larger slowdown (max{d}) due to
load imbalance and stragglers. The total running time with
self-deflation is thus :
c+

Tself =T- (3)

1-d
Our policy compares Typr, Tserr, and selects whichever
yields the lower running time estimate. Since T, the un-
deflated running time, is a common factor, it is not required.
The job-progress (c) is estimated as the fraction of stages
completed. Since self-deflation imposes the risk of high re-
computation cost, our policy tends to use VM overcommit-
ment for jobs that are close to completion (¢ close to 1).
Spark Policy Implementation: We have implemented the
Spark policy for self-deflation described above as part of
the Spark master in Spark v2.3.1. For self-deflation, we kill
running tasks and blacklist their executors so that additional
tasks are not launched on deflated VMs. We use the Spark
HTTP API and application logs to get all relevant metrics
for the self-deflation policy: job completion statistics (c),
whether a shuffle stage is pending, and the shuffle-intensity
of the job («). The self-deflation policy is implemented as a
HTTP service started by the Spark master (about 500 lines of
Scala), and listens to the deflation requests from the hypervi-
sor’s local deflation controller. We also determine the number
of tasks to kill based on the deflation requests and the size
of tasks. Spark workers relay the deflation requests to the

rc+1—c]

Resource Deflation

Spark master, which then executes the policy, and returns
the amount of relinquished resources on each worker.

5 Implementing Deflation-based Cluster
Management

Our deflation framework allows users to deploy applications
using a combination of non-deflatable, non-preemptible high
priority VMs and deflatable low-priority VMs. Our system
is comprised of two main components. First, a centralized
cluster manager allocates and reclaims resources through
VM placement and proportional deflation policies at a cluster
level. Second, each server runs a local deflation controller
(Figure 2), which keeps track of resource allocation and avail-
ability, and implements proportional cascade VM deflation at
a single machine level. We have implemented both the cen-
tralized cluster manager and the local-controllers in about
4,000 lines of Python. The two components communicate
with each other via a REST API.

The implementation complexity of our prototype is com-
parable to that of other preemption-mitigation systems. As
a point of comparison, ExoSphere’s cluster management
and application fault-tolerance policies are over 5,000 lines
of code [68], inspite of being based on an existing cluster
manager (Mesos). We now describe the design and imple-
mentation of our deflation-based cluster manager.
Bin-packing based VM placement. When a new applica-
tion is launched on the cluster, its high and low priority VMs
are individually placed onto the cluster (physical) servers.
Servers host a mix of high and low priority VMs. Our VM-
placement policies determine which physical server to place
each VM on, by using a multi-dimensional bin-packing ap-
proach, where the multiple dimensions are the CPU, memory,
network, and disk resources. Bin-packing VMs onto servers
is the standard technique for VM placement [63], and it takes
into account the free/available resources on each server. In
our case, since low-priority VMs can be deflated to free-up
server resources, we consider the sum of free and the deflat-
able resources, when placing VMs.

We use the notion of “fitness” to place a VM onto a server,
which in our case is the cosine similarity between the VM’s
resource demand vector and the server’s resource-availability

AD .
vector: fitness(D, A;) = W. Since resources can be re-
]

claimed from deflatable VMs already running on a server,
the availability vector is given by:

A; = Free; + Deflatable; 4)

Deflatable; is the total amount of resources (across all
VMs) that can still be reclaimed by deflation. Using the
above formulation, our cluster manager implements best-fit,
first-fit, and a 2-choices policy that randomly selects two
servers and places the VM on one with higher fitness (larger
free+deflatable resources).

EuroSys 19, March 25-28, 2019, Dresden, Germany

How much to deflate VMs by? In order to run a VM on
a server, resources may need to be reclaimed, if there are
insufficient free resources. Cluster-level policies determine
how much to deflate each VM by—VMs are actually deflated
using cascade deflation. We implement a simple proportional
cascade deflation policy that deflates all low-priority VMs by
an amount proportional to their size. For example, suppose
a new high-priority VM of size R is placed on a server with
no free resources available, and n deflatable VMs of size M;.
Then, the VMs are assigned deflation targets of x;, such that
> x; = R, and x; = (M; —m;) — a(M; —m;). Here, m; denotes
the minimum size of the VM, beyond which deflation is not
feasible/safe, and the VM is preempted instead. Minimum
sizes are optional in our framework and default to 0, but allow
applications to control their deflatability and preemptions,
and can be set based on application SLOs. Our cluster policies
thus use bin-packing to globally balance the load across
the cluster, and proportional deflation to reclaim resources
within a single server.

Implementation details. Once the deflation amounts have
been determined, we use cascade deflation to deflate indi-
vidual VMs. The cascade deflation is orchestrated by the
per-server local deflation controller, which performs the
reclamation for each VM on a server concurrently. Our pro-
totype deflation controller is implemented for the KVM hy-
pervisor [51], and uses the libvirt API [10] for managing VM
lifecycles, and for hypervisor and guest-OS level deflation.

For application-level deflation, applications use a defla-
tion agent with a REST endpoint. The deflation agents listen
to deflation requests (in the form of deflation vectors), in-
voke the application-level mechanisms, and respond with
the amount of resources volunarily relinquished. The local
controller then invokes OS and hypervisor level reclamation,
if necessary.

For hot-plugging (and unplugging) of CPU and memory
required for OS-level deflation, we rely on QEMU’s agent-
based hotplug. A QEMU hotplug agent runs inside the VMs
as a user-space process, and listens for hotplug commands
from the local deflation controller. The hotplug commands
are passed to the guest OS kernel via this agent. This allows
the hotplug to be “virtualization friendly”. Unlike physical
resource hotplug where unplug is a result of a fail-stop fail-
ure, the agent-based approach allows unplug operations to
be executed in a best-effort manner by the guest OS ker-
nel. This increases the safety of the unplugging operations.
For example, if the guest kernel cannot safely unplug the
requested amount of memory, the hot unplug operation is
allowed to return unfinished. In this case, the memory re-
claimed through hot plug will be lower, but the safety of the
operation is increased.

