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Abstract

The human gut microbiome develops over early childhood and aids in food digestion and
immunomodulation, but the mechanisms driving its development remain elusive. Here we use data
curated from literature and online repositories to examine trait-based patterns of gut microbiome
succession in 56 infants over their first three years of life. We also develop a new phylogeny-based
approach of inferring trait values that can extend readily to other microbial systems and questions. Our
analysis suggests that infant gut succession begins with a functionally variable cohort of taxa, adept at

proliferating rapidly within hosts, which gradually matures into a more functionally uniform cohort of

taxa adapted to thrive in the anoxic gut and disperse between anoxic patches as oxygen-tolerant spores.

Trait-based composition stabilizes after the first year, while taxonomic turnover continues unabated,
suggesting functional redundancy. Trait-based approaches powerfully complement taxonomy-based

approaches to understand the mechanisms of microbial community assembly and succession.

Introduction
Classical ecological theory posits that successional patterns arise from the combined influence of

dispersal, species interactions, and the environment?

, and this general framework extends readily to
gut communities®. Before a microbe can inhabit the colon, the most distal and speciose part of the
gastrointestinal tract, it must first be swallowed by the host and survive the acidic conditions of the
stomach and small intestine (i.e., it must disperse). A species will persist in the colon only if it can
acquire enough resources to reproduce (i.e., it must be competitive) or arrive there in high enough
numbers to sustain a population®. Microbial colonists may then alter the environment, e.g., by depleting

intestinal oxygen® or providing opportunities for cross-feeding®, favoring taxa with different phenotypes

as succession proceeds.
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Yet successional patterns in the gut may differ from classical successional expectations due to
the active influence of the host and the host mother”®, Early colonists are passed directly from the
mother during or even before birth®, and therefore may lack characteristics that would otherwise
facilitate early arrival, e.g., via active dispersal, and instead have characteristics selected for in the
mother’s gut or vaginal environment. Following birth, mothers supply bacterial growth factors in
breastmilk and continue to introduce new taxa through physical contact!’. Meanwhile, the maturing
infant is beginning to suppress undesirable taxa through immune response’!, and actively cultivate
commensal taxa by providing nitrogen-rich mucus and favorable habitat in the outer mucus layer of the
large intestine!?. Gut community composition is also affected by the introduction of solid food*?, in
particular with the introduction of insoluble fiber?.

Gut community successional patterns will necessarily reflect a combination of dispersal,
microbial species interactions, and host physiology and behavior. A present challenge is to determine
how the relative influence of these drivers changes over time. One approach to disentangling the
mechanisms of community assembly is to examine patterns in trait-based community composition®. A
trait, in the broadest sense, is defined as a measurable organismal characteristic directly or indirectly
linked to fitness or performance®®. As such, observable shifts in the trait-based composition of a
community imply shifts in local environmental conditions favoring different species and/or dispersal

limitation (i.e., when a taxon does not colonize a site because it does not arrive). Despite the success

tl7,18 |19,20'

and proliferation of trait-based approaches to study community assembly in plan , anima and
phytoplankton systems??, they have only rarely been used for bacterial and archaeal systems?%2, This is
due partly to the challenges of identifying ecologically relevant traits for a functionally diverse cohort of
taxa, and partly to a dearth of curated trait data. But thanks to recent advances in high-throughput

molecular techniques, renewed efforts to directly collect phenotypic data?®, and the aggregation of data
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from disparate sources®>?°, trait-based approaches to microbial community dynamics are becoming
more feasible, especially for well-studied systems like the human gut.

Here we examine trait-based successional patterns in a cohort of 56 infants from Finland and
Estonia for which longitudinal microbiome survey data were publicly available?’?%, We develop a unique
approach to inferring microbial trait data, which entails (1) building a phylogeny that contains the taxa
from infant gut samples and 13900 other taxa with formally described type specimens and Latin
binomials?, (2) using the Latin binomials to map trait data curated from literature and online
repositories onto the tips of the phylogeny, and (3) inferring unknown trait values using hidden state
prediction when statistically justified. We then compare taxonomic and trait-based community turnover
in time (i.e., over infant development) and space (i.e., across infants) to gain insight into the
mechanisms driving successional patterns. We show significant trait-based shifts over the first year of
infant development, during which time oxygen-tolerant taxa and flagellated taxa become less abundant,
and slower-growing taxa and sporulating taxa become more abundant. Intriguingly, during this time,
microbiomes become compositionally more similar across infants. Taxonomic turnover continues after
the first year, but is largely redundant with respect to the traits examined. Our results suggest that
succession begins with a functionally variable cohort of early arrivers, adept at proliferating rapidly
within hosts, which gradually matures into a more functionally uniform cohort of taxa able to both
thrive in the anoxic gut environment and disperse between anoxic patches (e.g., guts) as oxygen-

tolerant spores.

Results
Trait-based patterns of succession
We observed consistent taxonomic and trait-based shifts in infant gut microbiomes during the first three

years of infant life (Fig. 1, Fig. 2). Early succession was dominated by Bacteroidaceae and



78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

Bifidobacteriaceae (Fig. 1a,b), whereas late succession was dominated by Lachnospiraceae,
Ruminococcaceae, and (still) Bacteroidaceae (Fig. 1e,f). About three fourths of the operational
taxonomic units (OTUs) in this study, defined using a threshold of 97 percent sequence similarity in the
16S rRNA V4 region, exhibited significant positive or negative trends in abundance over succession
across all infants. The extensive number of significant trends emphasizes the taxonomically predictable
nature of gut microbiome development. Early and late successional specialists differed significantly in
their predicted trait values: late successional specialists were less tolerant of oxygen, were more capable
of sporulation, and had higher temperature optima than early successional specialists (Supplementary
Figure 1).

