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ABSTRACT. We prove versions of the Suslin and Gabber rigidity theorems in
the setting of equivariant pseudo pretheories of smooth schemes over a field
with an action of a finite group. Examples include equivariant algebraic K-
theory, presheaves with equivariant transfers, equivariant Suslin homology, and
Bredon motivic cohomology.

1. INTRODUCTION

The classical rigidity theorems for algebraic K-theory are due to Suslin [Sus83]
for extensions of algebraically closed fields, Gabber [Gab92] for Hensel local rings,
and Gillet-Thomason [GT84] for strictly Hensel local rings. All known proofs rely on
A'-homotopy invariance and existence of transfer maps with certain nice properties.
In his work on motives, Voevodsky introduced homotopy invariant pretheories as
contravariant functors on smooth schemes over a field enjoying certain transfer maps
[Voe00a, Definition 3.1]. While algebraic K-theory admits transfer maps for relative
smooth curves, it is not an example of a pretheory [Voe00a, §3.4]. However, it is the
motivating example of a pseudo pretheory in the sense of Friedlander-Suslin [FS02,
Section 10]. The work of Suslin-Voevodsky [SV96] established rigidity theorems in
the context of homotopy invariant pseudo pretheories.

In this paper, we generalize the notion of pseudo pretheories to the equivariant
setting of finite group actions (Definition 3.3). Equivariant algebraic K-theory is an
example, as well as equivariant Suslin homology, and Bredon motivic cohomology
in the sense of [HV@15, Section 5].

Our main results establish equivariant analogs of the Suslin-Voevodsky rigidity
theorems in [SV96, Section 4] (see Theorem 5.1, Theorem 5.4).

Theorem 1.1. Let k be a field, G be a finite group whose order is invertible in
k, and let SmkG denote the category of smooth schemes over k equipped with an
action of G. Let F be a homotopy invariant equivariant pseudo pretheory on SmkG.
Suppose that F' is torsion of exponent coprime to char(k).

(1) Let S = Spec(O%Gw) be the Henselization of a smooth affine G-scheme W
at the orbit Gw of a closed point. Let X — S be a smooth affine G-scheme
of relative dimension one, admitting an equivariant good compactification.
Then for all equivariant sections i1,is : S — X which coincide on the closed
orbit of S, we have

i1 =15 : F(X) — F(S).
(2) Let X be a smooth affine G-scheme and let x € X be a closed point such

that k C k(z) is separable. If every representation of G over k is a direct
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sum of one dimensional representations, then there is a naturally induced
isomorphism

F(Gz) = F(Spec(O% &)

The condition in the second part of the theorem is satisfied whenever G is abelian
and k contains a primitive dth root of unity, where d is the exponent of the group,
by a theorem of Brauer, see e.g., [CR62, Theorem 41.1, Corollary 70.24].

Rigidity theorems have been established for equivariant algebraic K-theory in
[YO09] and [Kril0, Theorem 1.4] at points with trivial stabilizers. The novelty in
Theorem 1.1 is that we allow points with nontrivial stabilizers. Note, however,
that in [YQ09] the groups are more general, and [Kril0] deals with connected
split reductive groups. For works on rigidity results in related contexts, see e.g.,
[AD], [Ayold], [CD16], [HYO07], [Jan], [Nesl4], [PY02], [RD06], [RO08], [Tab], and
[Yagll].

A brief overview of the paper follows. Section 2 recalls notions in G-equivariant

algebraic geometry and shows an equivariant proper base change theorem for étale
cohomology of Henselian pairs. After recalling equivariant divisors and equivariant
correspondences, we define and give examples of equivariant pseudo pretheories
in Section 3. Next in Section 4 we discuss the equivariant Nisnevich topology
and equivariant good compactification for smooth affine relative curves. Our main
results are shown in Section 5. Finally, in Section 6 we show that exactness of the
Gersten complex for equivariant algebraic K-theory fails for the group G = Z/27
of order two acting on the affine line A} = Spec(k[t]) by ¢ — —t. This follows by
applying rigidity to the G-equivariant Grothendieck group K§ of the Henselization
OK}C’GI at the orbit of the closed point = = (t) € Aj.
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2. PRELIMINARIES