For hypervisor-level deflation, we run KVM VMs inside
Linux cgroups containers [11], which provide a unified inter-
face for reclaiming resources, and also help limit the perfor-
mance interference between VMs by limiting their resource

EuroSys ’19, March 25-28, 2019, Dresden, Germany

Workload Description

Memcached | In-memory key-val store. YCSB and Redis
memtier_benchmark for load generation

Kcompile Linux kernel compile

SpecJBB SpecJBB 2015 benchmark in “fixed IR” mode. IBM J9 JVM

ALS Spark mllib Alternating Least Squares on 100GB dataset

K-means Spark mllib dense K-means clustering with 50GB dataset

CNN Resnet convolutional neural network with Spark-BigDL
on Cifar-10 dataset. BatchSize=720, depth=20, classes=10

RNN Recurrent neural network with Spark-BigDL on Shake-
speare Texts corpus

Table 2. Workloads used for experimental evaluation

usage. For CPU multiplexing, we adjust the cpu shares of
the VM. For memory multiplexing, we limit the VM’s phys-
ical memory usage by limiting the memory usage of the
cgroup (mem.limit_in_bytes). Large memory reclamation
operations can often fail, and we use a control loop for incre-
mental, gradual reclamation. Similarly, we throttle the disk
and network bandwidth using the appropriate libvirt APIs.
Deflation operations have a deadline that is primarily deter-
mined by the amount of memory reclamation. If a deflation
operation times out, we proceed to the next level in cascade
deflation. In some cases, partial deflation may be sufficient
to meet the new resource demands. In the worst case, VMs
that are farthest from their deflation target are preempted.
Finally, the cluster manager monitors VM lifecycle events
(startup, shutdown, termination) to maintain consistent al-
location and availability information of all servers. If some
resources become available, then it reinflates VMs. Just as
with deflation, we reinflate VMs proportionally. Cascade de-
flation can be used “in reverse” to reinflate individual VMs:
it first increases the hypervisor-level allocation, then adds
resources to the OS, and finally informs the application’s
deflation agent of the additional resource availability.

6 Experimental Evaluation

We now examine the behavior of our deflation framework
using testbed experiments and a range of application work-
loads. Our evaluation is guided by the following questions:

1. How does cascade deflation compare with other recla-
mation techniques?

2. How does deflation affect the performance of distributed
data processing and machine learning workloads?

3. What is the impact on cluster management metrics
such as throughput, utilization, and overcommitment?

Environment and Workloads. We use the deflation-based
cluster management system described previously in §5 to
perform our empirical evaluation. We run applications in
KVM VMs running on Ubuntu 16.04.3 (x86-64). The cluster
servers are equipped with Intel Xeon E5-2670 v3 CPUs (2.3
Ghz). Unless otherwise stated, we run VMs with 4 vCPUs
and 16 GB of memory. Cluster applications such as Spark

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy

workloads and Memcached are run on a cluster size of 9 VMs,
unless otherwise stated.

We evaluate the performance of deflation techniques over
a wide spectrum of workloads listed in Table 2. All our Spark
workloads use Spark v2.3.1, and are run with a cluster of 8
worker VMs and 1 master VM. For the neural network train-
ing workloads (CNN and RNN), we use Intel’s BigDL [82]
library benchmarks [9] with default network parameters.
Neural network training is an example of a synchronous and
inelastic workload, i.e., the loss of any VM results in the
entire application stalling. While asynchronous training is
also a popular mode of operation, its effectiveness is reduced
in heterogeneous cloud environments [46], and hence we
use the synchronous mode of operation. Using Spark for
neural network training provides us a uniform platform for
implementing and evaluating our deflation policies. Evalua-
tion of cascade deflation for specialized frameworks such as
TensorFlow [13] is part of our future work.

We are primarily interested in the overhead of deflation,
and all results are normalized to the “no deflation” case.

6.1 Application Performance with Deflation

We begin by analyzing the performance impact of different
fractional reclamation approaches outlined in §3. We are
interested in evaluating the effectiveness of cascade deflation
and comparing it with single-level reclamation approaches.
No Application Deflation: We first look at the perfor-

mance of unmodified applications (without application-deflation

support), to examine the behavior of hypervisor-level and
OS-level deflation. The throughput of the memory-intensive
memcached workload at different memory deflation levels
is shown in Figure 5a, where we report successful GET re-
quests (cache hits) per second. At 50% deflation, memcached
throughput decreases by around 20% with hypervisor-level
deflation (host-memory swapping in this case). While OS-
level memory hot-unplug achieves superior performance up
to 40% deflation, memcached runs out of memory and is ter-
minated at higher deflation levels, making it impractical to
rely on OS-level deflation alone. The combination of hyper-
visor and OS level techniques used with cascade deflation is
able to “switch over” from OS to hypervisor level deflation to
yield superior performance over a range of deflation levels.
Similarly, Figure 5b shows the performance of the CPU in-
tensive kernel-compile benchmark at different CPU deflation
levels. The performance with hypervisor-only deflation is
inferior compared to OS-level techniques (vCPU hot-unplug)
by up to 22%, likely due to lock-holder preemption [29].
Combining hypervisor and OS level deflation (which cas-
cade deflation does) allows us to deflate the application by
75%, with only 30% decrease in performance.
With Application Deflation: We now evaluate the perfor-
mance effects of the application self-deflation policies, which
engage all three layers of cascade deflation. We compare

Resource Deflation

EuroSys 19, March 25-28, 2019, Dresden, Germany

“12 - 160 = 3000
N v 3
2 g0 o 140 T 2500
5 1.0 208 5 120 g
Sos - g € 100 ¥ 2000
Fos . F 06 g 80 2 1500
o . \ ke [=]
(9] 19

& 0.4||++ Hypervisor only Y N 0.4+ +—+ Hypervisor only S 60 51000
(_EB 0.2 * % OS only \ g 02l * osonly g 40 +—+ Unmodified z 500 +— Unmodifed
5 °[|®® Hypervisor+0S \ ‘g “||@—e® Hypervisor+0S = 20} »— App Deflation o *—% App Deflation
= — 0 0

0.0 00 0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 10 20 30 40 50

Memory Deflation % CPU Deflation %

(a) Memcached memory deflation

0 10 20 30 40 50 60 70 80

(b) Kernel-compile CPU deflation

Memory Deflation % CPU and Memory Deflation %

(c) Memcached (d) JVM (Spec]BB)

Figure 5. Hybrid deflation improves performance for both CPU and memory deflation

against VM-level deflation (Hypervisor+OS), which does not
use application deflation.

Figure 5c shows the performance of a memcached work-
load at different memory deflation levels. Our memcached
application deflation policy evicts least recently used objects
to reduce memory usage, and this results in a 6X improve-
ment in throughput at 50% deflation. At high deflation levels,
the unmodified version has to read some objects from swap,
which is a slow operation bound by the disk-speed. Addi-
tionally, these slow GET requests (that hit swap), increase
system load and decrease the overall throughput of the ap-
plication. The deflation-aware memcached avoids this by
sizing the cache to fit in the available memory, and sees a
higher number of cache misses because it has evicted items
that wouldn’t fit in the memory available. But by doing so,
it avoids swapping and obtains a much higher throughput,
yielding a higher effective cache hit rate in terms of GETS/s.