Community weighted means (CWMs) of several traits trended significantly over the course of
succession (Fig. 2), illustrating the functionally predictable nature of gut microbiome development®. A
CWM is the mean trait value of the OTUs in a community, weighted by their relative abundances.
Ecologically speaking, CWMs characterize the dominant traits of a community, and can be thought of
both in terms of how they reflect system properties (i.e., as response traits) and how they influence
system properties (i.e., as effect traits)®!. For example, oxygen-tolerant taxa (e.g., facultative anaerobes)
present at the onset of succession were rapidly overtaken by obligate anaerobes (Fig. 2i), presumably in
response to a drop in gut oxygen concentration due to increased uptake by epithelial cells*2. Meanwhile,
the mean number of B-vitamin pathways present per cell decreased over time (Fig. 2b), contradicting
our expectation that human hosts would selectively enrich such taxa over the course of succession to
promote the production of these essential nutrients.

Pronounced shifts in two traits potentially related to dispersal ability suggest that dispersal
dynamics may play a key role in shaping successional patterns. First, the initial presence and subsequent
decline of taxa with flagella (Fig. 2h) could mean that the ability to actively disperse over short distances

(i.e., spread within hosts) improves colonization rates during early succession, but that flagella are not as
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advantageous in the mature gut. In support of this, unflagellated strains have been shown to be poorer
colonizers of chickens’ gastrointestinal tracts than flagellated strains®3, and a positive relationship has
been drawn between motility and bacterial transmission*. Second, the increase in sporulating taxa over
time (Fig. 2j, Supplementary Figure 3) may reflect the long-term advantages of being able to disperse
among hosts and/or persist within hosts in a dormant state during stressful conditions®*3>. As succession
proceeds and the gut environment becomes increasingly anoxic, obligate anaerobes gain a competitive
advantage over facultative anaerobes because they do not need to maintain the machinery for
tolerating oxidative stress. However, this advantage comes at the cost of being more vulnerable to
oxidative stress while dispersing through oxic environments to colonize new hosts. Sporulating taxa
circumvent this potential tradeoff by traversing oxic environments as oxygen-tolerant spores, and then
thriving in the gut as obligate anaerobes. The observed increase of sporulating taxa over gut community
development, both in total abundance (Fig. 2j) and OTU richness (Supplementary Figure 3), likely reflects
the steady arrival and successful colonization of these taxa well-adapted for the anoxic gut environment.
The mean number of 16S rRNA gene copies, a genomic trait associated with the ability to quickly
exploit available resources due to higher maximum potential growth rates®, decreased steadily in gut
microbiomes over time (Fig. 2a). A decrease in mean 16S rRNA gene copy number over time is
characteristic of primary succession in microbial systems that are initially rich in resources?, such as a

t3. However, a decrease in mean 16S

vial of sterile nutrient broth placed in an open-air environmen
rRNA gene copy number could also arise if faster-growing taxa thrive on easily-digested milk or formula,
the primary carbon source during early succession, and slower-growing taxa only begin to thrive as the

primary carbon source shifts towards increasingly complex molecules derived from solid food. In either

case, the decrease in mean 16s rRNA gene copy number over time likely reflects a shift from taxa

capable of rapid low-efficiency growth to slower high-efficiency growth over succession?*3,
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Many traits correlated significantly among taxa (Supplementary Figure 2). The strongest positive
correlations were between gene number and genome size, genome size and B-vitamin pathway number,
and sporulation and Gram-positive status, while the strongest negative correlations were between
optimal growth temperature and oxygen tolerance, Gram-positive status and B-vitamin pathway
number, and GC content and 16S rRNA gene copy number. The remaining Pearson correlation
coefficients were less than 0.6 or greater than -0.6. On one hand, correlations among traits are
noteworthy because they may be independent indicators of a taxon’s position on the same ecological
tradeoff axis (i.e., they may constitute a trait syndrome). For example, the negative correlation observed
between sporulation score and oxygen tolerance represent two approaches for dealing with oxidative
stress, either by becoming metabolically dormant until oxidative stress is relaxed, or by carrying the
cellular machinery to tolerate it. On the other hand, correlations among traits may simply be artifacts of
arbitrary genomic linkage, and not evidence of evolutionary adaptation. As such, the mechanisms we
invoke as possible explanations for the trait-based patterns observed in this study are merely
hypotheses which hopefully spur further experimental work.

To explore how early exposure to different taxa could affect the trajectory of gut succession, we
compared trait-based successional patterns of infants delivered vaginally and by C-section (Fig. 3). We
reasoned that any consistent community differences between the two groups of infants would likely
arise due to differences in early colonization, i.e., because infants born vaginally were initially colonized
by taxa from the mother during delivery, and infants born by C-section were initially colonized by a
different cohort of taxa arriving from the ambient environment (e.g., the mother’s skin, hospital
surfaces). Notable trait-based differences between the microbiomes in C-section infants, relative to
those in vaginally delivered infants, were initially elevated numbers of Gram-positive taxa (Fig. 3f), and
prolonged persistence of oxygen-tolerant taxa (Fig. 3i). There were also initially elevated mean 16S rRNA

gene copy numbers (Fig. 3a) and initially higher prevalence of flagellated taxa (Fig. 3h) in C-section
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infants, relative to vaginally born infants, but these differences were not statistically significant after
accounting for multiple comparisons. At minimum, these results suggest that taxa encountered by
infants during vaginal delivery are functionally distinct from those encountered by infants after C-section
delivery in the hospital environment. More interestingly, however, they suggest that gut colonization
patterns differ depending on the composition of the initial pool of colonizing taxa. Significant trait-based
compositional differences by birth mode persisted for up to two years (Fig 3i), corroborating previous
research showing that differences in early colonization can have lasting effects on community