Throughout £ is a field and G is a finite group whose order is coprime to char(k)
(abusing the terminology we say that n is coprime to char(k) if n is coprime to the
exponential characteristic of k, i.e., n is invertible in k). We view G as a group
scheme [ [, Spec(k) over Spec(k). Let Scth be the category of separated, finite type
schemes over Spec(k) equipped with a left G-action, and equivariant morphisms.
The smooth G-schemes over Spec(k) form a full subcategory Smf - Schka. A G-
scheme X is equivariantly irreducible if there exists an irreducible component X
of X such that G - Xg = X. The fiber product X xY of X,Y € Scth is a G-
scheme with the diagonal G-action. For a finite dimensional k-vector space V', let
A (V) := Spec(Sym(V")) and P(V) := Proj(Sym(V")). If V is a G-representation
over k, we view A(V) and P(V) as G-schemes via the G-action on V.
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For X € Scth we denote the categorical quotient of X by G (in the sense of
[MFK94, Definition 0.5]) by X/G, provided it exists. Since G is a finite group, the
categorical quotient map 7 : X — X/G is in fact a uniform geometric quotient
(IMFK94, Definitions 0.6, 0.7]). If X is quasi-projective, then a quotient by a finite
group 7 : X — X/G always exists.

Let H C G be a subgroup and X € Schi’. Then G x X is an H-scheme with the
action h(g,z) = (gh~!, hx), and we define G x X := (G x X)/H. The scheme
G xH X has a left G-action through the action of G on itself. Since the H-action on
G x X is free, 7 : Gx X — G xH X is a principle H-bundle. In particular, 7 is étale
and surjective. It follows that if X is smooth, then so is G x X. This defines a left
adjoint to the restriction functor Sm¢ — Smf’, given by G x” — : Smfl — Sm.

For X € Schg and x € X a point, the set-theoretic stabilizer of x is the subgroup
G, C G defined by G, = {g € G|gx = z}. The orbit of x is Gz := G x% {z}, with
underlying set {gz|g € G}.

2.1. G-sheaves. A G-sheaf on X is basically a sheaf with a G-action which is
compatible with the G-action on X. The precise definition goes as follows.

Definition 2.1. Let 7 be a Grothendieck topology on X and F a 7-sheaf of abelian
groups. Write pry : G x X — X for the projection and p : G x X — X for the
action map.

(1) A G-linearization of F is an isomorphism ¢ : p*F =N praF of sheaves
on G x X which satisfies the cocycle condition pris(¢) o (Idg x p)*(¢) =
(m x Idx)*(¢) on G x G x X. Here m : G x G — G is the multiplication
and prys : G x G x X — G x X is the projection to second and third factors.

(2) A G-sheaf (in the 7-topology) on X is a pair consisting of a 7-sheaf F
together with a G-linearization ¢ of F. We simply write F for a G-sheaf,
leaving the G-linearization understood.

(3) A G-module M on X is a G-sheaf where M is a quasi-coherent Ox-module
and the G-linearization ¢ : p*M = priM is an Ogxx-module isomor-
phism. A G-vector bundle on X is a G-module V whose underlying quasi-
coherent Ox-module is locally free.

Remark 2.2. Since G is finite, the data of a G-linearization of F is equivalent to

giving a sheaf isomorphism ¢4 : F =N g« F for each g € G subject to the conditions
¢e = id and @y, = hi(Pg) o ¢y, for all g, h € G.

Remark 2.3. Recall that if G acts on a commutative ring R, the skew group ring
R G is the free left R-module with basis {[g] | g € G} and multiplication is defined
by setting (r[g])(s[h]) = r(g-s)[gh] and extending linearly. If G acts trivially on R,
then R G is simply the usual group ring RG.

If X = Spec(R), then the category of G-modules on X is equivalent to the
category of left R{G-modules. Further, if the order of G is invertible in R, then the
category of G-vector bundles on X is equivalent to the category of left R!G-modules
which are projective as R-modules. See e.g., [LS08, Section 1.1] for details.

A G-equivariant morphism f : (€,¢s) = (F,¢x) of G-sheaves is a morphism
f: €& = F of sheaves compatible with the G-linearizations in the sense that ¢z o
w*f = prifogpe, or equivalently ¢, 0 f = g.(f)o ¢, for all g € G. Write Ab, (G, X)
for the category of G-sheaves on X in the T-topology. We note that Ab, (G, X) has
enough injectives.
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Given a G-sheaf (F, ¢4), the morphisms ¢, induce an action of the group G on
the group of global sections I'(X,F). We write I'¢(F) = T'(X, F)¢ for the set
of G-invariants of I'(X,F). This defines a functor I'{ : Ab, (G, X) — Ab from
the category of G-sheaves to the category of abelian groups. The 7-G-cohomology
groups HP(G; X, M) are defined as right derived functors

HP(G; X, F) := RPTS(F).