Similarly, Figure 5d evaluates the performance of the Spec-

JBB workload across different CPU and memory deflation
levels (both resources deflated by the same fraction). Our
deflation policy for JVM-based applications minimizes swap-
ping by reducing the heap size by triggering garbage collec-
tion. At higher deflation levels, this policy results in a 20%
improvement in the response time.
Result: Using OS-level reclamation is insufficient since it can
lead to application failures. Using both hypervisor and OS level
deflation can improve performance of unmodified applications
by 20%. Cascade deflation with simple application deflation
policies can improve performance by upto 6X.

6.2 Distributed Processing On Deflatable VMs

While the previous subsection focused on evaluating cascade
deflation for single-VM applications, we now turn our atten-
tion to the performance of distributed data processing and
machine learning workloads. We evaluate the Spark deflation
policy developed in §4.1 and compare it against alternative
reclamation approaches. Our Spark deflation policy chooses
either application-level self deflation, or VM-level deflation,
and we compare these two approaches.

We deflate Spark applications by deflating all its VMs (CPU,
memory, and I/O), and deflate the applications roughly 50%
into their execution, and thus the applications run with 100%

resources in the first half and then with reduced resources for
the reminder of their execution. Figure 6 shows the normal-
ized running time (relative to no deflation) for four different
Spark workloads. We note that the deflation performance
of Spark depends on the characteristics of the RDD compu-
tation graph, and hence each of the workloads in Figure 6
exhibit different performance characteristics.

The performance of the ALS workload (Figure 6a) scales
fairly linearly with VM-level deflation—the running time in-
creases to 1.5X at 50% deflation. However, using self-deflation
increases the running time to 2.2X. Self-deflation for Spark
involves terminating tasks, which requires recursive recom-
putation. The RDD recomputation graph for ALS is shuffle-
heavy and involves significant amount of recomputation.
Based on our Spark deflation models developed earlier in §4.1,
our deflation policy (denoted by “Cascade” in Figure 6) chooses
VM-level deflation for ALS, since it does not involve terminat-
ing tasks. With VM preemption, the running times increase
to 2.5% at 50% deflation, again due to the recomputation
costs. However, we note that the recomputation costs (and
hence the running times) for self-deflation are lower by about
15% compared to preemption, because self-deflation allows
recovering some RDD partitions from Spark’s RDD cache
instead of recomputing from input data sources.

K-means (Figure 6b) has lower recomputation costs, and
hence lower degradation due to deflation. Self-deflation is
preferred by our policy, resulting in an 18% and 38% increase
in running time at 25% and 50% deflation respectively.

The performance characteristics of the deep neural net-
work training workloads shown in Figures 6c and 6d differ
significantly from conventional Spark workloads (like ALS
and K-means). As described in §4.1, synchronous operations
are used in neural network training, and loss of even a single
task requires restarting the entire job, from a previous model
checkpoint if available. Thus, self-deflation and preemption,
which kill tasks, result in significantly higher running times
compared to the VM-level deflation technique which does
not require restarts. For CNN training (Figure 6c), the in-
crease in running time even at 50% deflation is only 20% with
VM-level deflation. Compared to preemption, the current

EuroSys ’19, March 25-28, 2019, Dresden, Germany

Y % Cascade
[Self

—/ VM
I Preemption

2.5

2.0

15

1.0

0.5

Normalized Running Time

Normalized Running Time

0.0 .
0.25 0.5 0.25 0.5

Fraction Deflated Fraction Deflated

(a) ALS (b) K-means

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy

w25 — o 1.

€ € 8

= F 1.6

2 2.0¢ o 1.4

c c

c € 1.2

5 15¢ ngc 1.0

510 - 0.8

X S o6

© © 0.4

£os £ 05

o (=] :

Z 0.0 Z 0.0
0.125 0.25 0.5 0.125 0.25 0.5

Fraction Deflated Fraction Deflated

(c) CNN Training (d) RNN Training

Figure 6. Performance of various Spark workloads with different deflation techniques and deflation amounts. Cascade deflation
uses the Spark deflation policy developed in §4.1 to select the “best” deflation mechanism to minimize overhead.

transiency mechanism used by cloud providers, deflation
results in a 2X decrease in running time.

Similarly, the RNN workload (Figure 6d) sees its running
time increase by 25% at 50% deflation. Compared to preemp-
tion, the running time is lower by 25%.

In addition to the characteristics of the RDD graph, ap-
plication performance also depends on when it was deflated
(Equation 1). Figure 7a shows the running time of ALS when
the application is deflated at different points in its execution.
Early in the execution, self-deflation achieves better perfor-
mance since the recomputation required is smaller, and a
cross-over point is reached at around 30% deflation. Since
deflating reduces resource allocation, the overhead trends
downwards for both techniques since a smaller fraction of
the job needs to be run with reduced resources.

With deflation, long-running applications such as neural

network training can respond gracefully to resource pres-
sure. Figure 7b shows the throughput of the CNN training
workload over time, when the application faces 50% deflation
for 30 minutes. During the period of deflated execution, the
application continues to run, albeit with throughput reduced
by 20%. With preemption, periodic checkpointing is required,
which reduces the throughput by 20% even during normal
execution. Preemptions require restarting the entire job from
the latest checkpoint, which further reduces the through-
put. Thus compared to preemption, deflation improves CNN
training throughput by 20%, even with transient resource
pressure and periodic checkpointing.
Result: For Spark applications, performance overhead of de-
flation is up to 2X lower than preemption. Deflation enables
inelastic applications such as neural network training to grace-
fully respond to transient resource reclamation.

6.3 Cluster-wide Behavior

So far we have seen the effect of deflation on individual ap-
plications. We now look at how deflation impacts the global
behavior of virtualized clusters.

Throughput: We have already seen that the performance
degradation with deflation is not always proportional to the

20fe— _ 7 T] 1ooom

[

£

S 5

g “g 800 Lo

= 1.5 59

S 28 500

& oG

10 32

.F_;‘) ,-E§ 400(Baseli.ne

g 0.571% Self £ S0l — Deflatlon.

S @@ VM-level Preemption

Z 0.0 [0 Serre—e————"
20 30 40 50 60 70 0 1020 304050607080

Job progress % when deflated Time (minutes)

(a) Performance of ALS when de- (b) CNN throughput with transient re-
flated at different points. source pressure (10-40 minutes).