3949 3 phenomenon also termed priority effects*#2. On the other hand, sustained trait-

composition
based differences between infants by delivery mode are surprising given recent work which found
strong selective forces to quickly discourage the growth of immigrant taxa from the mother’s skin or
birth canal**; hence, our findings suggest that the persistent differences by birth mode may result from a
lack of arrival (i.e., dispersal limitation) of gut-adapted taxa from the mother, rather than qualitatively
different community filters among infants.

Exposure to antibiotics was associated with consistent trait-based shifts in gut microbiome
composition (Fig. 3). Specifically, infants exposed to repeated antibiotic treatments had gut taxa that
were on average less likely to be Gram-positive (Fig. 3f), smaller (Fig. 3g), and less capable of sporulation
(Fig. 3j) than infants exposed to no antibiotics. Decreases in the relative abundances of Gram-positive
taxa over time is arguably expected given that Gram-positive taxa lack the protective outer membrane
that make Gram-negative bacteria generally more resistant to antibiotics**. The drop in mean
sporulation score is less expected, given that spores are generally very resistant to antibiotics.
However, spore formation is far from the only mechanism of antibiotic tolerance in Bacteria, and other
strategies may be more effective for survival in the gut environment. For instance, antibiotic treatments

usually result in decreases in the relative abundances of spore-forming taxa in the class Clostridia, and

increases in the relative abundances of non-spore-forming taxa in the family Enterobacteriaceae3?. More
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generally, consistent with prior work®, the persistent differences in trait-based community composition
between infants that underwent heavy antibiotic treatments and those that did not suggests that these
disturbances can exert long-term effects on community structure and function.

Trait variances within infant gut communities decreased over time in seven traits, and increased
over time only in three traits (Supplementary Figure 4). The overall decrease in trait-based variance over
time indicates that individuals of the gut community became more functionally homogeneous as the
infants matured, perhaps due to increasingly strict environmental filtering processes*® and/or

competitive exclusion of poorly adapted taxa®’.

Comparing taxonomic and trait-based successional patterns

To evaluate the degree to which taxonomic changes aligned with trait-based changes, we compared
taxonomic and trait-based turnover over time within infants, both in terms of short-term compositional
variability (measured as the dissimilarity between subsequent samples) and directional turnover
(measured as the dissimilarity between each sample and the final sample collected). Compositional
variability was higher in the first year of development, both in terms of OTUs (Fig. 4a) and traits (Fig. 4c),
than in the second or third years of development. A decrease in compositional variability over time is a
classical feature of many ecological successional systems*®. To evaluate whether trait-based
compositional variability was higher or lower than expected by chance, given the magnitudes of
taxonomic variability observed, we compared observed patterns to predictions from null model
simulations for which trait values were randomly shuffled among taxa and trait-based compositional
variability was re-calculated (see Methods). In other words, we calculated what trait-based
compositional variability would look like if the traits in our study were completely decoupled from taxon

performance. Differences between observed and null predictions were neither large nor significant (Fig.
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4c), suggesting that the traits in our study had little influence on compositional variability over
succession.

An analysis of directional turnover over succession revealed that infant gut communities
matured and stabilized faster in their trait-based compositions than in their OTU-based compositions.
Specifically, OTU-based directional turnover was relatively steady across all three years of study (Fig.
4b), whereas trait-based directional turnover was high only in the first year (Fig. 4d) before dropping to
nearly-baseline levels of trait-based compositional variability (Fig 4c). Trait-based directional turnover
significantly exceeded null model predictions of trait-agnostic turnover (Fig. 4d), suggesting that infant
gut microbiomes stabilize (i.e., cease to exhibit directional turnover) in terms of traits and their
associated functions sooner than they stabilize in terms of OTUs, aligning with previous metagenomic
work®. The fact that OTU-based directional turnover was steady over all three years of infant
development despite early convergence in trait-based community composition indicates that late-stage
OTU-based turnover was of OTUs that were functionally redundant, at least with respect to the traits
examined in this study. Functionally redundant turnover could arise due to variable immigration rates
(i.e., if different functionally redundant taxa immigrated into the gut at variable rates over time), or due
to ecological drift (i.e., changes in the relative abundances of taxa through stochastic birth/death
events). With respect to the latter: even though the gut community has a large number of individuals,
which, all else being equal, makes it less susceptible to ecological drift**, many of its constituent taxa are
rare and therefore still vulnerable to stochastic variation in their relative population sizes over time.
Future work should quantify immigration rates, and consider other traits as potential drivers of late-
stage successional community turnover, such as those relating to metabolism of specific dietary

compounds®’, cross-feeding®, or phage-host interactions™.