Here I'{ = ()% o I'(X, —) is a composite of left exact functors. Since the global
sections functor I'(X, —) sends injective G-sheaves to injective Z[G]-modules, the
Grothendieck spectral sequence for this composition yields the bounded, convergent
spectral sequence

(2.4) EpY = HY(G, HY(X, F)) = HYY(G: X, F),

where H*(G, —) denotes the group cohomology of G. Moreover, the spectral se-
quence induces a finite filtration on each H(G; X, F).

Definition 2.5. The G-equivariant Picard group PicG(X) of X is the group of
G-line bundles on X modulo equivariant isomorphisms, with group operation given
by tensor product. For an invariant closed subscheme Y C X, let PicG(X ,Y)
denote the group consisting of pairs (£, ¢), where £ is a G-line bundle on X and

¢ : Oy =N L|y is an isomorphism of G-line bundles on Y, modulo equivariant

isomorphisms respecting the trivializations on Y. The group Pic“ (X,Y) is called
the relative equivariant Picard group of X relative to Y.

The following cohomological interpretations of the equivariant and the relative
equivariant Picard groups are standard, see [HVQ15, Theorem 2.7, Lemma 6.7].

Theorem 2.6. Let X be a G-scheme.

(1) There is a natural isomorphism Pic® (X)) =N H},(G; X,0%).

(2) Leti:Y < X be an invariant closed subscheme. Then there is a natural
isomorphism PicG(X, Y) =N H},(G; X,Gx,y), where Gxy is the étale G-
sheaf defined to be the kernel of the equivariant homomorphism O% —
1,0y .

We end this section by recording an equivariant version of Gabber’s proper base

change theorem for the cohomology of torsion étale G-sheaves, which will be needed
to establish the equivariant version of Suslin’s rigidity theorem in Section 5.

Definition 2.7. ([Ray70, Chapter XI, Definition 3]) Let A be a commutative ring
and I C A an ideal which is contained in the Jacobson radical of A. The pair
(A, I) is said to be a Henselian pair provided Hom 4 (B, A) — Hom4 (B, A/I) is
surjective for any étale A-algebra B. A G-action on a Henselian pair (A,1) is
simply a G-action on A such that the ideal [ is invariant.

Theorem 2.8 (Equivariant Proper Base Change). Let (A,I) be a Henselian pair
with G-action. Let f :' Y — Spec(A) be a proper equivariant map and define Yy by
the pull-back

Y0—1>Y

L)

Spec(A/I) AN Spec(A).
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Let F be a torsion étale G-sheaf on'Y and write Fo = i*F. Then the restriction
map induces an isomorphism HZ(G;Y,F) = HL(G; Yy, Fo) for each n.

Proof. Restriction induces a G-equivariant map HZ,(Y,F) — HY (Yo, Fo). Gab-
ber’s base change theorem [Gab94, Corollary 1] shows this is an isomorphism, and
therefore it induces an isomorphism in group cohomology. Thus the induced com-
parison maps of spectral sequences (2.4) for (Y, F) and (Yp, Fo) is an isomorphism

on the Ey-page. This implies the desired isomorphism.
O

3. EQUIVARIANT DIVISORS AND PSEUDO PRETHEORIES

We begin by recalling the notion of equivariant Cartier divisors and their prop-
erties.

3.1. Equivariant divisors. Let X be a G-scheme and Y C X an invariant closed
subscheme.

Definition 3.1. (1) An equivariant Cartier divisor on X is an element of
IS (K%/O%). The group of equivariant Cartier divisors on X is denoted by
Div®(X). An effective Cartier divisor D on X such that D € TG (K% /O%)
is called an equivariant effective Cartier divisor.

(2) A relative equivariant Cartier divisor on X relative to Y is an equivariant
Cartier divisor D on X such that Supp(D)NY = (). Write Div®(X,Y’) for
the subgroup of DivG(X ) consisting of relative equivariant Cartier divisors.