Figure 7. Spark performance overheads

amount of resources reclaimed. This facilitates overcommit-
ting cluster resources while at the same time increasing the
overall cluster throughput. We run Spark (CNN workload)
on low-priority deflatable VMs, and introduce resource pres-
sure by launching high-priority memcached VMs on the
cluster, causing the Spark VMs to be deflated. When the
memcached VMs start running, the Spark VMs are deflated
by 50%, and the cluster is effectively overcommitted by 50%.
Figure 8a shows the overall throughput of two applications :
Spark (CNN Training) and a memcached cluster. While the
Spark throughput decreases by around 20%, the total cluster
throughput peaks at 1.8 when both memcached and Spark
are running. Thus, deflation allows cluster managers to over-
commit resources and significantly increase total throughput
(or equivalently, revenue, in the case of cloud operators).

Latency: An additional metric important for cluster man-
agement is the latency of resource allocation, which includes
the time required to find free resources and reclaim resources
if necessary. Since deflation performs gradual resource recla-
mation before new VMs can run, it increases the allocation
latency. In general, the deflation speed is dominated by de-
flating memory, since it often entails saving memory state to
stable storage (such as swap). We look at the worst-case de-
flation latency by deflating a single giant VM with 48 vCPUs
and 100GB memory by 50% in Figure 8b. With full cascade

Resource Deflation

B Spark

HEEl Memcached *—* Hypervisor

%=X Hypervisor+0S @@ Cascade

3 350
300
250

Cluster Throughput
N
o
o

Deflation Latency
=
w
o

) 20 40 60 80 100 120
Time (Minutes)

Deflation %

(a) Cluster throughput (b) Deflation latency

0
10 15 20 25 30 35 40 45 50 55

EuroSys 19, March 25-28, 2019, Dresden, Germany

50.0% VMs are low-priority

€
c] +
g ®—e Deflation £ Lo i+
£08 B B Preemption-only € T ™ +
o1 0.8 1 ! T
g6 g ! |
£ 0.
s <4
S __-m 3 0.6
504 B 3 I
z ---m 5 0.4 + '
o2 ® $, + -
© U -
= 0 0.2
S 0.0 " " -
= gestf® gieefit .ol

50 60 70 80 90 100 110

Cluster Overcommitment % Placement Policy

(c) Preemption probability (d) Cluster imabalance

Figure 8. Cluster-wide properties with deflation

deflation (including application deflation), the deflation la-
tency even with 50% deflation is under 100 seconds. Even
with application deflation, the freed resources still need to be
reclaimed by the OS and the hypervisor, which contributes
to the deflation latency. At high deflation levels, the deflation
latency without application deflation is up to 2xX—3X higher.
Note that deflation is concurrent across VMs and the single
large VM deflation is the worst-case scenario, and this worst-
case latency is comparable to the grace period required with
preemptions (2 minutes for Amazon EC2 spot instances).
Preemption: While deflation permits overcommitment, VMs
can only be deflated up to their minimum resource levels. In
cases of extreme overcommitment, our cluster manager pre-
empts VMs when they are deflated below their minimums.
We evaluate the probability of VM preemption with deflation
on a large 100 node cluster using a simulation approach. Our
cluster simulator implements the proportional deflation and
VM placement policies described in §5. We use the Euca-
lyptus cloud traces [2] to obtain VM arrivals, lifetimes, and
VM sizes. We assign some fraction of VMs as low-priority
VMs that are either deflated or preempted. We use empiri-
cally determined minimum levels for Spark, memcached, and
Spec]BB application VMs, and determine the VM preemption
probability when the cluster is overcommitted to different
degrees. Figure 8c shows that the preemption probability
with deflation is negligible even at 60% overcommitment, or
1.6X cluster utilization. Cluster overcommitment levels as
high as 60% are rare even in agressive cluster operation [79],
and overcommitment levels tend to be around 20%. Thus, pre-
emption is a rare event with deflation, and it is not necessary
for applications to implement preemption-mitigation.

VM Placement: Deflation uses modified VM placement
techniques that we develop in §5. Careful VM placement
is important for cluster load balancing and for increasing
overcommitment. We again use the trace-driven simulator
to evaluate the server level overcommitment using differ-
ent deflation-aware bin-packing policies. With deflation, our
goal is to maximize the overcommitment of servers, while
at the same time reducing the preemptions. Figure 8d shows
that all placement policies yield similar levels of server over-
commitment. The differences in the placement algorithms

are masked by the use of deflatable VMs, since suboptimal
online VM placement can be “fixed” by deflation.

Result: Deflation permits high cluster overcommitment, while
yielding high cluster throughputs (up to 1.8X), and low pre-
emption probabilities. Cascade deflation reduces reclamation
(and hence allocation) latency by 2X-3X.

7 Related Work

Our proposed deflation system draws upon many related
techniques and systems.

Systems for running applications on transient servers
use a combination of fault tolerance [40, 56, 67, 86] and re-
source allocation policies [68, 70, 74] to ameliorate preemp-
tions. Deflation is designed to avoid the performance, devel-
opment, and deployment costs associated with preemption.
Resource overcommitment mechanisms have been well
studied and optimized to allow for more efficient packing for
VMs onto physical servers. Memory overcommitment mech-
anisms such as ballooning have received significant atten-
tion [16, 69, 80], but ballooning generally yields inferior per-
formance to hotplug due to memory fragmentation [47, 54].
The use of hotplug has also been proposed for reducing
energy consumption [89]. Our use of CPU hotplugging is
partly motivated by mitigating lock-holder preemption prob-
lems in overcommitted vCPUs [29, 62]. Application-level
ballooning [65] reclaims memory from database and JVM
applications—cascade deflation generalizes this to multiple
resource types, and does not require guest OS modifications.
Application deflation. Improving elasticity for popular
applications is an increasingly common pursuit. Dynamic
heap sizing [19, 20, 85] is a popular technique for improving
memory-elasticity of applications. The memory elasticity of
data-parallel applications is enhanced in [30, 45]. Applica-
tions can also respond to deflation by serving less optional
content [52], by reducing the quality of their results [73], or
by giving them incentives for improved efficiency [18, 66].
Cascade deflation can make use of these elasticity control
mechanisms. Incorporating elasticity into neural network
training [40] presents multiple challenges due to the synchro-
nous and inelastic nature of most deep learning frameworks.
However unlike prior work, our approach does not require
extensive application-level modifications.