219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

Compositional differences across microbiomes

Surprisingly, gut community compositions became more similar (i.e., converged) across infants as they
aged (Fig. 5). This ran counter to our expectations that gut community compositions would diverge as
infants shifted from subsisting on milk and/or formula (i.e., simple substrates with low resource
variability expected among hosts) to solid foods (i.e., complex substrates with higher resource variability
expected among hosts), and as interactions between infants and their idiosyncratic home environments
accumulated over time. Compositional convergence across infants over development may reflect a
process whereby a stochastic cohort of initial taxa colonize infants but are gradually replaced, or
supplemented with, taxa better suited for the gut environment. Such initial compositional differences
among infants could be generated by stochastic colonization dynamics, differences in the pool of
potential immigrants from the infants’ mothers, or a combination of the both. Regardless, it is likely that
gut community convergence over infant development is partly due to the delayed arrival of taxa well-
adapted for the gut environment, i.e., dispersal limitation. Future experimental work should quantify
the relative importance of dispersal dynamics and niche availability in driving compositional
convergence over time.

Compositional convergence among infant gut communities was more pronounced and abrupt in
terms of traits (Fig. 5b) than in OTUs (Fig. 5a), which converged only slightly and gradually over time.
Trait-based rates of convergence significantly exceeded null model expectations of trait-agnostic
convergence (Fig. 5b), indicating that trait-based convergence was not random with respect to the traits
examined in this study. This discrepancy between OTU-based and trait-based patterns of convergence
among infants leads to two insights. First, it is another reminder that microbial communities with
different OTU-based compositions do not necessarily differ in their functional potentials 3>°2. Second, it
means that community succession can be more predictable with respect to traits than OTUs. Together,

these results indicate that OTU-based turnover over late succession is largely functionally redundant
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with respect to the traits examined. Functional redundancy among gut microbiome taxa may benefit the
host by improving community resilience in response to disturbance®. Interestingly, mean compositional
differences among infants born by C-section were, on average, greater both in terms of OTU-based and
trait-based dissimilarity (Supplementary Figure 5). Such differences could arise if the taxa to which C-
section infants are initially exposed are more taxonomically and functionally variable than the taxa to

which vaginally delivered infants are exposed.

Discussion

As in the ecological studies of macroorganisms, trait-based analysis of gut microbiome succession offers
insights into the mechanisms of community assembly, such as dispersal limitation and ecological
filtering, and the balance between stochastic and deterministic forces. The stabilization of trait-based
community composition after the first year of development (Fig. 4), and the drop in variance of
community trait values for most traits over time (Supplementary Figure 4), both suggest that succession
is at least partially functionally deterministic, with early dynamics potentially reflecting stochastic
colonization during the birthing process, followed by the gradual colonization and enrichment of a more
functionally uniform cohort of taxa better adapted for the mature gut environment. Rates of OTU-based
directional turnover remained steady over the first three years of succession (Fig. 4b), even though trait-
based directional turnover essentially stabilized after only one year (Fig. 4d), underscoring the fact that
OTU-based compositional changes need not imply changes in trait-based composition®*. However, there
are surely aspects of community assembly that cannot be understood using only the traits used in this
study, and future work should expand the number of traits considered. Moreover, because our study is
observational, we cannot distinguish between an OTU that fails to disperse to a potential host and an

OTU that arrives but fails to establish, so future research should also explore the relationship between
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OTU arrival and detection in fecal samples to better disentangle dispersal limitation and niched-based
differences among taxa.

Comparisons of trait-based patterns between cohorts of infants are an opportunity to
understand the effects of specific events (e.g., delivery mode, antibiotic exposure), and serve as natural
experiments that can reveal how gut communities respond to, and recover from, systematic
disturbances. In our analysis, for example, delivery mode resulted in sustained differences in community
composition, indicating that priority effects can play an important role in gut community assembly*'*?, a
result that likely extends to other types of disturbance during early life, such as gastrointestinal illness or
malnutrition. Similarly, repeated antibiotics treatments led to significant differences in trait-based
community composition (Fig. 3), suggesting that gut communities are not infinitely functionally resistant
and/or that tradeoffs exist between antibiotic resistance and other traits®2. Understanding trait-based
differences between other cohorts, such as healthy vs. diseased®, or on and off specific diets®®, could
provide insight into additional factors shaping gut microbiome community assembly. For example, the
unhealthy, dysbiotic gut may have a higher prevalence of microaerobic and biofilm-forming species®’, a
difference that could be detected using trait-based analyses. Trait-based approaches, which link
organismal structures to ecological functions, are poised to advance our mechanistic understanding of

the gut microbiome, and their usefulness will only increase as we improve our knowledge of how traits

mediate microbial interactions and as we increase the depth and breadth of microbial trait databases.

Methods

Infant microbiome sampling and sequence processing

Our foremost aim in this study was to characterize general patterns of gut primary succession that hold
true regardless of host-related differences. As such, unless otherwise noted, we include all infants in our

analyses, regardless of delivery mode or other host differences specific to each included study.
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Longitudinal infant gut microbiome data were compiled from two studies from the DIABIMMUNE study

group (https://pubs.broadinstitute.org/diabimmune), one focused on the effects of antibiotics on gut

community development?®, and the other focused on the effects of type-1 diabetes on gut community
development?. In the antibiotics study, infants either had nine or more antibiotic on gut community
development courses, or no antibiotic courses?. In the type-1 diabetes study, infants tested positive for
HLA DR-DQ alleles conferring risk of type-1 diabetes; of the infants which met our sampling criteria (see
below), three developed type-1 diabetes during the sampling period?’.

