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Abstract 8 

The human gut microbiome develops over early childhood and aids in food digestion and 9 

immunomodulation, but the mechanisms driving its development remain elusive. Here we use data 10 

curated from literature and online repositories to examine trait-based patterns of gut microbiome 11 

succession in 56 infants over their first three years of life. We also develop a new phylogeny-based 12 

approach of inferring trait values that can extend readily to other microbial systems and questions. Our 13 

analysis suggests that infant gut succession begins with a functionally variable cohort of taxa, adept at 14 

proliferating rapidly within hosts, which gradually matures into a more functionally uniform cohort of 15 

taxa adapted to thrive in the anoxic gut and disperse between anoxic patches as oxygen-tolerant spores. 16 

Trait-based composition stabilizes after the first year, while taxonomic turnover continues unabated, 17 

suggesting functional redundancy. Trait-based approaches powerfully complement taxonomy-based 18 

approaches to understand the mechanisms of microbial community assembly and succession.  19 

 20 

Introduction 21 

Classical ecological theory posits that successional patterns arise from the combined influence of 22 

dispersal, species interactions, and the environment1,2, and this general framework extends readily to 23 

gut communities3. Before a microbe can inhabit the colon, the most distal and speciose part of the 24 

gastrointestinal tract, it must first be swallowed by the host and survive the acidic conditions of the 25 

stomach and small intestine (i.e., it must disperse). A species will persist in the colon only if it can 26 

acquire enough resources to reproduce (i.e., it must be competitive) or arrive there in high enough 27 

numbers to sustain a population4. Microbial colonists may then alter the environment, e.g., by depleting 28 

intestinal oxygen5 or providing opportunities for cross-feeding6, favoring taxa with different phenotypes 29 

as succession proceeds. 30 



Yet successional patterns in the gut may differ from classical successional expectations due to 31 

the active influence of the host and the host mother7,8. Early colonists are passed directly from the 32 

mother during or even before birth9, and therefore may lack characteristics that would otherwise 33 

facilitate early arrival, e.g., via active dispersal, and instead have characteristics selected for in the 34 

mother’s gut or vaginal environment. Following birth, mothers supply bacterial growth factors in 35 

breastmilk and continue to introduce new taxa through physical contact10. Meanwhile, the maturing 36 

infant is beginning to suppress undesirable taxa through immune response11, and actively cultivate 37 

commensal taxa by providing nitrogen-rich mucus and favorable habitat in the outer mucus layer of the 38 

large intestine12. Gut community composition is also affected by the introduction of solid food13, in 39 

particular with the introduction of insoluble fiber14. 40 

Gut community successional patterns will necessarily reflect a combination of dispersal, 41 

microbial species interactions, and host physiology and behavior. A present challenge is to determine 42 

how the relative influence of these drivers changes over time. One approach to disentangling the 43 

mechanisms of community assembly is to examine patterns in trait-based community composition15. A 44 

trait, in the broadest sense, is defined as a measurable organismal characteristic directly or indirectly 45 

linked to fitness or performance16. As such, observable shifts in the trait-based composition of a 46 

community imply shifts in local environmental conditions favoring different species and/or dispersal 47 

limitation (i.e., when a taxon does not colonize a site because it does not arrive). Despite the success 48 

and proliferation of trait-based approaches to study community assembly in plant17,18, animal19,20, and 49 

phytoplankton systems21, they have only rarely been used for bacterial and archaeal systems22,23. This is 50 

due partly to the challenges of identifying ecologically relevant traits for a functionally diverse cohort of 51 

taxa, and partly to a dearth of curated trait data. But thanks to recent advances in high-throughput 52 

molecular techniques, renewed efforts to directly collect phenotypic data24, and the aggregation of data 53 



from disparate sources25,26, trait-based approaches to microbial community dynamics are becoming 54 

more feasible, especially for well-studied systems like the human gut. 55 

Here we examine trait-based successional patterns in a cohort of 56 infants from Finland and 56 

Estonia for which longitudinal microbiome survey data were publicly available27,28.  We develop a unique 57 

approach to inferring microbial trait data, which entails (1) building a phylogeny that contains the taxa 58 

from infant gut samples and 13900 other taxa with formally described type specimens and Latin 59 

binomials29, (2) using the Latin binomials to map trait data curated from literature and online 60 

repositories onto the tips of the phylogeny, and (3) inferring unknown trait values using hidden state 61 

prediction when statistically justified. We then compare taxonomic and trait-based community turnover 62 

in time (i.e., over infant development) and space (i.e., across infants) to gain insight into the 63 

mechanisms driving successional patterns. We show significant trait-based shifts over the first year of 64 

infant development, during which time oxygen-tolerant taxa and flagellated taxa become less abundant, 65 

and slower-growing taxa and sporulating taxa become more abundant. Intriguingly, during this time, 66 

microbiomes become compositionally more similar across infants. Taxonomic turnover continues after 67 

the first year, but is largely redundant with respect to the traits examined. Our results suggest that 68 

succession begins with a functionally variable cohort of early arrivers, adept at proliferating rapidly 69 

within hosts, which gradually matures into a more functionally uniform cohort of taxa able to both 70 

thrive in the anoxic gut environment and disperse between anoxic patches (e.g., guts) as oxygen-71 

tolerant spores. 72 

 73 

Results 74 

Trait-based patterns of succession 75 

We observed consistent taxonomic and trait-based shifts in infant gut microbiomes during the first three 76 

years of infant life (Fig. 1, Fig. 2). Early succession was dominated by Bacteroidaceae and 77 



Bifidobacteriaceae (Fig. 1a,b), whereas late succession was dominated by Lachnospiraceae, 78 

Ruminococcaceae, and (still) Bacteroidaceae (Fig. 1e,f). About three fourths of the operational 79 

taxonomic units (OTUs) in this study, defined using a threshold of 97 percent sequence similarity in the 80 