EuroSys ’19, March 25-28, 2019, Dresden, Germany

Cluster resource management. Improving the utilization
and performance of large computing clusters is a long stand-
ing challenge, and is typically tackled via resource alloca-
tion [28, 34, 37] and scheduling [35, 41]. However, many of
the optimizations for fast job and task scheduling [27, 49, 50]
are not relevant for VMs which are longer running, have
strict resource reservation requirements, no notion of com-
pletion times, and do not expose application-level perfor-
mance metrics. Dynamic VM resource allocation [38, 39, 61]
and bin-packing based VM placement [78] are common tech-
niques for increasing the efficiency of virtualized clusters.
Our work extends these ideas to multiple resource classes
(deflatable and non-deflatable), and adds application-level
deflation into a unified cascade deflation framework. Incor-
porating predictive resource management [26] for deflatable
VMs is part of our future work.

8 Discussion and Future Work

Deflation is a departure from preemption, and can affect the
execution and deployment of VMs in the cloud. In this sec-
tion, we discuss how deflation can fit into cloud ecosystems,
and potential impact on cloud providers and applications.
Impact on Cloud Providers: While preemption is rela-
tively straightforward to implement, deflation introduces
additional policy decisions for cloud and data center opera-
tors, which can further increase the complexity of resource
management, both at a server and at a cluster level.

Further research is required on how our policies for place-
ment and VM deflation interact with existing resource al-
location and pricing policies. To this end, we deliberately
developed relatively simple policies in Section 5, so that they
can be composed with other existing cluster management
policies for admission control, SLO-aware allocation, VM
placement, global cluster-wide optimization, pricing, etc.

As a possible pathway to adoption, running internal and
first-party workloads (which make up a non-negligible por-
tion (20%) of cloud workloads [26]), can allow providers to
test and refine deflation policies before they are rolled out
to third party VMs.

On a per-machine level, deflation introduces additional
complexity to VM management, especially due to the dy-
namic resource allocation. We argue that the additional com-
plexity would be at-par with burstable VMs [81] that are
already being offered by cloud providers. While deflation
also adjusts memory allocation (in addition to dynamic CPU
and I/O allocation that even burstable VMs offer), the key
difference is that deflation is only performed under resource
pressure, and not over the entire lifetime of the VM as is the
case with burstable VMs.

Finally, while VM overcommitment mechanisms have long
been studied and implemented in the context of smaller, pri-
vate clouds and enterprise clusters [38], more research is re-
quired on their robustness at cloud-scale. For instance, while
our system runs all VMs inside cgroups to limit performance

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy

interference, the large-scale implications of co-locating de-
flatable and non-deflatable VMs remain to be explored.
Pricing: Given their similar roles in clearing surplus cloud
resources, we envision that deflatable VMs will be offered
at similar discounted rates as the current preemptible VMs.
Deflation is amenable to multiple pricing models. Providers
could continue to offer flat discounted prices, or dynamic
supply-demand based pricing. The resource-as-a-service
model [14] also fits well for deflatable VMs: providers can
dynamically charge VMs based on the amount of resources
allocated. If deflatable VMs present a higher utility to ap-
plications (which we believe they do), then they can allow
providers to charge higher prices for their surplus resources.
Impact on Applications: Deploying applications on de-
flatable VMs also introduces additional complexity in the
deployment model. Implementing application-level deflation
policies that is required for cascade deflation is the primary
concern when deploying applications on deflatable VMs.
However, we have shown that these policies can be easily
implemented for popular cloud applications [31] such as key-
value stores, Java-based enterprise applications, distributed
data processing, and machine learning 2.

There are also questions about whether applications prefer
frequent fail-stop failures (current preemptible VMs), or the
occasional performance variation imposed by deflation. High
deflation levels, albeit rare, could increase the likelihood
of gray failures [43]. Finally, the superior performance of
deflatable VMs and their significantly higher availability may
prove to be a significant driving force behind their adoption.

9 Conclusion

We proposed the notion of resource deflation as an alterna-
tive to preemption, for running low-priority applications.
Deflatable VMs allow applications to continue running even
under resource pressure, albeit at a lower performance. Our
cascade deflation approach uses hypervisor, OS, and applica-
tion level reclamation mechanisms and policies. This multi-
level approach allows many applications, such as distributed
deep learning training, to run with only 20% performance
degradation even when half their resources are dynami-
cally reclaimed. Deflation is a promising cluster-management
primitive, and compares favorably to preemption, in terms of
cluster throughput, utilization, and application preemptions.
Acknowledgements. We thank the anonymous reviewers
and our shepherd John Regehr for their insightful comments.
This research was supported by NSF grants 1763834, 1802523,
1836752, and 1405826, and Amazon AWS cloud credits. Some
of the results presented in this paper were obtained using
the Chameleon testbed supported by the National Science
Foundation. Prateek Sharma was supported in part by a
startup grant from Indiana University.

2Web-application clusters are another popular cloud workload, and can use
a deflation-aware load-balancer for cascade deflation.

Resource Deflation

References

(1]

[2

—

(15]

(16]

(17]

(18]
(19]

[20]

[21]

[22]

(23]

[24]

[25]

Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot/, Sep-
tember 24th 2015.

Eucalyptus workload traces. https://www.cs.ucsb.edu/~rich/workload/,
2015.

Google preemptible instances. https://cloud.google.com/compute/
docs/instances/preemptible, September 24th 2015.

Linux CPU Hotplug Documentation. https://www.kernel.org/doc/
html/v4.18/core-api/cpu_hotplug.html, December 2016.

Memcached. https://memcached.org/, 2016.

Azure low priority batch VMs. https://docs.microsoft.com/en-us/
azure/batch/batch-low-pri-vms, June 2017.

IBM J9 Java Virtual Machine. https://www.ibm.com/support/
knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.Inx.80.doc/user/
java_jvm.html, 2017.

Amazon EC2 Spot Instance Advisor. https://aws.amazon.com/ec2/
spot/instance-advisor/, July 2018.

Intel BigDL sample models. https://github.com/intel-analytics/
BigDL/tree/master/spark/dl/src/main/scala/com/intel/analytics/
bigdl/models, September 2018.

Libvirt: The virtualization APL http://www.libvirt.org, September 2018.
Linux cgroups. https://www.kernel.org/doc/Documentation/
cgroup-v1/cgroups.txt, September 2018.

Openstack. https://www.openstack.org/, September 2018.

ABADI, M, BARHAM, P, CHEN, J., CHEN, Z., Davis, A., DEAN, J., DEVIN,
M., GHEMAWAT, S., IRVING, G., ISARD, M., ET AL. Tensorflow: a system
for large-scale machine learning. In OSDI (2016), vol. 16, pp. 265-283.
AcMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER, A., AND
TsAFRIR, D. The rise of RaaS: the resource-as-a-service cloud. Com-
munications of the ACM 57,7 (2014), 76-84.