Stool samples of infants were collected by participants’ parents and stored in their house
freezers until the next scheduled visit to the local study center. Samples were then shipped on dry ice to
the DIABIMMUNE Core Laboratory, where they were stored at -80°C until being sent to the Broad
Institute for DNA extraction and 16S rRNA amplicon sequencing. Sequencing was performed on the
[llumina HiSeq 2500 platform using the 515F and 806R primers. Of 74 infants across the two studies,
only those with at least 12 samples and those which extended more than 30 months were used in this
study, yielding 56 infants with 12 - 36 sampling points (mean = 26.45; median = 27) taken at semi-
regular intervals over the first 3 years of infant life (Supplementary Figure 6). All subjects were from
Finland, except one from Estonia.

Infants varied in their modes of delivery and antibiotic histories, providing an opportunity to
explore the potential effects of these natural experiments on trait-based gut community composition.
To this end, infants were divided into three groups: 1) High antibiotic exposure (N = 18), if they
underwent at least 50 days of antibiotic treatment and were delivered vaginally, 2) C-section delivery (N
= 6), if they were delivered by C-section and underwent two or fewer rounds of antibiotics, and 3) a
control group that was delivered vaginally and received no antibiotic treatments (N = 18). In some
instances, antibiotic treatment durations were not reported, in which case we assumed seven days per

treatment. Twelve types of antibiotics were administered for a variety of ailments, with the most
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common being amoxicillin, trimethoprim and sulfadiazine aimed at treating acute ear infections. Infant

metadata, drawn from the two studies from which sequence data for this study are drawn?”-%

, s
available in Supplementary Data 1.

Sequence processing was done using USEARCH version 10.0.240°%. Raw sequencing data were

downloaded from the DIABIMMUNE website https://pubs.broadinstitute.org/diabimmune/. Chimeras

and reads flagged with more than one error were excluded, and the remaining reads were truncated to
250 bp, the expected overlap when using 515F and 806R primers. Reads were clustered into operational
taxonomic units (OTUs) at 97 percent sequence identity using the UPARSE-OTU algorithm
(Supplementary Data 2). Representative sequences from each OTU were mapped to the SILVA v123
database® to determine potential taxonomic identities (Supplementary Data 3). To avoid bias in
sampling effort, samples were rarefied to 5000 sequences, and seven samples with fewer than 5000

sequences were removed.

Assembling trait data
We compiled data on 16 genomic, physiological, and life history traits of bacteria from public databases
and individual studies (Table 1, Supplementary Data 4). All trait data were associated with taxa with full
Latin binomials (i.e., Genus and Species labels) that appeared either in the SILVA-derived taxonomy file
for the combined gut community samples or in the curated taxonomy file from the 132 release of the
Living Tree Project?. Altogether, these amounted to 57,543 collected trait data spread across 10,906
taxa. When a taxon had more than one trait value, the mean or mode was used, depending on whether
the trait was quantified continuously or discretely.

Descriptions and data sources for each trait are listed briefly in Table 1, but here we elaborate
with a few additional details: 1) The numbers of B-vitamin synthesis pathways in the genome were

drawn from ref. 60 and are based on genome annotations from the pubSEED platform®. 2) In some
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cases, optimal temperature was calculated as the mean of lower and upper temperature ranges,
consistent with ref. 26. 3) IgA binding affinity refers to the degree that immunoglobulin A bound to
specific bacterial taxa, and was quantified using an IgA coating index calculated in ref. 62 using flow-
cytometry-based bacterial cell sorting and 16S rRNA sequencing to characterize the coating load of IgA
on specific taxa from fecal samples in a murine model. 4) Sporulation score indicates the tendency of
taxa to sporulate, and was calculated in ref. 24 as a continuous score ranging from zero to one that
depended on a combination of targeted phenotypic culturing and whole-genome sequencing from stool
samples. When possible, we used sporulation scores from ref. 24. When sporulation scores from ref. 24
were unavailable for a given Latin binomial, we drew on sporulation data from other repositories (Table
1), which were generally binary, either noting the presence or absence of spores; when spores were
present, taxa were given sporulation scores of 0.549, equal to the median sporulation score of taxa with
sporulation scores greater than zero in ref. 24; when spores were not observed, taxa were given

sporulation scores of zero.

Predicting unknown trait data

We estimated unknown phenotypes and genotypes using hidden state prediction methods based on
phylogenetic inference (Supplementary Data 5). Specifically, we generated a phylogenetic tree with the
3,311 OTUs from our USEARCH pipeline (before any taxa were lost due to rarefying) and the 13,900
OTUs from the 132 release of the Living Tree Project (LTP)?® (Supplementary Figure 7; Supplementary
Data 6). The topology of the tree reflects percent sequence similarity among taxa in the 16S rRNA V4
region, and was generated using agglomerative clustering of a distance matrix based on the U-sort
heuristic®®. Because LTP representative sequences were of the entire 16S rRNA gene (i.e., the ribosomal
small subunit), they were truncated to the 250 bp of the V4 region using 515F and 806R primers before

generating the distance matrix. Trait data were then mapped onto the tips of the phylogenetic tree with
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Latin binomials. The LTP database was uniquely well-suited to interface with literature-derived trait data
because each sequence represents a type strain with Genus and Species annotations drawn from the
literature, not inferred phylogenetically.

Missing trait values were estimated using three hidden state prediction algorithms: independent
contrasts, subtree averaging, and weighted squared-change parsimony, each calculated using the R
package Castor version 1.3.4%. The three methods have different strengths and weaknesses®*%4, but
their predictions correlated strongly (Supplementary Table 1), lending confidence to our results. We
ultimately used weighted square-change parsimony for our analysis, which recursively calculates locally
parsimonious states for each node based on its descending subtree, until reaching a parsimonious state
estimate for the tree root®. Because all trait values were either numeric or converted to numeric (e.g.,
Gram-negative = 0 and Gram-positive = 1), state predictions for discrete traits could be fractional (e.g., a
Gram-positive score of 0.5), reflecting their probabilistic uncertainty.