16S rRNA V4 region, exhibited significant positive or negative trends in abundance over succession 81 

across all infants. The extensive number of significant trends emphasizes the taxonomically predictable 82 

nature of gut microbiome development. Early and late successional specialists differed significantly in 83 

their predicted trait values: late successional specialists were less tolerant of oxygen, were more capable 84 

of sporulation, and had higher temperature optima than early successional specialists (Supplementary 85 

Figure 1).  86 

Community weighted means (CWMs) of several traits trended significantly over the course of 87 

succession (Fig. 2), illustrating the functionally predictable nature of gut microbiome development30. A 88 

CWM is the mean trait value of the OTUs in a community, weighted by their relative abundances. 89 

Ecologically speaking, CWMs characterize the dominant traits of a community, and can be thought of 90 

both in terms of how they reflect system properties (i.e., as response traits) and how they influence 91 

system properties (i.e., as effect traits)31. For example, oxygen-tolerant taxa (e.g., facultative anaerobes) 92 

present at the onset of succession were rapidly overtaken by obligate anaerobes (Fig. 2i), presumably in 93 

response to a drop in gut oxygen concentration due to increased uptake by epithelial cells32. Meanwhile, 94 

the mean number of B-vitamin pathways present per cell decreased over time (Fig. 2b), contradicting 95 

our expectation that human hosts would selectively enrich such taxa over the course of succession to 96 

promote the production of these essential nutrients. 97 

Pronounced shifts in two traits potentially related to dispersal ability suggest that dispersal 98 

dynamics may play a key role in shaping successional patterns. First, the initial presence and subsequent 99 

decline of taxa with flagella (Fig. 2h) could mean that the ability to actively disperse over short distances 100 

(i.e., spread within hosts) improves colonization rates during early succession, but that flagella are not as 101 



advantageous in the mature gut. In support of this, unflagellated strains have been shown to be poorer 102 

colonizers of chickens’ gastrointestinal tracts than flagellated strains33, and a positive relationship has 103 

been drawn between motility and bacterial transmission34. Second, the increase in sporulating taxa over 104 

time (Fig. 2j, Supplementary Figure 3) may reflect the long-term advantages of being able to disperse 105 

among hosts and/or persist within hosts in a dormant state during stressful conditions24,35. As succession 106 

proceeds and the gut environment becomes increasingly anoxic, obligate anaerobes gain a competitive 107 

advantage over facultative anaerobes because they do not need to maintain the machinery for 108 

tolerating oxidative stress. However, this advantage comes at the cost of being more vulnerable to 109 

oxidative stress while dispersing through oxic environments to colonize new hosts. Sporulating taxa 110 

circumvent this potential tradeoff by traversing oxic environments as oxygen-tolerant spores, and then 111 

thriving in the gut as obligate anaerobes. The observed increase of sporulating taxa over gut community 112 

development, both in total abundance (Fig. 2j) and OTU richness (Supplementary Figure 3), likely reflects 113 

the steady arrival and successful colonization of these taxa well-adapted for the anoxic gut environment. 114 

The mean number of 16S rRNA gene copies, a genomic trait associated with the ability to quickly 115 

exploit available resources due to higher maximum potential growth rates36, decreased steadily in gut 116 

microbiomes over time (Fig. 2a). A decrease in mean 16S rRNA gene copy number over time is 117 

characteristic of primary succession in microbial systems that are initially rich in resources8, such as a 118 

vial of sterile nutrient broth placed in an open-air environment37. However, a decrease in mean 16S 119 

rRNA gene copy number could also arise if faster-growing taxa thrive on easily-digested milk or formula, 120 

the primary carbon source during early succession, and slower-growing taxa only begin to thrive as the 121 

primary carbon source shifts towards increasingly complex molecules derived from solid food. In either 122 

case, the decrease in mean 16s rRNA gene copy number over time likely reflects a shift from taxa 123 

capable of rapid low-efficiency growth to slower high-efficiency growth over succession23,38. 124 



Many traits correlated significantly among taxa (Supplementary Figure 2). The strongest positive 125 

correlations were between gene number and genome size, genome size and B-vitamin pathway number, 126 

and sporulation and Gram-positive status, while the strongest negative correlations were between 127 

optimal growth temperature and oxygen tolerance, Gram-positive status and B-vitamin pathway 128 

number, and GC content and 16S rRNA gene copy number. The remaining Pearson correlation 129 

coefficients were less than 0.6 or greater than -0.6. On one hand, correlations among traits are 130 

noteworthy because they may be independent indicators of a taxon’s position on the same ecological 131 

tradeoff axis (i.e., they may constitute a trait syndrome). For example, the negative correlation observed 132 

between sporulation score and oxygen tolerance represent two approaches for dealing with oxidative 133 

stress, either by becoming metabolically dormant until oxidative stress is relaxed, or by carrying the 134 

cellular machinery to tolerate it. On the other hand, correlations among traits may simply be artifacts of 135 

arbitrary genomic linkage, and not evidence of evolutionary adaptation. As such, the mechanisms we 136 

invoke as possible explanations for the trait-based patterns observed in this study are merely 137 

hypotheses which hopefully spur further experimental work. 138 

To explore how early exposure to different taxa could affect the trajectory of gut succession, we 139 

compared trait-based successional patterns of infants delivered vaginally and by C-section (Fig. 3). We 140 

reasoned that any consistent community differences between the two groups of infants would likely 141 

arise due to differences in early colonization, i.e., because infants born vaginally were initially colonized 142 

by taxa from the mother during delivery, and infants born by C-section were initially colonized by a 143 

different cohort of taxa arriving from the ambient environment (e.g., the mother’s skin, hospital 144 

surfaces). Notable trait-based differences between the microbiomes in C-section infants, relative to 145 

those in vaginally delivered infants, were initially elevated numbers of Gram-positive taxa (Fig. 3f), and 146 

prolonged persistence of oxygen-tolerant taxa (Fig. 3i). There were also initially elevated mean 16S rRNA 147 

gene copy numbers (Fig. 3a) and initially higher prevalence of flagellated taxa (Fig. 3h) in C-section 148 