ALI-ELDIN, A., TORDSSON, J., AND ELMROTH, E. An adaptive hybrid
elasticity controller for cloud infrastructures. In Network Operations
and Management Symposium (NOMS), (2012), IEEE, pp. 204-212.
AMIT, N., TSAFRIR, D., AND SCHUSTER, A. Vswapper: A memory swap-
per for virtualized environments. VEE (2014).

ARMBRUST, M., XiN, R. S, L1aN, C., Huar Y., Liu, D., BRADLEY, J. K.,
MENG, X., KaFTAN, T., FRANKLIN, M. J., GHODsI, A., ET AL. Spark
sql: Relational data processing in spark. In SIGMOD International
Conference on Management of Data (2015), ACM, pp. 1383-1394.
BEN-YEHUDA, M., AGMON BEN-YEHUDA, O., AND TSAFRIR, D. The nom
profit-maximizing operating system. In VEE (2016), ACM.

BOBROFF, N., WESTERINK, P., AND FONG, L. Active control of memory
for Java virtual machines and applications. In ICAC (2014), pp. 97-103.
CAMERON, C., SINGER, J., AND VENGEROV, D. The judgment of forseti:
Economic utility for dynamic heap sizing of multiple runtimes. In
ACM SIGPLAN Notices (2015), vol. 50, ACM, pp. 143-156.

CAVDAR, D., CHEN, L. Y., AND ALAGOZ, F. Reducing execution waste in
priority scheduling: a hybrid approach. In USENIX Workshop on Cool
Topics on Sustainable Data Centers (CoolDC 16) (2016).

CHEATHAM, T., FAHMY, A., STEFANESCU, D., AND VALIANT, L. Bulk
synchronous parallel computing-a paradigm for transportable soft-
ware. In Tools and Environments for Parallel and Distributed Systems.
Springer, 1996, pp. 61-76.

CHeccoNL F., CucINOoTTA, T., FAGGIOLL D., AND L1PARI, G. Hierarchical
multiprocessor cpu reservations for the linux kernel. In Proceedings
of the 5th international workshop on operating systems platforms for
embedded real-time applications (OSPERT 2009), Dublin, Ireland (2009),
pp- 15-22.

CHEHAB, M. C., ET AL. Memory hotplug. Linux Kernel Documentation
(2007). Available online: https://github.com/torvalds/linux/blob/
486088bc4689f826b80aa317b45ac9e42e8b25ee/Documentation/
memory-hotplug.txt.

CHEN, J., PAN, X., MONGA, R., BENGIO, S., AND JozZEFOWICZ, R. Revisiting
distributed synchronous SGD. ICLR (2017).

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

EuroSys 19, March 25-28, 2019, Dresden, Germany

CoRTEZ, E., BONDE, A., MUzI10, A., RUssiINOVICH, M., FONTOURA, M.,
AND BIANCHINT, R. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms.
In Proceedings of the 26th Symposium on Operating Systems Principles
(2017), SOSP *17, ACM, pp. 153-167.

DELGADO, P., DiNU, F., KERMARREC, A.-M., AND ZWAENEPOEL, W. Hawk:
Hybrid datacenter scheduling. In USENIX ATC (2015).

DELimITROU, C., AND KozYRAKIS, C. Quasar: resource-efficient and qos-
aware cluster management. In ACM SIGPLAN Notices (2014), vol. 49,
ACM, pp. 127-144.

Ding, X., GiBBONS, P. B, KozucH, M. A., AND SHAN,]. Gleaner: miti-
gating the blocked-waiter wakeup problem for virtualized multicore
applications. In USENIX Annual Technical Conference (2014), pp. 73-84.
Fang, L., NGUYEN, K., XU, G., DEMSKY, B., AND Lu, S. Interruptible
tasks: Treating memory pressure as interrupts for highly scalable data-
parallel programs. In Proceedings of the 25th Symposium on Operating
Systems Principles (2015), SOSP *15, ACM, pp. 394-409.

FERDMAN, M., ADILEH, A., KOCBERBER, O., VOLOS, S., ALISAFAEE, M.,
JevpjIC, D., KaYNAK, C., POPESCU, A. D., AILAMAKI, A., AND FALSAFI,
B. Clearing the clouds: a study of emerging scale-out workloads on
modern hardware. In ACM SIGPLAN Notices (2012), vol. 47, ACM,
pp. 37-48.

GANDHI, A., DUBE, P., KocHUT, A., AND ZHANG, L. Model-driven
autoscaling for hadoop clusters. In 2015 IEEE International Conference
on Autonomic Computing (ICAC) (2015), IEEE, pp. 155-156.

GANDHI, A., HARCHOL-BALTER, M., RAGHUNATHAN, R., AND KozucH,
M. A. Autoscale: Dynamic, robust capacity management for multi-tier
data centers. ACM Transactions on Computer Systems (TOCS) 30, 4
(2012), 14.

GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A., SHENKER, S.,
AND STOICA, I. Dominant resource fairness: Fair allocation of multiple
resource types. In NSDI (2011).

GogG, 1., ScHWARZKOPF, M., GLEAVE, A., WATSON, R. N. M., AND HAND,
S. Firmament: Fast, Centralized Cluster Scheduling at Scale. In Sym-
posium on Operating Systems Design and Implementation (OSDI) (Sa-
vannah, GA, 2016), USENIX, pp. 99-115.

GONG, Z., Gu, X., AND WILKES, J. Press: Predictive elastic resource
scaling for cloud systems. In 2010 International Conference on Network
and Service Management (2010), IEEE.

GRANDL, R.,, ANANTHANARAYANAN, G., KANDULA, S., Rao, S., AND
AKELLA, A. Multi-resource packing for cluster schedulers. In ACM
SIGCOMM Computer Communication Review (2014), vol. 44, ACM,
pp. 455-466.

GuLATI, A., HOLLER, A., J1, M., SHANMUGANATHAN, G., WALDSPURGER,
C., AND ZHUu, X. VMware distributed resource management: Design,
implementation, and lessons learned. VMware Technical Journal 1, 1
(2012), 45-64.

GuUPTA, V., LEE, M., AND ScHWAN, K. Heterovisor: Exploiting resource
heterogeneity to enhance the elasticity of cloud platforms. In Virtual
Execution Environments (VEE) (2015), ACM, pp. 79-92.

HAarLrAP, A, TuMmANOV, A., CHUNG, A., GANGER, G. R., AND GIBBONS,
P. B. Proteus: Agile ML Elasticity Through Tiered Reliability in Dy-
namic Resource Markets. In European Conference on Computer Systems
(2017), EuroSys *17, ACM, pp. 589-604.