Methods of hidden state prediction offer estimates for all taxa with hidden states, even when
there is not sufficient confidence to warrant estimation. To mitigate this, we examined how trait
dissimilarity varied with increasing phylogenetic distance, and only used predictions when there were
closely-related taxa with known trait values (refer to Supplementary Figure 8 for a graphical depiction of
the approach. Specifically, for each trait, the phylogenetic tree was pruned such that only OTUs (i.e.,
tree tips) that could be linked to direct trait observations remained. Next, differences in trait values and
phylogenetic distance (i.e., percent 16S rRNA V4 sequence similarity) were calculated for all OTU pairs.
In some cases, the number of OTU pairs was prohibitively large, in which cases only 10,000 pairs were
randomly selected at each 0.005 increment of phylogenetic distance. Five generic models were then
used to predict trait differences, |y]|, as a function of phylogenetic distance, x, and the best fitting model

of trait evolution was selected by AIC. The models included: (1) Null: |y| ~ 1; (2) Linear regression: |y| ~

x; (3) Logarithmic regression: |y| ~ log(x); (4) Asymptotic regression: |y| ~ a(1 — e(‘eb")), where a



386 and b were determined using a self-starting nonlinear least squares approach, and the model fit was

387  constrained to pass through the origin; and (5) Logistic regression: |y| ~ %, where a, b, and ¢

1+e* ¢

388  were determined using a self-starting nonlinear least squares approach. Null models provided the best
389 fit for aggregation score, IgA binding affinity, pH optimum, and salt optimum, indicating that for these
390 traits trait data should not be estimated at any phylogenetic distance. For the remaining 12 traits, trait
391 predictions were used only when taxa associated with direct trait observations occurred within trait-
392 specific thresholds of phylogenetic distance; we defined these thresholds as the points at which model
393 predictions rose to 90 percent of null expectations (Table 2, Supplementary Figure 8). Null expectations
394  equaled the mean trait-based differences of all OTU pairs with more than 0.1 phylogenetic distance
395 between them, for each trait. Overall, for the traits that were amenable to hidden state prediction, this
396  approach yielded trait predictions for 78.7 percent (16S rRNA gene copy number) to 99.9 percent

397 (Temperature optimum) of sequences used in this study (Supplementary Figure 9). We assessed

398 statistical independence among traits predictions using Pearson correlation coefficients; p-values were
399 adjusted for multiple comparisons using the Benjamini-Hochberg procedure.

400

401 Trait-based successional patterns within and across infants

402 Trait-based successional patterns were evaluated at both the OTU-level and the community-
403 level (i.e., on the level of individual samples). For the OTU-level analysis, OTUs were assigned one of
404  three successional stages based on results of linear models of OTU abundances over time across all

405 infants: early successional OTUs were defined as those with statistically significant negative trends in
406  abundance over time (p < 0.05, S < 0); late successional OTUs were defined as those with positive trends
407 in abundance over time (p < 0.05, 8 > 0); otherwise, taxa were combined into a single category which

408 included OTUs with sporadic, unvarying, or hump-shaped patterns of abundance over time. Statistical
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differences in the trait values of OTUs in the three groups were evaluated with Welch t-tests; p-values
were adjusted for multiple comparisons using the Benjamini-Hochberg procedure.

Trait-based differences at the community level were quantified using CWMs. A CWM is the
mean trait value of the species or OTUs in a community, weighted by their abundances. Here, a CWM is
formally equal to Zle p; X;, where p; is the abundance of OTU i (i = 1,2,... S), and x; is the trait value
for OTU i. We used Welch t-tests to test for differences in CWMs between infants treated with and
without antibiotics, and infants delivered by C-section and vaginally, for each six-month period of infant
development; p-values were adjusted for multiple comparisons using the Benjamini-Hochberg

procedure.

Comparison of taxonomic and trait-based turnover

We quantified differences in microbiome community compositions in two ways. First, we used Bray-
Curtis dissimilarity to quantify differences in the OTU-based compositions of samples®®. Second, we
quantified trait-based differences among communities with multidimensional Euclidean distance®’.
Specifically, Euclidean distance between two communities was calculated by (1) scaling trait values by
their standard deviations to give each trait equal weight, (2) calculating the CWMs of each trait for both
communities, and then (3) using the Pythagorean theorem to determine the distance between the two
communities in n-dimensional trait space.

We examined OTU-based and trait-based community changes over time in two ways. First, to
guantify changes in short-term compositional variability over infant development, we examined
compositional differences of subsequent samples from the same infant, at intervals approximately
between one to three months. Second, to quantify rates of directional turnover over infant
development, we examined compositional differences between samples and the final sample from each

infant. To determine whether trait-based rates of compositional variability and directional turnover
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exceeded those expected by chance, we compared observed rates of trait-based turnover to null models
of trait-agnostic community change. Specifically, we generated 1000 mock versions of our data with trait
values randomly shuffled among OTUs, and recalculating pairwise sample dissimilarities. In other words,
null models reflect what trait-based turnover would have been if organismal traits were unrelated to
performance. We tested for statistical differences between observed and null turnover rates within six-
month periods using Welch t-tests.