infants, relative to vaginally born infants, but these differences were not statistically significant after 149 

accounting for multiple comparisons. At minimum, these results suggest that taxa encountered by 150 

infants during vaginal delivery are functionally distinct from those encountered by infants after C-section 151 

delivery in the hospital environment. More interestingly, however, they suggest that gut colonization 152 

patterns differ depending on the composition of the initial pool of colonizing taxa. Significant trait-based 153 

compositional differences by birth mode persisted for up to two years (Fig 3i), corroborating previous 154 

research showing that differences in early colonization can have lasting effects on community 155 

composition39,40, a phenomenon also termed priority effects41,42. On the other hand, sustained trait-156 

based differences between infants by delivery mode are surprising given recent work which found 157 

strong selective forces to quickly discourage the growth of immigrant taxa from the mother’s skin or 158 

birth canal43; hence, our findings suggest that the persistent differences by birth mode may result from a 159 

lack of arrival (i.e., dispersal limitation) of gut-adapted taxa from the mother, rather than qualitatively 160 

different community filters among infants. 161 

Exposure to antibiotics was associated with consistent trait-based shifts in gut microbiome 162 

composition (Fig. 3). Specifically, infants exposed to repeated antibiotic treatments had gut taxa that 163 

were on average less likely to be Gram-positive (Fig. 3f), smaller (Fig. 3g), and less capable of sporulation 164 

(Fig. 3j) than infants exposed to no antibiotics. Decreases in the relative abundances of Gram-positive 165 

taxa over time is arguably expected given that Gram-positive taxa lack the protective outer membrane 166 

that make Gram-negative bacteria generally more resistant to antibiotics44. The drop in mean 167 

sporulation score is less expected, given that spores are generally very resistant to antibiotics24. 168 

However, spore formation is far from the only mechanism of antibiotic tolerance in Bacteria, and other 169 

strategies may be more effective for survival in the gut environment. For instance, antibiotic treatments 170 

usually result in decreases in the relative abundances of spore-forming taxa in the class Clostridia, and 171 

increases in the relative abundances of non-spore-forming taxa in the family Enterobacteriaceae32. More 172 



generally, consistent with prior work45, the persistent differences in trait-based community composition 173 

between infants that underwent heavy antibiotic treatments and those that did not suggests that these 174 

disturbances can exert long-term effects on community structure and function. 175 

Trait variances within infant gut communities decreased over time in seven traits, and increased 176 

over time only in three traits (Supplementary Figure 4). The overall decrease in trait-based variance over 177 

time indicates that individuals of the gut community became more functionally homogeneous as the 178 

infants matured, perhaps due to increasingly strict environmental filtering processes46 and/or 179 

competitive exclusion of poorly adapted taxa47. 180 

 181 

Comparing taxonomic and trait-based successional patterns  182 

To evaluate the degree to which taxonomic changes aligned with trait-based changes, we compared 183 

taxonomic and trait-based turnover over time within infants, both in terms of short-term compositional 184 

variability (measured as the dissimilarity between subsequent samples) and directional turnover 185 

(measured as the dissimilarity between each sample and the final sample collected). Compositional 186 

variability was higher in the first year of development, both in terms of OTUs (Fig. 4a) and traits (Fig. 4c), 187 

than in the second or third years of development. A decrease in compositional variability over time is a 188 

classical feature of many ecological successional systems48. To evaluate whether trait-based 189 

compositional variability was higher or lower than expected by chance, given the magnitudes of 190 

taxonomic variability observed, we compared observed patterns to predictions from null model 191 

simulations for which trait values were randomly shuffled among taxa and trait-based compositional 192 

variability was re-calculated (see Methods). In other words, we calculated what trait-based 193 

compositional variability would look like if the traits in our study were completely decoupled from taxon 194 

performance. Differences between observed and null predictions were neither large nor significant (Fig. 195 



4c), suggesting that the traits in our study had little influence on compositional variability over 196 

succession. 197 

An analysis of directional turnover over succession revealed that infant gut communities 198 

matured and stabilized faster in their trait-based compositions than in their OTU-based compositions. 199 

Specifically, OTU-based directional turnover was relatively steady across all three years of study (Fig. 200 

4b), whereas trait-based directional turnover was high only in the first year (Fig. 4d) before dropping to 201 

nearly-baseline levels of trait-based compositional variability (Fig 4c). Trait-based directional turnover 202 

significantly exceeded null model predictions of trait-agnostic turnover (Fig. 4d), suggesting that infant 203 

gut microbiomes stabilize (i.e., cease to exhibit directional turnover) in terms of traits and their 204 

associated functions sooner than they stabilize in terms of OTUs, aligning with previous metagenomic 205 

work30. The fact that OTU-based directional turnover was steady over all three years of infant 206 

development despite early convergence in trait-based community composition indicates that late-stage 207 

OTU-based turnover was of OTUs that were functionally redundant, at least with respect to the traits 208 

examined in this study. Functionally redundant turnover could arise due to variable immigration rates 209 

(i.e., if different functionally redundant taxa immigrated into the gut at variable rates over time), or due 210 

to ecological drift (i.e., changes in the relative abundances of taxa through stochastic birth/death 211 

events). With respect to the latter: even though the gut community has a large number of individuals, 212 

which, all else being equal, makes it less susceptible to ecological drift49, many of its constituent taxa are 213 

rare and therefore still vulnerable to stochastic variation in their relative population sizes over time. 214 