HinpbmaN, B., KoNwiINskI, A., ZAHARIA, M., GHODSI, A., JosepH, A. D.,
Katz, R. H., SHENKER, S., AND STOICA, I. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI (2011), USENIX.
HinEes, M. R.,, GORDON, A., SiLva, M., DA SiLva, D., Ryu, K., AND BEN-
YEHUDA, M. Applications know best: Performance-driven memory
overcommit with Ginkgo. In Cloud Computing Technology and Science
(CloudCom) (2011), IEEE, pp. 130-137.

EuroSys ’19, March 25-28, 2019, Dresden, Germany

(43]

(4]

[45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

(56]

(57]

(58]

(59]

Huang, P., Guo, C., ZHou, L., LorcH, J. R,, DANG, Y., CHINTALAPATI,
M., AND Yao, R. Gray failure: The Achilles’ heel of cloud-scale systems.
In Proceedings of the 16th Workshop on Hot Topics in Operating Systems
- HotOS @AZ17 (2017), ACM Press, p. 1504A$155.

ILYUSHKIN, A., ALI-ELDIN, A., HERBST, N., BAUER, A., PAPADOPOULOS,
A. V., EPEMA, D., AND IosuP, A. An experimental performance eval-
uation of autoscalers for complex workflows. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOM-
PECS) 3, 2 (2018), 8.

IorGuULEscuU, C., DiNvU, F., Raza, A., HAssAN, W. U., AND ZWAENEPOEL,
W. Don'’t cry over spilled records: Memory elasticity of data-parallel
applications and its application to cluster scheduling. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17) (Santa Clara, CA, 2017),
USENIX Association, pp. 97-109.

JiaNgG,], Cul, B, ZHANG, C., AND YU, L. Heterogeneity-aware dis-
tributed parameter servers. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data (New York, NY, USA, 2017),
SIGMOD ’17, ACM, pp. 463-478.

JoeL H ScHorp, K. F., AND SILBERMANN, M. J. Resizing Memory with
Balloons and Hotplug. In Ottawa Linux Symposium (OLS) (2006),
pp- 313-319.

Karyvianaky, E., CHARALAMBOUS, T., AND HAND, S. Self-adaptive and
self-configured cpu resource provisioning for virtualized servers using
kalman filters. In Proceedings of the 6th International Conference on
Autonomic Computing (New York, NY, USA, 2009), ICAC *09, ACM,
pp. 117-126.

KamBaTLa, K., YARLAGADDA, V., GoIrl, A., AND GRAMA, A. Ubis:
Utilization-aware cluster scheduling. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS) (May 2018), pp. 358-367.
KaraNasos, K., Rao, S., CuriNo, C., DoucLas, C., CHALIPARAMBIL, K.,
FumMaRroLA, G. M., HEDDAYA, S., RAMAKRISHNAN, R., AND SAKALANAGA,
S. Mercury: Hybrid centralized and distributed scheduling in large
shared clusters. In USENIX ATC (2015).

Kivity, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND LiGUORI, A. KVM: The
Linux virtual machine monitor. In Proceedings of the Linux symposium
(2007), vol. 1, pp. 225-230.

KiEIN, C., MaGaIo, M., ArzEN, K.-E., AND HERNANDEZ-RODRIGUEZ, F.
Brownout: Building more robust cloud applications. In Proceedings of
the 36th International Conference on Software Engineering (2014), ACM,
pp. 700-711.

L1, M., ANDERSEN, D. G, Park, J. W., Smo1A4, A. J., AHMED, A., JosI-
FOVSKI, V., LONG, J., SHEKITA, E. J., AND Su, B.-Y. Scaling distributed
machine learning with the parameter server. In OSDI (2014), vol. 14,
pp. 583-598.

Liu, H,, JiN, H,, L1ao, X., DENG, W., HE, B., AND Xu, C.-z. Hotplug or
ballooning: A comparative study on dynamic memory management
techniques for virtual machines. IEEE Transactions on Parallel and
Distributed Systems 26, 5 (2015), 1350—-1363.

LoRripo-BOTRAN, T., MIGUEL-ALONSO, J., AND LOZANO, J. A. A review of
auto-scaling techniques for elastic applications in cloud environments.
Journal of Grid Computing 12, 4 (2014), 559-592.

MARATHE, A., HARRIS, R., LOWENTHAL, D., DE SupPinskI, B. R., ROUN-
TREE, B., AND ScHULZ, M. Exploiting redundancy for cost-effective,
time-constrained execution of HPC applications on Amazon EC2. In
HPDC (2014), ACM.

MENG, X., BRADLEY,]., YavUZ, B., SPARKS, E., VENKATARAMAN, S., L1U,
D., FREEMAN, J., Tsar, D., AMDE, M., OWEN, S., ET AL. Mllib: Machine
learning in apache spark. The Journal of Machine Learning Research
17,1 (2016), 1235-1241.

Misra, P. A., Gorry, I, KACE, J., AND BIaNCHINI, R. Scaling distributed
file systems in resource-harvesting datacenters. In 2017 USENIX Annual
Technical Conference (2017), USENIX Association, pp. 799-811.
Mori1tz, P., NISHIHARA, R., STOICA, I, AND JORDAN, M. I. Sparknet:
Training deep networks in spark. ICLR (2016).

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

NGuYEN, H., SHEN, Z., Gu, X., SUBBIAH, S., AND WILKES, J. Agile: Elastic
distributed resource scaling for infrastructure-as-a-service. In Pro-
ceedings of the 10th International Conference on Autonomic Computing
(ICAC 13) (2013), pp. 69-82.

Ni1TU, V., TEABE, B, FoPa, L., TCHANA, A., AND HAGIMONT, D. StopGap:
Elastic VMs to enhance server consolidation. Software: Practice and
Experience 47, 11 (2017), 1501-1519.

OUYANG,]., AND LANGE, J. R. Preemptable ticket spinlocks: improving
consolidated performance in the cloud. In ACM SIGPLAN Notices
(2013), vol. 48, ACM, pp. 191-200.

PANIGRAHY, R., TALWAR, K., UYEDA, L., AND WIEDER, U. Heuristics for
vector bin packing. research. microsoft. com (2011).

Rosa, A, CHEN, L. Y., AND BINDER, W. Understanding the dark side
of big data clusters: An analysis beyond failures. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN)) (2015), IEEE, pp. 207-218.