To determine if community composition converged or diverged across infants as development
progressed, we divided samples into one-month slices and calculated mean OTU-based and trait-based
distances for all pairwise combinations of samples, excluding pairs of samples from the same infant. To
determine whether observed rates of trait-based compositional convergence/divergence across infants
differed from those expected by chance, we compared our observations to null models of trait-agnostic
community changes over time. Similar to our analysis of trait-based turnover within infants, null models
were performed by randomly shuffling trait values among OTUs and recalculating pairwise sample
dissimilarities. We tested for statistical differences between observed and null model rates of

convergence within six-month periods using Welch t-tests.

Data availability
Raw sequencing data are available online at the NCBI project accession numbers PRINA231909

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRINA231909] and PRINA290381

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRINA290381]. Custom scripts used in the

bioinformatic pipeline and statistical analyses are available at

https:/github.com/Shadelab/microbiome trait succession. All relevant data used in this study are

included as supplementary data files, available at https://figshare.com/projects/Trait-

based succession of the infant gut microbiome/58202.
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Figure 1 | OTU and family-level abundance patterns over succession. Colors reflect successional status;
taxa were categorized as early/late successional if their abundances across all infants trended
significantly negative/positive (p < 0.05) over time based on linear regressions; OTUs that did not trend
significantly over time were grouped into the mid-successional or no-trend category. (a) (c) (e) Percent
total abundances of OTUs of each successional category over time. (b) (d) (f) Proportions of total

abundances of the top five most-abundant families in each successional group.

Figure 2 | Abundance-weighted trait means over succession. Filled red circles show average
abundance-weighted trait means of samples in that month. N is equal to the number of samples in each
month, and ranges from 27 to 59. Vertical red lines show 95 percent confidence intervals. Black

trendlines were fit using generalized additive models.

Figure 3 | Trait-based successional patterns differ by delivery mode and antibiotic history. Abundance-
weighted trait means over infant microbiome succession, grouped by infant delivery mode and
antibiotic history. Filled circles show average abundance-weighted trait means of samples within six-
month periods in each cohort of infants. N is equal to the number of samples in each six-month period;
there were between 25 to 31 total samples from six infants delivered by C-section who received little to
no antibiotics, 66 to 91 total samples from 18 infants who were treated with antibiotics for at least 50
days, and 72 to 93 total samples from 18 control infants that were delivered vaginally and received no
antibiotics. Vertical lines show 95 percent confidence intervals. Asterisks denote significance based on
Welch t-tests performed between each treatment group and the control group (*: adjusted p < 0.05; **:

adjusted p < 0.01; ***: adjusted p < 0.001).
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Figure 4 | Trait-based composition stabilizes earlier than taxonomic composition. Filled circles show
mean pairwise compositional dissimilarities of gut microbiome samples collected from individual infants,
averaged within six-month periods for each infant, and then across infants. OTU-based dissimilarity was
calculated using Bray-Curtis dissimilarity. Trait-based dissimilarity was calculated using multidimensional
Euclidean distance after scaling the distributions of values for each trait to ensure equal contribution. (a)
Mean OTU-based dissimilarity between subsequent samples declines slightly over time. (b) Mean OTU-
based dissimilarity between samples and the final samples taken from each infant decreases steadily
throughout the sampling period until finally reaching baseline levels of between-sample dissimilarity in
the last six-month period, seen in a. (c) Mean trait-based dissimilarity between subsequent samples
appears elevated in the first year, but does not differ significantly from null model predictions that
assumed trait-agnostic turnover. (d) Mean trait-based dissimilarity between samples and the final
samples taken from each infant decreases rapidly and approaches baseline-levels of between-sample
dissimilarity within the first year, seen in c. Moreover, trait-based community composition converges
towards that of the final sample significantly faster than null model expectations, illustrating the non-
random nature of community turnover over succession. In all panels, N equals 56, the number of
infants. Vertical lines show 95 percent confidence intervals. Asterisks denote significance between

observed and null model predictions based on Welch t-tests (*: p < 0.05; **: p < 0.01; ***: p < 0.001).

Figure 5 | Infants’ microbiomes converge compositionally over time. Filled circles show mean
compositional dissimilarities of gut microbiomes across infants within each six-month periods. Mean
dissimilarities were calculated by first taking the mean dissimilarity of all sample pairs, except those
from the same infant, in each of the first 36 months of development (for these means, N ranges from 88
to 3410), and then taking their means within each six month period; hence, for each circle, N equals 6.

OTU-based dissimilarity was calculated using Bray-Curtis dissimilarity. Trait-based dissimilarity was



667

668

669

670

671

672

673

674

675

676

calculated using multidimensional Euclidean distance after scaling the distributions of values for each
trait to ensure equal contribution. (a) OTU-based dissimilarity among infants decreased slightly over
time, indicating a modest convergence in taxonomic composition. (b) Trait-based dissimilarity among
infants fell quickly over the first 18 months and then remained relatively static thereafter, indicating
rapid convergence in trait-based composition during early succession. The magnitude of trait-based
compositional convergence across infants was significantly greater than predicted by a null model
assuming trait-agnostic turnover. Vertical lines show 95 percent confidence intervals. Asterisks denote
significance between observed and null model predictions based on Welch t-tests (*: p < 0.05; **: p <

0.01; ***: p < 0.001).
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Trait Description / Units Sources