Future work should quantify immigration rates, and consider other traits as potential drivers of late-215 

stage successional community turnover, such as those relating to metabolism of specific dietary 216 

compounds50, cross-feeding6, or phage-host interactions51. 217 

 218 



Compositional differences across microbiomes  219 

Surprisingly, gut community compositions became more similar (i.e., converged) across infants as they 220 

aged (Fig. 5). This ran counter to our expectations that gut community compositions would diverge as 221 

infants shifted from subsisting on milk and/or formula (i.e., simple substrates with low resource 222 

variability expected among hosts) to solid foods (i.e., complex substrates with higher resource variability 223 

expected among hosts), and as interactions between infants and their idiosyncratic home environments 224 

accumulated over time. Compositional convergence across infants over development may reflect a 225 

process whereby a stochastic cohort of initial taxa colonize infants but are gradually replaced, or 226 

supplemented with, taxa better suited for the gut environment. Such initial compositional differences 227 

among infants could be generated by stochastic colonization dynamics, differences in the pool of 228 

potential immigrants from the infants’ mothers, or a combination of the both. Regardless, it is likely that 229 

gut community convergence over infant development is partly due to the delayed arrival of taxa well-230 

adapted for the gut environment, i.e., dispersal limitation. Future experimental work should quantify 231 

the relative importance of dispersal dynamics and niche availability in driving compositional 232 

convergence over time. 233 

Compositional convergence among infant gut communities was more pronounced and abrupt in 234 

terms of traits (Fig. 5b) than in OTUs (Fig. 5a), which converged only slightly and gradually over time. 235 

Trait-based rates of convergence significantly exceeded null model expectations of trait-agnostic 236 

convergence (Fig. 5b), indicating that trait-based convergence was not random with respect to the traits 237 

examined in this study. This discrepancy between OTU-based and trait-based patterns of convergence 238 

among infants leads to two insights. First, it is another reminder that microbial communities with 239 

different OTU-based compositions do not necessarily differ in their functional potentials 30,52. Second, it 240 

means that community succession can be more predictable with respect to traits than OTUs. Together, 241 

these results indicate that OTU-based turnover over late succession is largely functionally redundant 242 



with respect to the traits examined. Functional redundancy among gut microbiome taxa may benefit the 243 

host by improving community resilience in response to disturbance53. Interestingly, mean compositional 244 

differences among infants born by C-section were, on average, greater both in terms of OTU-based and 245 

trait-based dissimilarity (Supplementary Figure 5). Such differences could arise if the taxa to which C-246 

section infants are initially exposed are more taxonomically and functionally variable than the taxa to 247 

which vaginally delivered infants are exposed. 248 

 249 

Discussion 250 

As in the ecological studies of macroorganisms, trait-based analysis of gut microbiome succession offers 251 

insights into the mechanisms of community assembly, such as dispersal limitation and ecological 252 

filtering, and the balance between stochastic and deterministic forces. The stabilization of trait-based 253 

community composition after the first year of development (Fig. 4), and the drop in variance of 254 

community trait values for most traits over time (Supplementary Figure 4), both suggest that succession 255 

is at least partially functionally deterministic, with early dynamics potentially reflecting stochastic 256 

colonization during the birthing process, followed by the gradual colonization and enrichment of a more 257 

functionally uniform cohort of taxa better adapted for the mature gut environment. Rates of OTU-based 258 

directional turnover remained steady over the first three years of succession (Fig. 4b), even though trait-259 

based directional turnover essentially stabilized after only one year (Fig. 4d), underscoring the fact that 260 

OTU-based compositional changes need not imply changes in trait-based composition54. However, there 261 

are surely aspects of community assembly that cannot be understood using only the traits used in this 262 

study, and future work should expand the number of traits considered. Moreover, because our study is 263 

observational, we cannot distinguish between an OTU that fails to disperse to a potential host and an 264 

OTU that arrives but fails to establish, so future research should also explore the relationship between 265 



OTU arrival and detection in fecal samples to better disentangle dispersal limitation and niched-based 266 

differences among taxa. 267 

Comparisons of trait-based patterns between cohorts of infants are an opportunity to 268 

understand the effects of specific events (e.g., delivery mode, antibiotic exposure), and serve as natural 269 

experiments that can reveal how gut communities respond to, and recover from, systematic 270 

disturbances. In our analysis, for example, delivery mode resulted in sustained differences in community 271 

composition, indicating that priority effects can play an important role in gut community assembly41,42, a 272 

result that likely extends to other types of disturbance during early life, such as gastrointestinal illness or 273 

malnutrition. Similarly, repeated antibiotics treatments led to significant differences in trait-based 274 

community composition (Fig. 3), suggesting that gut communities are not infinitely functionally resistant 275 

and/or that tradeoffs exist between antibiotic resistance and other traits52. Understanding trait-based 276 

differences between other cohorts, such as healthy vs. diseased55, or on and off specific diets56, could 277 

provide insight into additional factors shaping gut microbiome community assembly. For example, the 278 

unhealthy, dysbiotic gut may have a higher prevalence of microaerobic and biofilm-forming species57, a 279 

difference that could be detected using trait-based analyses. Trait-based approaches, which link 280 

organismal structures to ecological functions, are poised to advance our mechanistic understanding of 281 

the gut microbiome, and their usefulness will only increase as we improve our knowledge of how traits 282 

mediate microbial interactions and as we increase the depth and breadth of microbial trait databases. 283 

 284 

Methods 285 

Infant microbiome sampling and sequence processing 286 

Our foremost aim in this study was to characterize general patterns of gut primary succession that hold 287 

true regardless of host-related differences. As such, unless otherwise noted, we include all infants in our 288 

analyses, regardless of delivery mode or other host differences specific to each included study. 289 



Longitudinal infant gut microbiome data were compiled from two studies from the DIABIMMUNE study 290 

group (https://pubs.broadinstitute.org/diabimmune), one focused on the effects of antibiotics on gut 291 

community development28, and the other focused on the effects of type-1 diabetes on gut community 292 

development27. In the antibiotics study, infants either had nine or more antibiotic on gut community 293 

development courses, or no antibiotic courses28. In the type-1 diabetes study, infants tested positive for 294 

HLA DR-DQ alleles conferring risk of type-1 diabetes; of the infants which met our sampling criteria (see 295 

below), three developed type-1 diabetes during the sampling period27. 296 

Stool samples of infants were collected by participants’ parents and stored in their house 297 

freezers until the next scheduled visit to the local study center. Samples were then shipped on dry ice to 298 

the DIABIMMUNE Core Laboratory, where they were stored at -80°C until being sent to the Broad 299 