(3) A principal equivariant Cartier divisor is an invariant rational function
on X, i.e., an element in the image of I'¢(K%) in I'¢ (K% /O%). In the
relative setting, a principal equivariant Cartier divisor f on X is said to be
a principal relative equivariant Cartier divisor if f is defined and equal to
1 at points of Y.

(4) Let Div&,,(X) denote the group of equivariant Cartier divisors on X modulo
the principal equivariant Cartier divisors, and likewise write DivS (X, Y)
in the relative setting.

Given a Cartier divisor D = {(U;, f;)} on X, we have an associated line bundle
Lp defined by Lpl|y, = Oy, fi_l. When D is an equivariant Cartier divisor it is easy
to verify that the line bundle £p has a canonical G-linearization; write Lp for the
G-line bundle defined by this choice of linearization. If D is a relative equivariant
Cartier divisor relative to Y it is straightforward that Lply is trivial.

Let Z4(X) (respectively Z¢(X)) denote the free group on dimension d (respec-
tively codimension d) cycles on X. The homomorphism cyc : Div(X) — Z1(X)
is defined by cyc(D) = 3, y1 ordz(D)Z, where X' is the set of closed integral
codimension one subschemes. For a G-scheme X, the groups Z;(X) and Z4(X)
have natural G-actions and cyc is an equivariant homomorphism. Therefore we
conclude the following.

Lemma 3.2. ([HVQ15, Lemma 2.11]) For a smooth G-scheme X, cyc : Div(X) —
ZY(X) is an equivariant isomorphism.

3.2. Equivariant pseudo pretheories. An equivariant pseudo pretheory is de-
fined as a presheaf on Smf with transfer maps associated to certain equivariant
correspondences subject to some natural axioms.
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Definition 3.3. An equivariant pseudo pretheory on Sm,? is an additive presheaf
F (Smg)"p — Ab (ie., F(X]]Y) = F(X) ® F(Y)) with transfer maps Trp :
F(X) — F(S) for any equivariant relative smooth affine curve X/S and effective
equivariant Cartier divisor D on X which is finite and surjective over a component
of S, such that the following holds.

(1) The transfer maps are compatible with pullbacks.
(2) If D(7) is the divisor associated to an equivariant section ¢ : S — X, then

TI‘D(i) = F(Z)

(3) Let Lp be the G-line bundle associated to D. If the restriction of Lp to
D’ is trivial, then

’I‘ID +’I‘TD/ = TrD+D’ .

As usual we extend all functors defined on the category SmkG to limits of smooth
G-schemes with G-action (including semilocalizations of all smooth affine G-schemes
at closed G-orbits) by taking direct limits. The above properties obviously remain
true after such an extension as well.

Definition 3.4. A presheaf F' on SmkG, (or Schka) is said to be homotopy invariant
if for any X € Smg (respectively in Schg) the projection map p; : X x Al —» X
induces an isomorphism pj : F(X) =N F(X x A'), where the G-action on X x A!
is induced by the given G-action on X and the trivial G-action on A!.

3.3. Examples of equivariant pseudo pretheories. In the following we discuss
examples of equivariant pseudo pretheories such as equivariant algebraic K-theory,
equivariant Suslin homology, Kg; -presheaves with transfers, presheaves with equi-
variant transfers, and equivariant motivic representable theories.

Example 3.5. Presheaves with equivariant transfers. For smooth schemes
X, Y, the group of correspondences Cory(X,Y) C Zgim(x)(X x Y) is the subgroup
of Zgim(x)(X xY) of cycles on X x Y which are finite over X and surjective over
some component of X. The category Cory has the same objects as Sm/k and
Corg(X,Y) are the morphisms between X and Y in this category. The equivariant
correspondences CorkG(X ,Y) between smooth G-schemes are correspondences Z :
X — Y such that the square
Z xid

Gx X5 GxY

X z Y

commutes in Cor, [HV@15, Section 4]. Unravelling definitions we have
Cor(X,Y) = Cor(X,Y) N Zgim x (X x YV)C.

Let CorkG denote the category whose objects are smooth G-schemes and morphisms
are equivariant correspondences. There is a canonical inclusion Sm§ C Cor{ which
sends f: X =Y toits graph 'y C X x Y.