Aggregation score 0 (never) to 1 (observed aggregation) BacDive?’; IJSEM?®

B vitamins No. B-vitamin pathways in genome Ref. 60

16S gene copies No. in 16S rRNA gene copies in genome rrnDB®®

GC content Percent guanine and cytosine in genome [JSEM?®; NCBI®®

Gene number No. genes in genome NCBI®®

Genome size Genome size in megabases NCBI®®

Gram-positive 0 (Gram-negative) to 1 (Gram-positive) BacDive?®; GOLD?; IJSEM?®

IgA binding affinity log ([IgA+]/[IgA-] + 1) Ref. 62

Length log (um) BacDive?®; GOLD?; IJSEM?®

Motility 0 (never motile) to 1 (always motile) BacDive?®; GOLD?; IJSEM?®

Oxygen tolerance 0 (obligate anaerobe) to 5 (obligate aerobe)  BacDive?®; GOLD”; IJSEM?®

pH optimum pH GOLD?; IJSEM?®

Salt optimum g per | 1JSEM?®

Sporulation score 0 (never sporulates) to 1 (sporulates easily)  BacDive?®; GOLD”; IJSEM?®;
ref. 24

Temperature optimum  °C 1JSEM?®

Width log (um) BacDive; GOLD"; IJSEM?®

Table 1 | Sources of trait data gathered in this study. IgA: Immunoglobulin A; BacDive: Bacterial
Diversity Metadatabase. IJSEM: International Journal of Systematic and Evolutionary Microbiology.
GOLD: Genomes OnLine Database: Joint Genome Institute; NCBI: National Center for Biotechnology
Information; rrnDB: the ribosomal RNA operon copy number database.
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Trait Max. distance

Aggregation score 0.00
B vitamins 0.06
16S gene copies 0.05
GC content 0.12
Gene number 0.08
Genome size 0.09
Gram-positive 0.10
IgA binding affinity 0.00
Length 0.12
Motility 0.08
Oxygen tolerance 0.11
pH optimum 0.00
Salt optimum 0.00
Sporulation score 0.06
Temperature optimum 0.14
Width 0.12
Table 2 | Maximum phylogenetic

distances used to infer trait values.
Percent sequence dissimilarities (i.e.,
phylogenetic distances) in the 16S rRNA
V4 region at which statistical support for
trait conservatism disappears for each
trait (see Methods and Supplementary
Figure 9).
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Description of Additional Supplementary Files

File name: Supplementary Data 1

Description: Relative abundances of OTUs in infant microbiome samples. Raw 16S rRNA V4 amplicon
sequencing data from infant gut microbiome samples were processed using a USEARCH pipeline and
clustered into operational taxonomic units (OTUs) at 97 percent similarity. Samples with fewer than
5000 initial sequences were excluded, and the remaining samples were rarefied to 5000 sequences,
resulting in a drop from 3311 to 2416 OTUs. The ‘subject’ column can be used with Supplementary Data
2 to find associated subject metadata (e.g., delivery method, antibiotic treatment history), and the ‘t’
column refers to the month of sampling. Available at https://doi.org/10.6084/m9.figshare.7499498.

File name: Supplementary Data 2

Description: Infant metadata. Information for each infant subject includes (1) the approximate total
number of days of antibiotic treatment, assuming the duration of any given antibiotic treatment was
seven days unless otherwise noted, (2) the country of origin, (3) the mode of delivery, (4) the treatment
group assignment used in this study, and (5) references to the prior studies from which the metadata
were drawn. Available at https://doi.org/10.6084/m9.figshare.7499525. Additional subject metadata is
available in Kostic et al. 2016 (ref. 27 in the main text) and Yassour et al. 2016 (ref. 28 in the main text).

File name: Supplementary Data 3

Description: SILVA-based taxonomic identities of infant microbiome OTUs. Representative sequences
of operational taxonomic units (OTUs) from infant microbiome samples were mapped to the SILVA v123
database using USEARCH version 10.0.240 to assign potential taxonomic identities. Data include all 3311
OTUs identified in our pipeline, before any were dropped due to rarefying. Available at
https://doi.org/10.6084/m?9.figshare.7500422.

File name: Supplementary Data 4

Description: Phylogenetic tree of OTUs from this study and the Living Tree Project. A phylogenetic tree
in Newick format with tips for the 3,311 operational taxonomic units (OTUs) identified in the infant gut
microbiome samples from this study identified using a USEARCH pipeline, and the 13,900 OTUs from the
132 release of the Living Tree Project. The topology of the tree reflects percent sequence similarity
among taxa in the 16S rRNA V4 region (refer to Methods). Available at
https://doi.org/10.6084/m9.figshare.7500563.

File name: Supplementary Data 5

Description: Trait data mined from literature and online data repositories. Trait data derived from the
sources listed in Table 1 with Latin binomials that matched either those from the SILVA-based taxonomic
identifications of OTUs found in infant gut microbiome samples, or from type specimens in the 132
release of the Living Tree Project. When observations existed for the same taxon across more than one
data source, means were used. Available at https://doi.org/10.6084/m9.figshare.7501001.

File name: Supplementary Data 6

Description: Trait data used in our analyses. Data included trait values that could be directly associated
to taxa in our study based on matching Latin binomials, and trait value estimates based on hidden state
prediction using weighted square-change parsimony (refer to Methods and Supplementary Figure 8).
Because we converted all trait values to numeric (e.g., Gram-negative = 0 and Gram-positive = 1), state
predictions for initially discrete traits were allowed to be fractional (e.g., a Gram-positive score of 0.5),
reflecting their probabilistic uncertainty. Available at https://doi.org/10.6084/m9.figshare.7501121.
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