Institute for DNA extraction and 16S rRNA amplicon sequencing. Sequencing was performed on the 300 

Illumina HiSeq 2500 platform using the 515F and 806R primers. Of 74 infants across the two studies, 301 

only those with at least 12 samples and those which extended more than 30 months were used in this 302 

study, yielding 56 infants with 12 - 36 sampling points (mean = 26.45; median = 27) taken at semi-303 

regular intervals over the first 3 years of infant life (Supplementary Figure 6). All subjects were from 304 

Finland, except one from Estonia. 305 

Infants varied in their modes of delivery and antibiotic histories, providing an opportunity to 306 

explore the potential effects of these natural experiments on trait-based gut community composition. 307 

To this end, infants were divided into three groups: 1) High antibiotic exposure (N = 18), if they 308 

underwent at least 50 days of antibiotic treatment and were delivered vaginally, 2) C-section delivery (N 309 

= 6), if they were delivered by C-section and underwent two or fewer rounds of antibiotics, and 3) a 310 

control group that was delivered vaginally and received no antibiotic treatments (N = 18). In some 311 

instances, antibiotic treatment durations were not reported, in which case we assumed seven days per 312 

treatment. Twelve types of antibiotics were administered for a variety of ailments, with the most 313 



common being amoxicillin, trimethoprim and sulfadiazine aimed at treating acute ear infections. Infant 314 

metadata, drawn from the two studies from which sequence data for this study are drawn27,28, is 315 

available in Supplementary Data 1. 316 

Sequence processing was done using USEARCH version 10.0.24058. Raw sequencing data were 317 

downloaded from the DIABIMMUNE website https://pubs.broadinstitute.org/diabimmune/. Chimeras 318 

and reads flagged with more than one error were excluded, and the remaining reads were truncated to 319 

250 bp, the expected overlap when using 515F and 806R primers. Reads were clustered into operational 320 

taxonomic units (OTUs) at 97 percent sequence identity using the UPARSE-OTU algorithm 321 

(Supplementary Data 2). Representative sequences from each OTU were mapped to the SILVA v123 322 

database59 to determine potential taxonomic identities (Supplementary Data 3). To avoid bias in 323 

sampling effort, samples were rarefied to 5000 sequences, and seven samples with fewer than 5000 324 

sequences were removed. 325 

 326 

Assembling trait data 327 

We compiled data on 16 genomic, physiological, and life history traits of bacteria from public databases 328 

and individual studies (Table 1, Supplementary Data 4). All trait data were associated with taxa with full 329 

Latin binomials (i.e., Genus and Species labels) that appeared either in the SILVA-derived taxonomy file 330 

for the combined gut community samples or in the curated taxonomy file from the 132 release of the 331 

Living Tree Project29. Altogether, these amounted to 57,543 collected trait data spread across 10,906 332 

taxa. When a taxon had more than one trait value, the mean or mode was used, depending on whether 333 

the trait was quantified continuously or discretely. 334 

Descriptions and data sources for each trait are listed briefly in Table 1, but here we elaborate 335 

with a few additional details: 1) The numbers of B-vitamin synthesis pathways in the genome were 336 

drawn from ref. 60 and are based on genome annotations from the pubSEED platform61. 2) In some 337 



cases, optimal temperature was calculated as the mean of lower and upper temperature ranges, 338 

consistent with ref. 26. 3) IgA binding affinity refers to the degree that immunoglobulin A bound to 339 

specific bacterial taxa, and was quantified using an IgA coating index calculated in ref. 62 using flow-340 

cytometry-based bacterial cell sorting and 16S rRNA sequencing to characterize the coating load of IgA 341 

on specific taxa from fecal samples in a murine model. 4) Sporulation score indicates the tendency of 342 

taxa to sporulate, and was calculated in ref. 24 as a continuous score ranging from zero to one that 343 

depended on a combination of targeted phenotypic culturing and whole-genome sequencing from stool 344 

samples. When possible, we used sporulation scores from ref. 24. When sporulation scores from ref. 24 345 

were unavailable for a given Latin binomial, we drew on sporulation data from other repositories (Table 346 

1), which were generally binary, either noting the presence or absence of spores; when spores were 347 

present, taxa were given sporulation scores of 0.549, equal to the median sporulation score of taxa with 348 

sporulation scores greater than zero in ref. 24; when spores were not observed, taxa were given 349 

sporulation scores of zero. 350 

 351 

Predicting unknown trait data 352 

We estimated unknown phenotypes and genotypes using hidden state prediction methods based on 353 

phylogenetic inference (Supplementary Data 5). Specifically, we generated a phylogenetic tree with the 354 

3,311 OTUs from our USEARCH pipeline (before any taxa were lost due to rarefying) and the 13,900 355 

OTUs from the 132 release of the Living Tree Project (LTP)29 (Supplementary Figure 7; Supplementary 356 

Data 6). The topology of the tree reflects percent sequence similarity among taxa in the 16S rRNA V4 357 

region, and was generated using agglomerative clustering of a distance matrix based on the U-sort 358 

heuristic58. Because LTP representative sequences were of the entire 16S rRNA gene (i.e., the ribosomal 359 

small subunit), they were truncated to the 250 bp of the V4 region using 515F and 806R primers before 360 

generating the distance matrix. Trait data were then mapped onto the tips of the phylogenetic tree with 361 



Latin binomials. The LTP database was uniquely well-suited to interface with literature-derived trait data 362 

because each sequence represents a type strain with Genus and Species annotations drawn from the 363 

literature, not inferred phylogenetically. 364 

Missing trait values were estimated using three hidden state prediction algorithms: independent 365 

contrasts, subtree averaging, and weighted squared-change parsimony, each calculated using the R 366 

package Castor version 1.3.463. The three methods have different strengths and weaknesses63,64, but 367 

their predictions correlated strongly (Supplementary Table 1), lending confidence to our results. We 368 

ultimately used weighted square-change parsimony for our analysis, which recursively calculates locally 369 

parsimonious states for each node based on its descending subtree, until reaching a parsimonious state 370 

estimate for the tree root65. Because all trait values were either numeric or converted to numeric (e.g., 371 