Definition 3.6. [HV(15, Definition 4.1] A presheaf with equivariant transfers is
a presheaf of abelian groups on the category CorkG,
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Given an equivariant relative smooth affine curve X/S and an effective equi-
variant Cartier divisor D on X which is finite and surjective over S, note that
D e Cor{ (S, X). Moreover, if D(i) is the divisor associated to an equivariant sec-
tion i : S — X, then D(i) = I'; in Cor{ (S, X). Therefore if F is a presheaf with
equivariant transfers, then F defines an additive presheaf on Sm¢ C Cor{ such
that for a divisor D as above, Trp := F(D) : F(X) — F(S) satisfies conditions
(1), (2) and (3) of Definition 3.3.

Example 3.7. Equivariant K-theory. The G-equivariant algebraic K-theory
group K& (X) of a scheme X with G-action is the ith homotopy group of the
algebraic K-theory spectrum K¢ (X) of the exact category of G-vector bundles on
X. For n > 2, the equivariant K-groups with mod-n coefficients are defined as
K&(X;n) :== m(K%(X) AS/n), for the mod-n Moore spectrum S/n.

The equivariant algebraic K-theory groups KiG define functors on Scth (and
Sm%) by considering the category of “big G-vector bundles” ([FS02, Appendix
C.4, C5]). Let p: X — S be an equivariant relative smooth affine curve in
Smg and let ip : D < X be an effective equivariant Cartier divisor on X such
that pp := p|p : D — S is finite and surjective. Then pp : D — S is also
flat. Let Trp : K&(X) — K&(S) denote the map induced by the functor Fp :
Vect?(X) — Vect®(S) between the categories of G-vector bundles on X and S
defined by P + pp, oi%(P). By [Tho87, Theorem 4.1, Corollary 5.8(2)], KZ is a
homotopy invariant functor on Smg. We show that KZ-G is an equivariant pseudo
pretheory on Smf, so that K¢ (—;n) is a homotopy invariant equivariant pseudo-
pretheory on SmkG with n-torsion values.

Lemma 3.8. If D and D' are effective equivariant Cartier divisors on X such
that the restriction of the G-line bundle Lp to the G-scheme D’ is a trivial G-line
bundle, then Trpip = Trp + Trp/.

Proof. We write i : D — D + D’ and ¢/ : D’ < D + D’ for the corresponding
G-equivariant closed immersions. Let f € I'%,(Lp|ps) define the trivialization of
Lp on D'. Since Lp defines the ideal sheaf of D, we have an exact sequence of
G-equivariant coherent sheaves on D + D:

(3.9) 0= (Op) L Opin —i(Op) =0,

where the maps are G-equivariant. Given P € VectG(X ), the above exact sequence
gives the following exact sequence:

0 — i, 0ip (P) = ipyp/(P) = isoip(P) — 0.

Pushforward by the equivariant, finite, and flat map ppp/ gives an exact sequence
of G-vector bundles on S:

0 — Pp!, O’L'E/(P) — PD+D’, OiE_,’_D/(P) — DD, Oi*D(P) — 0,
which by definition of the transfer maps is the exact sequence of functors:
0— TI“D/(P) — TI‘D+D/(P) — TI"D(P) — 0.

Therefore by Waldhausen’s additivity theorem, [Wal85, Proposition 1.3.2(4)], we
conclude that Trp,p = Trp + Trpr. O
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Example 3.10. Equivariant Suslin Homology. For n € N, the algebraic n-

simplex A™ is
k[t07 e 7tn])
A" := Spec (
Qoiti—1)
and A® = {A"},,>¢ is a cosimplicial scheme with face and degeneracy maps given
by:

tj lf] <r tj lfj <r
8T(t]) = 0 lf] =T 6r<t]) = tj + tj+1 lf] =T
tj—l lf] >r tj+1 lfj >,

We view A® as a cosimplicial G-scheme with trivial G-action.

For a smooth morphism f : X — S, let Cy(X/S) C Cory (S, X) denote the group
of cycles on X which are finite and surjective over a component of S. If X, S € Scth
and f is G-equivariant, then Co(X/S) is a G-invariant subset of Corg (S, X). We
let Cy(X/S)¢ denote the chain complex associated to the simplicial abelian group
n = Cn(X/S9)Y, where C,,(X/S) := Co(X x A™/S x A™).