SaLoMIE, T.-L, ALoNso, G., RoscoE, T., AND ELPHINSTONE, K. Applica-
tion level ballooning for efficient server consolidation. In Proceedings
of the 8th ACM European Conference on Computer Systems (2013), ACM,
pp. 337-350.

SHAHRAD, M., KLEIN, C., ZHENG, L., CHIANG, M., ELMROTH, E., AND
WENTZLAF, D. Incentivizing self-capping to increase cloud utiliza-
tion. In ACM Symposium on Cloud Computing 2017 (SoCC’17) (2017),
Association for Computing Machinery (ACM).

SHARMA, P., Guo, T., HE, X., IRWIN, D., AND SHENOY, P. Flint: Batch-
interactive data-intensive processing on transient servers. In EuroSys
(2016), ACM.

SHARMA, P., IRWIN, D., AND SHENOY, P. Portfolio-driven resource
management for transient cloud servers. In Proceedings of ACM Mea-
surement and Analysis of Computer Systems (June 2017), vol. 1, p. 23.
SHARMA, P., AND KULKARNI, P. Singleton: system-wide page dedupli-
cation in virtual environments. In HPDC (2012), ACM.

SHARMA, P., LEE, S., Guo, T., IRwIN, D., AND SHENOY, P. Spotcheck:
Designing a derivative IaaS cloud on the spot market. In EuroSys
(2015), ACM, p. 16.

SHEN, Z., SUBBIAH, S., Gu, X., AND WILKES,]J. Cloudscale: elastic
resource scaling for multi-tenant cloud systems. In Symposium on
Cloud Computing (2011), ACM.

SINGH, R., SHARMA, P., IRWIN, D., SHENOY, P., AND RAMAKRISHNAN, K.
Here Today, Gone Tomorrow: Exploiting Transient Servers in Data
Centers. IEEE Internet Computing 18, 4 (July/August 2014).
STOCKHAMMER, T. Dynamic adaptive streaming over HTTP: Stan-
dards and design principles. In Proceedings of the second annual ACM
conference on Multimedia systems (2011), ACM, pp. 133-144.
SUBRAMANYA, S., Guo, T.,, SHARMA, P., IRwIN, D., AND SHENOY, P.
SpotOn: A Batch Computing Service for the Spot Market. In SOCC
(August 2015).

TeABE, B, N1TU, V., TcHANA, A., AND HAGIMONT, D. The lock holder
and the lock waiter pre-emption problems: Nip them in the bud using
informed spinlocks (i-spinlock). In European Conference on Computer
Systems (2017), EuroSys *17, ACM, pp. 286-297.

Tomas, L., AND TORDSSON, J. An autonomic approach to risk-aware
data center overbooking. In Transactions on Cloud Computing (2014),
vol. 2, IEEE, pp. 292-305.

URGAONKAR, B., SHENOY, P., AND RoscoE, T. Resource overbooking
and application profiling in shared hosting platforms. SOSP (2002).
VANGA, M., GUJARATI, A., AND BRANDENBURG, B. B. Tableau: A high-
throughput and predictable vm scheduler for high-density workloads.
In Proceedings of the Thirteenth EuroSys Conference (New York, NY,
USA, 2018), EuroSys "18, ACM, pp. 28:1-28:16.

VERMA, A., PEDROSA, L., KoruroLu, M., OPPENHEIMER, D., TUNE, E.,
AND WILKES, J. Large-scale cluster management at google with borg.
In EuroSys (2015), ACM.

Resource Deflation

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87

—

(88]

(89]

[90]

WALDSPURGER, C. A. Memory resource management in VMware ESX
Server. OSDI (2002), 181-194.

WANG, C., URGAONKAR, B., GuprTa, A., KEsIDIS, G., AND LIANG, Q.
Exploiting spot and burstable instances for improving the cost-efficacy
of in-memory caches on the public cloud. In European Conference on
Computer Systems (2017), EuroSys *17, ACM, pp. 620-634.

WANG, Y., Q1u, X,, DING, D., ZHANG, Y., WANG, Y., J1A, X, WAN, Y., LI,
Z., WANG, J., HUANG, S., ET AL. BigDL: A distributed deep learning
framework for big data. arXiv preprint arXiv:1804.05839 (2018).

XiN, R. S., GoNzALEZ, J. E., FRANKLIN, M.], AND STOICA, I. Graphx:
A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems (2013),
ACM, p. 2.

Yan, Y, Gao, Y., CHEN, Y., Guo, Z., CHEN, B., AND MosciBroDA, T. TR-
Spark: Transient Computing for Big Data Analytics. In SoCC (October
2016), ACM.

YANG, T., BERGER, E. D., KarLAN, S. F., AND Moss, J. E. B. CRAMM: Vir-
tual memory support for garbage-collected applications. In Proceedings
of the 7th symposium on Operating systems design and implementation
(2006), USENIX Association, pp. 103-116.

YANG, Y., KM, G.-W,, SonG, W. W, LEE, Y., CHUNG, A., QIAN, Z., CHO,
B., AND CHUN, B.-G. Pado: A data processing engine for harnessing
transient resources in datacenters. In European Conference on Computer
Systems (2017), EuroSys 17, ACM, pp. 575-588.

ZAHARIA, M., CHOWDHURY, M., Das, T., DAVE, A., M4,]J., McCAULEY,
M., FRANKLIN, M. J., SHENKER, S., AND STOICA, I. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing.
In NSDI (2012).

ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J., SHENKER, S., AND
Stoica, I. Spark: cluster computing with working sets. HotCloud
(2010).

ZHANG, D., EHsAN, M., FERDMAN, M., AND S1ON, R. Dimmer: A case
for turning off dimms in clouds. In Symposium on Cloud Computing
(2014), ACM, pp. 1-8.

ZHANG, Y., PREKAS, G., FUMAROLA, G. M., FONTOURA, M., GOIRI, 1., AND
BiancHINT, R. History-based harvesting of spare cycles and storage
in large-scale datacenters. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16) (GA, 2016), USENIX
Association, pp. 755-770.

EuroSys 19, March 25-28, 2019, Dresden, Germany

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Transient Computing
	2.2 Resource Reclamation in Clusters
	2.3 Resource Overbooking and Elasticity

	3 Multi-level Resource Reclamation
	3.1 Why multi-level reclamation?
	3.2 Cascade Deflation

	4 Application Deflation Policies
	4.1 Spark

	5 Implementing Deflation-based Cluster Management
	6 Experimental Evaluation
	6.1 Application Performance with Deflation
	6.2 Distributed Processing On Deflatable VMs
	6.3 Cluster-wide Behavior

	7 Related Work
	8 Discussion and Future Work
	9 Conclusion
	References