Gram-negative = 0 and Gram-positive = 1), state predictions for discrete traits could be fractional (e.g., a 372 

Gram-positive score of 0.5), reflecting their probabilistic uncertainty. 373 

Methods of hidden state prediction offer estimates for all taxa with hidden states, even when 374 

there is not sufficient confidence to warrant estimation. To mitigate this, we examined how trait 375 

dissimilarity varied with increasing phylogenetic distance, and only used predictions when there were 376 

closely-related taxa with known trait values (refer to Supplementary Figure 8 for a graphical depiction of 377 

the approach. Specifically, for each trait, the phylogenetic tree was pruned such that only OTUs (i.e., 378 

tree tips) that could be linked to direct trait observations remained. Next, differences in trait values and 379 

phylogenetic distance (i.e., percent 16S rRNA V4 sequence similarity) were calculated for all OTU pairs. 380 

In some cases, the number of OTU pairs was prohibitively large, in which cases only 10,000 pairs were 381 

randomly selected at each 0.005 increment of phylogenetic distance. Five generic models were then 382 

used to predict trait differences, |𝑦|, as a function of phylogenetic distance, 𝑥, and the best fitting model 383 

of trait evolution was selected by AIC. The models included: (1) Null: |𝑦| ∼ 1; (2) Linear regression: |𝑦| ∼384 

𝑥; (3) Logarithmic regression: |𝑦| ∼ log(𝑥); (4) Asymptotic regression: |𝑦| ∼ 𝑎(1 − e(./01)), where 𝑎 385 



and 𝑏 were determined using a self-starting nonlinear least squares approach, and the model fit was 386 

constrained to pass through the origin; and (5) Logistic regression: |𝑦| ∼ 3

45/(
067
8 )

, where 𝑎, 𝑏, and 𝑐 387 

were determined using a self-starting nonlinear least squares approach. Null models provided the best 388 

fit for aggregation score, IgA binding affinity, pH optimum, and salt optimum, indicating that for these 389 

traits trait data should not be estimated at any phylogenetic distance. For the remaining 12 traits, trait 390 

predictions were used only when taxa associated with direct trait observations occurred within trait-391 

specific thresholds of phylogenetic distance; we defined these thresholds as the points at which model 392 

predictions rose to 90 percent of null expectations (Table 2, Supplementary Figure 8). Null expectations 393 

equaled the mean trait-based differences of all OTU pairs with more than 0.1 phylogenetic distance 394 

between them, for each trait. Overall, for the traits that were amenable to hidden state prediction, this 395 

approach yielded trait predictions for 78.7 percent (16S rRNA gene copy number) to 99.9 percent 396 

(Temperature optimum) of sequences used in this study (Supplementary Figure 9). We assessed 397 

statistical independence among traits predictions using Pearson correlation coefficients; p-values were 398 

adjusted for multiple comparisons using the Benjamini-Hochberg procedure. 399 

 400 

Trait-based successional patterns within and across infants 401 

Trait-based successional patterns were evaluated at both the OTU-level and the community-402 

level (i.e., on the level of individual samples). For the OTU-level analysis, OTUs were assigned one of 403 

three successional stages based on results of linear models of OTU abundances over time across all 404 

infants: early successional OTUs were defined as those with statistically significant negative trends in 405 

abundance over time (p < 0.05, 𝛽 < 0); late successional OTUs were defined as those with positive trends 406 

in abundance over time (p < 0.05, 𝛽 > 0); otherwise, taxa were combined into a single category which 407 

included OTUs with sporadic, unvarying, or hump-shaped patterns of abundance over time. Statistical 408 



differences in the trait values of OTUs in the three groups were evaluated with Welch t-tests; p-values 409 

were adjusted for multiple comparisons using the Benjamini-Hochberg procedure. 410 

Trait-based differences at the community level were quantified using CWMs. A CWM is the 411 

mean trait value of the species or OTUs in a community, weighted by their abundances. Here, a CWM is 412 

formally equal to ∑ 𝑝=>
=?4 𝑥=, where 𝑝=  is the abundance of OTU 𝑖 (𝑖 = 1,2, . . .		𝑆), and 𝑥=  is the trait value 413 

for OTU 𝑖. We used Welch t-tests to test for differences in CWMs between infants treated with and 414 

without antibiotics, and infants delivered by C-section and vaginally, for each six-month period of infant 415 

development; p-values were adjusted for multiple comparisons using the Benjamini-Hochberg 416 

procedure. 417 

 418 

Comparison of taxonomic and trait-based turnover 419 

We quantified differences in microbiome community compositions in two ways. First, we used Bray-420 

Curtis dissimilarity to quantify differences in the OTU-based compositions of samples66. Second, we 421 

quantified trait-based differences among communities with multidimensional Euclidean distance67. 422 

Specifically, Euclidean distance between two communities was calculated by (1) scaling trait values by 423 

their standard deviations to give each trait equal weight, (2) calculating the CWMs of each trait for both 424 

communities, and then (3) using the Pythagorean theorem to determine the distance between the two 425 

communities in n-dimensional trait space. 426 

We examined OTU-based and trait-based community changes over time in two ways. First, to 427 

quantify changes in short-term compositional variability over infant development, we examined 428 

compositional differences of subsequent samples from the same infant, at intervals approximately 429 

between one to three months. Second, to quantify rates of directional turnover over infant 430 

development, we examined compositional differences between samples and the final sample from each 431 

infant. To determine whether trait-based rates of compositional variability and directional turnover 432 



exceeded those expected by chance, we compared observed rates of trait-based turnover to null models 433 

of trait-agnostic community change. Specifically, we generated 1000 mock versions of our data with trait 434 