Definition 3.11. The nth equivariant Suslin homology of X/S is defined as the
nth homology group of the complex of abelian groups C,(X/S)%:

HS(G; X/S) == H,C\o(X/S)C.

For a smooth G-scheme X over k, let Z,, (X)) denote the presheaf with equivari-
ant transfers given by the representable functors Z,. o (X)(U) := Co(X xU/U)% =
Cor{ (U, X) for each U € Sm{. When G is trivial, this is the same as the presheaf
Cequi(X/ Spec(k),0) studied in [VoeOOb, Section 5.3]. Similarly for each n, the
presheaf U + H5"(G; X x U/U) is a homotopy invariant presheaf with equivariant
transfers. Therefore this defines a family of homotopy invariant equivariant pseudo
pretheories.

Lemma 3.12. Let F' be a homotopy invariant equivariant pseudo pretheory on
Sm{. Let S be an equivariantly irreducible smooth semilocal G-scheme and X/S
be a relative smooth affine curve. Let D and D' be effective equivariant Cartier
divisors on X which are finite and surjective over S. If the image of (D — D) in
HS"(G; X/S) vanishes, then Trp = Trp:. Here Trp and Trp: denote the transfer
maps associated to D and D', respectively.

Proof. The proof follows as in [HV@15, Lemma 6.3]. O

Example 3.13. K§-presheaves. The notion of Ko-presheaves was introduced
and studied by Walker in [Wal96] (see also [Sus03, Section 1]). Homotopy invariant
Ky-presheaves satisfy many properties enjoyed by presheaves with transfers. An
equivariant generalisation of this notion was developed in [HKQ®15, Section 6.2].
We briefly recall the definition here.

For X,Y € Schg7 let P%(X,Y) denote the category of coherent G-modules on
X x Y which are flat over X and whose support is finite over X. This is an
exact subcategory of the abelian category of coherent G-modules on X X Y. Define
K& (X,Y) = Ko(P%(X,Y)). Given X,Y,Z € Sm{, we have a natural biexact
bifunctor P¢(X,Y) x PE(Y, Z) — PE(X, Z) given by (P,Q) — (pxz)«(piy (P)®
Py 7(Q)), where the tensor product is taken over Oxxy xz. Thus we get a natural
composition pairing of exact categories o : K§(X,Y) x K§(Y,Z) — K§(X,Z)
and all these composition laws are associative. This allows us to define an additive
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category Ko(Sm§) by taking the objects of Sm$ to be the objects and defining
Hom, gme) (X,Y) = K§(X,Y). A K§-presheaf is an additive presheaf of abelian
groups on the category Ko(Sm$). Equivariant algebraic K-theory K&(—) is a
Kg; -presheaf for all ¢; therefore, Example 3.7 is a special case of this one.

There is a functor Sm$ — Ko(Sm$) which is the identity on objects and sends
a morphism ¢ : X — Y to the structure sheaf Or_ of the graph I'y € X x Y. In
particular, a K§-presheaf is also a presheaf on SmkG and we discuss below that it
is in fact an equivariant pseudo pretheory.

Given an equivariant relative smooth affine curve p : X — S and an effective
equivariant Cartier divisor ip : D — X which is finite and surjective over S, the
map pp = p|p : D — S is a finite and flat equivariant map. Let I‘;D CSxD
denote the transpose of the graph of pp and let O[‘E . denote its structure sheaf.

Then F}, = (Ids % ip)«(Ory ) € PY(S,X). Define Trp : F(X) — F(S) to be
F(F%). Then the transfer maps Trp are clearly compatible with pullbacks and

sections. If D and D’ are as in Lemma 3.8, then the exact sequence (3.9) gives an
exact sequence of coherent sheaves in P% (S, X):

0= Fh = Fpip — Fp — 0.
Using the additivity in K§(S, X), it follows that Trpypr = Trp + Trpr.

Example 3.14. Bredon motivic cohomology. Bredon motivic cohomology
introduced in [HVQ15, Section 5] and further studied in [HV(@16] (for smooth
varieties equipped with Z/2Z-action) is an equivariant generalization of motivic
cohomology for finite group actions.

For a smooth G-scheme X over k, recall that Z;, ¢(X) denotes the presheaf with
equivariant transfers given by Zi,. q(X)(=) := Cor{(—, X). If F is a presheaf of
abelian groups on Sm¢, write C* F(X) for the cochain complex associated to the
simplicial abelian group F(X x A,). For a finite dimensional representation V' of
G, let Zig(V') denote the complex of presheaves with equivariant transfers given by:

26(V) i= C(Zir,a(P(V @ 1))/ Zir.c(P(V)))[-2 dim(V)].