values randomly shuffled among OTUs, and recalculating pairwise sample dissimilarities. In other words, 435 

null models reflect what trait-based turnover would have been if organismal traits were unrelated to 436 

performance. We tested for statistical differences between observed and null turnover rates within six-437 

month periods using Welch t-tests. 438 

To determine if community composition converged or diverged across infants as development 439 

progressed, we divided samples into one-month slices and calculated mean OTU-based and trait-based 440 

distances for all pairwise combinations of samples, excluding pairs of samples from the same infant. To 441 

determine whether observed rates of trait-based compositional convergence/divergence across infants 442 

differed from those expected by chance, we compared our observations to null models of trait-agnostic 443 

community changes over time. Similar to our analysis of trait-based turnover within infants, null models 444 

were performed by randomly shuffling trait values among OTUs and recalculating pairwise sample 445 

dissimilarities. We tested for statistical differences between observed and null model rates of 446 

convergence within six-month periods using Welch t-tests. 447 

 448 

Data availability 449 

Raw sequencing data are available online at the NCBI project accession numbers PRJNA231909 450 

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA231909] and PRJNA290381 451 

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA290381]. Custom scripts used in the 452 

bioinformatic pipeline and statistical analyses are available at 453 

https:/github.com/ShadeLab/microbiome_trait_succession. All relevant data used in this study are 454 

included as supplementary data files, available at https://figshare.com/projects/Trait-455 

based_succession_of_the_infant_gut_microbiome/58202. 456 
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Figure 1 | OTU and family-level abundance patterns over succession. Colors reflect successional status; 620 

taxa were categorized as early/late successional if their abundances across all infants trended 621 

significantly negative/positive (p < 0.05) over time based on linear regressions; OTUs that did not trend 622 

significantly over time were grouped into the mid-successional or no-trend category. (a) (c) (e) Percent 623 

total abundances of OTUs of each successional category over time. (b) (d) (f) Proportions of total 624 

abundances of the top five most-abundant families in each successional group. 625 

 626 

Figure 2 | Abundance-weighted trait means over succession. Filled red circles show average 627 

abundance-weighted trait means of samples in that month. N is equal to the number of samples in each 628 

month, and ranges from 27 to 59. Vertical red lines show 95 percent confidence intervals. Black 629 

trendlines were fit using generalized additive models. 630 

 631 

Figure 3 | Trait-based successional patterns differ by delivery mode and antibiotic history. Abundance-632 

weighted trait means over infant microbiome succession, grouped by infant delivery mode and 633 

antibiotic history. Filled circles show average abundance-weighted trait means of samples within six-634 

month periods in each cohort of infants. N is equal to the number of samples in each six-month period; 635 

there were between 25 to 31 total samples from six infants delivered by C-section who received little to 636 

no antibiotics, 66 to 91 total samples from 18 infants who were treated with antibiotics for at least 50 637 

days, and 72 to 93 total samples from 18 control infants that were delivered vaginally and received no 638 

antibiotics. Vertical lines show 95 percent confidence intervals. Asterisks denote significance based on 639 

Welch t-tests performed between each treatment group and the control group (*: adjusted p < 0.05; **: 640 

adjusted p < 0.01; ***: adjusted p < 0.001).  641 

 642 



Figure 4 | Trait-based composition stabilizes earlier than taxonomic composition. Filled circles show 643 

mean pairwise compositional dissimilarities of gut microbiome samples collected from individual infants, 644 

averaged within six-month periods for each infant, and then across infants. OTU-based dissimilarity was 645 

calculated using Bray-Curtis dissimilarity. Trait-based dissimilarity was calculated using multidimensional 646 

Euclidean distance after scaling the distributions of values for each trait to ensure equal contribution. (a) 647 

Mean OTU-based dissimilarity between subsequent samples declines slightly over time. (b) Mean OTU-648 

based dissimilarity between samples and the final samples taken from each infant decreases steadily 649 

throughout the sampling period until finally reaching baseline levels of between-sample dissimilarity in 650 

the last six-month period, seen in a. (c) Mean trait-based dissimilarity between subsequent samples 651 

appears elevated in the first year, but does not differ significantly from null model predictions that 652 

assumed trait-agnostic turnover. (d) Mean trait-based dissimilarity between samples and the final 653 

samples taken from each infant decreases rapidly and approaches baseline-levels of between-sample 654 

dissimilarity within the first year, seen in c. Moreover, trait-based community composition converges 655 

towards that of the final sample significantly faster than null model expectations, illustrating the non-656 

random nature of community turnover over succession. In all panels, N equals 56, the number of 657 

infants. Vertical lines show 95 percent confidence intervals. Asterisks denote significance between 658 

observed and null model predictions based on Welch t-tests (*: p < 0.05; **: p < 0.01; ***: p < 0.001). 659 

 660 

Figure 5 | Infants’ microbiomes converge compositionally over time. Filled circles show mean 661 

compositional dissimilarities of gut microbiomes across infants within each six-month periods. Mean 662 

dissimilarities were calculated by first taking the mean dissimilarity of all sample pairs, except those 663 

from the same infant, in each of the first 36 months of development (for these means, N ranges from 88 664 

to 3410), and then taking their means within each six month period; hence, for each circle, N equals 6. 665 

OTU-based dissimilarity was calculated using Bray-Curtis dissimilarity. Trait-based dissimilarity was 666 



calculated using multidimensional Euclidean distance after scaling the distributions of values for each 667 

trait to ensure equal contribution. (a) OTU-based dissimilarity among infants decreased slightly over 668 

time, indicating a modest convergence in taxonomic composition. (b) Trait-based dissimilarity among 669 

infants fell quickly over the first 18 months and then remained relatively static thereafter, indicating 670 

rapid convergence in trait-based composition during early succession. The magnitude of trait-based 671 

compositional convergence across infants was significantly greater than predicted by a null model 672 

assuming trait-agnostic turnover. Vertical lines show 95 percent confidence intervals. Asterisks denote 673 

significance between observed and null model predictions based on Welch t-tests (*: p < 0.05; **: p < 674 

0.01; ***: p < 0.001). 675 
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Trait Description / Units Sources 
Aggregation score 0 (never) to 1 (observed aggregation) BacDive25; IJSEM26 
B vitamins No. B-vitamin pathways in genome Ref. 60 
16S gene copies No. in 16S rRNA gene copies in genome rrnDB68 
GC content Percent guanine and cytosine in genome IJSEM26; NCBI69 
Gene number No. genes in genome NCBI69 
Genome size Genome size in megabases NCBI69 
Gram-positive 0 (Gram-negative) to 1 (Gram-positive) BacDive25; GOLD70; IJSEM26  
IgA binding affinity log ([IgA+]/[IgA-] + 1) Ref. 62 
Length log (μm) BacDive25; GOLD70; IJSEM26 
Motility 0 (never motile) to 1 (always motile) BacDive25; GOLD70; IJSEM26 
Oxygen tolerance 0 (obligate anaerobe) to 5 (obligate aerobe) BacDive25; GOLD70; IJSEM26 
pH optimum pH GOLD70; IJSEM26 
Salt optimum g per l IJSEM26 
Sporulation score 0 (never sporulates) to 1 (sporulates easily) BacDive25; GOLD70; IJSEM26; 

ref. 24 
Temperature optimum °C IJSEM26 
Width log (μm) BacDive; GOLD70; IJSEM26 
Table 1 | Sources of trait data gathered in this study. IgA: Immunoglobulin A; BacDive: Bacterial 
Diversity Metadatabase. IJSEM: International Journal of Systematic and Evolutionary Microbiology. 
GOLD: Genomes OnLine Database: Joint Genome Institute; NCBI: National Center for Biotechnology 
Information; rrnDB: the ribosomal RNA operon copy number database. 
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Trait Max. distance 
Aggregation score 0.00 
B vitamins 0.06 
16S gene copies 0.05 
GC content 0.12 
Gene number 0.08 
Genome size 0.09 
Gram-positive 0.10 
IgA binding affinity 0.00 
Length 0.12 
Motility 0.08 
Oxygen tolerance 0.11 
pH optimum 0.00 
Salt optimum 0.00 
Sporulation score 0.06 
Temperature optimum 0.14 
Width 0.12 
Table 2 | Maximum phylogenetic 
distances used to infer trait values. 
Percent sequence dissimilarities (i.e., 
phylogenetic distances) in the 16S rRNA 
V4 region at which statistical support for 
trait conservatism disappears for each 
trait (see Methods and Supplementary 
Figure 9). 
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Description of Additional Supplementary Files 
 
File name: Supplementary Data 1 
Description: Relative abundances of OTUs in infant microbiome samples. Raw 16S rRNA V4 amplicon 
sequencing data from infant gut microbiome samples were processed using a USEARCH pipeline and 
clustered into operational taxonomic units (OTUs) at 97 percent similarity. Samples with fewer than 
5000 initial sequences were excluded, and the remaining samples were rarefied to 5000 sequences, 
resulting in a drop from 3311 to 2416 OTUs. The ‘subject’ column can be used with Supplementary Data 
2 to find associated subject metadata (e.g., delivery method, antibiotic treatment history), and the ‘t’ 
column refers to the month of sampling. Available at https://doi.org/10.6084/m9.figshare.7499498. 
 
File name: Supplementary Data 2 
Description: Infant metadata. Information for each infant subject includes (1) the approximate total 
number of days of antibiotic treatment, assuming the duration of any given antibiotic treatment was 
seven days unless otherwise noted, (2) the country of origin, (3) the mode of delivery, (4) the treatment 
group assignment used in this study, and (5) references to the prior studies from which the metadata 
were drawn. Available at https://doi.org/10.6084/m9.figshare.7499525. Additional subject metadata is 
available in Kostic et al. 2016 (ref. 27 in the main text) and Yassour et al. 2016 (ref. 28 in the main text). 
 
File name: Supplementary Data 3 
Description: SILVA-based taxonomic identities of infant microbiome OTUs. Representative sequences 
of operational taxonomic units (OTUs) from infant microbiome samples were mapped to the SILVA v123 
database using USEARCH version 10.0.240 to assign potential taxonomic identities. Data include all 3311 
OTUs identified in our pipeline, before any were dropped due to rarefying. Available at 
https://doi.org/10.6084/m9.figshare.7500422. 
 
File name: Supplementary Data 4 
Description: Phylogenetic tree of OTUs from this study and the Living Tree Project. A phylogenetic tree 
in Newick format with tips for the 3,311 operational taxonomic units (OTUs) identified in the infant gut 
microbiome samples from this study identified using a USEARCH pipeline, and the 13,900 OTUs from the 
132 release of the Living Tree Project. The topology of the tree reflects percent sequence similarity 
among taxa in the 16S rRNA V4 region (refer to Methods). Available at 
https://doi.org/10.6084/m9.figshare.7500563. 
 
File name: Supplementary Data 5 
Description: Trait data mined from literature and online data repositories. Trait data derived from the 
sources listed in Table 1 with Latin binomials that matched either those from the SILVA-based taxonomic 
identifications of OTUs found in infant gut microbiome samples, or from type specimens in the 132 
release of the Living Tree Project. When observations existed for the same taxon across more than one 
data source, means were used. Available at https://doi.org/10.6084/m9.figshare.7501001. 
 
File name: Supplementary Data 6 
Description: Trait data used in our analyses. Data included trait values that could be directly associated 
to taxa in our study based on matching Latin binomials, and trait value estimates based on hidden state 
prediction using weighted square-change parsimony (refer to Methods and Supplementary Figure 8). 
Because we converted all trait values to numeric (e.g., Gram-negative = 0 and Gram-positive = 1), state 
predictions for initially discrete traits were allowed to be fractional (e.g., a Gram-positive score of 0.5), 
reflecting their probabilistic uncertainty. Available at https://doi.org/10.6084/m9.figshare.7501121. 
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