The Bredon motivic cohomology of a smooth G-variety X is defined to be the
equivariant Nisnevich hypercohomology with coefficients in Zg(V):

HE (X, Z(V)) i= Henis (X, Za (V).

(See Section 4.1 for the definition of the equivariant Nisnevich site.)

The fact that Bredon motivic cohomology define presheaves with equivariant
transfers follows from [Voe0Oc, Proposition 3.1.9] in the case of a trivial group and
is proved in [HV@16, Corollary 3.8] for Z/2Z. The case of finite groups follows
verbatim from the fact that smooth G-schemes have finite equivariant Nisnevich
cohomological dimension [HV@15, Corollary 3.9] and [HVQ15, Theorem 4.15(3)].
Therefore Bredon motivic cohomology define equivariant pseudo pretheories.

4. EQUIVARIANT NISNEVICH TOPOLOGY AND COMPACTIFICATIONS

In this section we discuss the notions of equivariant Nisnevich topology and equi-
variant good compactification of equivariant smooth relative curves. We establish
some of their properties which are needed in the proofs of our rigidity theorems.
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4.1. Equivariant Nisnevich topology. We recall briefly the equivariant Nis-
nevich topology on SmkG for finite groups, first introduced by Voevodsky in [Del09,
Section 3.1].

Definition 4.1. A distinguished square in Sch{ is a cartesian square

(4.2) B— Y

L,y

Al x,

where j is an equivariant open immersion, p an equivariant étale morphism, and
the induced map (Y ~\ B)reda — (X N A)req is an isomorphism. The collection of
distinguished squares forms a cd-structure in the sense of [Voel0, Definition 2.1].
The associated Grothendieck topology is called the equivariant Nisnevich topology.
We write (Sm)anis (resp. (Sch$)anis) for the respective sites of smooth G-
schemes and G-schemes equipped with the equivariant Nisnevich topology.

Equivariant Nisnevich covers admit the following equivalent characterizations
(see [HKQ15, Propositions 2.15, 2.17]).

Proposition 4.3. Let f : Y — X be an equivariant étale map between G-schemes.
The following are equivalent.

(1) The map f is an equivariant Nisnevich cover.
(2) There exists a sequence of invariant closed subschemes

V=Zn1CZnC--CZ1CZ =X

such that flp1(z,—7,,,) Y2 — Zis1) — Z; — Ziy1 has an equivariant
section.

(3) For every x € X, there exists a point y € Y such that f induces isomor-
phisms of residue fields k(z) = k(y) and set-theoretic stabilizers G, = G.

Let X € Scth and suppose z € X has an invariant open affine neighborhood.
Then the semilocal ring Ox ¢, has a natural G-action which induces a G-action
on the Henselian semilocal ring O% ., with a single closed orbit. Any semilocal
Henselian affine G-scheme over k with a single orbit is equivariantly isomorphic to
Spec((’){‘,ﬁcy) for some affine G-scheme Y and y € Y.

For X € Sch{ and any = € X, let Ng(Gz) denote the filtering category of
equivariant étale neighborhoods of Gz. Its objects are pairs (p: U — X, s), where
U is an equivariantly irreducible G-scheme, p is an equivariant étale map, and
s: Gz — U is an equivariant section of p over Gz. A morphism from (U — X, s) to
(V= X,s')in Ng(Gz) isamap f : U — V making the evident triangles commute.
Although = € X might not be contained in any G-invariant affine neighborhood, it
makes sense to consider G x &= Spec(Oé‘w) and according to [HV(@15, Proposition
3.13] we have:

(4.4) Ue}/iggcm) U = Spec((’)gxcmxygw) ~ @G xCe Spec((’)g{,w).
Further if € X has an invariant affine neighborhood then there is a canonical
G-isomorphism

(4.5) G %% Spec(O% ) = Spec(Ok 4.
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For a Nisnevich sheaf F' on Smg, X e SmkG, and z € X, we set

*F := F(Spec(O = colim F(U).
p;c ( p ( GXGIX,G$)) UENg(GI) ( )
Then p? defines a fiber functor from the category of sheaves to sets, i.e., it commutes
with colimits and finite products and so determines a point of the G-equivariant
Nisnevich topos. It is known that the set of points {p*|z € X, X € Sm{'} forms a
conservative set of points for (Sm$)anis (see [HVQ15, Theorem 3.14]).

4.2. Suslin homology of equivariant curves. An equivariant map p: X — S
is an equivariant curve if all of its fibers have dimension one.

Definition 4.6. Say that a smooth equivariant curve p : X — S admits a good

compactification if p factors as
x lp
S,

where X is normal, p ) is a proper equivariant curve, j is an equivariant open em-
bedding, and X, = (X ~\ X);eq has an invariant open affine neighborhood in X.

The following lemma about base change is straightforward to verify.

Lemma 4.7. Let X — S be an equivariant smooth curve and S’ — S be an
equivariant map, where S, 8" are affine G-schemes (smooth or a local or semilocal
G-scheme which is a limit of smooth G-schemes). If X — S admits an equivariant
good compactification, then the smooth equivariant curve X' = X xg 8" — S’ also
admits an equivariant good compactification.

If S is affine and X — S is an equivariant smooth quasi-affine curve with equi-
variant good compactification X and X, = (X \ X)eq, then the equivariant Suslin
homology of X/S can be interpreted in terms of relative equivariant Cartier divi-
sors (see [SV96, Theorem 3.1] when G is trivial, and [HV@15, Theorem 6.12] for
an extension to the equivariant case):

Div&

(48) HEUS(G’X/S)g{O rat(vaoo) n=20

n > 0.
Lemma 4.9. Let § = limaeca So be a cofiltered limit where the S, are quasi-
projective G-schemes over k and the transition maps are equivariant and affine. If

f: X — S is a finite type equivariant map, then there is X\, a finite type G-scheme
X\ over k, and an equivariant map fy : X\ — S fitting into a Cartesian square

X*>X,\
fl ifx
SHS)\.

Moreover if f is satisfies any of the properties: (i) affine, (ii) open, (iii) smooth,
(iv) proper, then fy can be chosen to have the same properties.
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Proof. Let T, = So/G and T = lim, T,,. By [Gro66, Théoréme 8.8.2] there is
and a map of finite type Tg-schemes fz : Xg — Sg such that X = Xg xg, S and
under this isomorphism f is the pullback of fz. Moreover if f satisfies some of the
properties (i)-(iv), then fz can be chosen to satisfy the same properties [Gro66,
Théoreme 8.10.5], [Gro67, Proposition 17.7.8]. For a > f3, set X, = X X5, Sq.
We have that Autr(X) 2 colim, Autr, (X, ). Since G is finite, the homomorphism
G — Autp(X) factors through some Autr, (X)), i.e., we may choose X to have a
G-action. Increasing A\ we can further assume that f is equivariant. (I

Lemma 4.10. Let S = limyea Sy be a cofiltered limit where S, € SmkG are affine
and the transition maps are equivariant étale. Let X — S be a smooth equivariant
affine curve admitting good compactification.
(1) HS(G; X/S) = colimg HY'(G; X5/ S5) where Xg — Sg are smooth equi-
variant curves with good compactification.
(2) H3™(G; X/S) = Dive,, (X, Xoo) and H3™(G; X/S) =0 fori > 0.

rat

Proof. Let X C X be an equivariant good compactification. By the previous
lemma, there is a smooth, affine, equivariant map X, — S,, with equivariant
compactification X, — S, with X, ~ X, has an affine neighborhood, such that
X =2 X, xg, Sand X = X, xg., S. For any generic point ’ € X, lying over a
generic point n € Sy, we have dim(Ox,, ) = dim(Og,, ,)+1. Thus there is an open
subset of U C S, over which the fibers of X,, X, are one dimensional. Since U
contains the image of S in Sy, there is A > « such that X and X are equivariant
curves over Sy, where Xz = X, xg, S for § > a and similarly for X p. Replacing
X, by its normalization, we see that X — Sy admits good compactification. We
thus have that X — S is isomorphic to the cofiltered limit limg>y (X5 — S3)
of smooth affine equivariant curves admitting good compactification. Moreover,
we have colimg C,,(X5/Ss) = C,(X/S) and taking fixed points and homology
commutes with filtered colimits, yielding (1).

Write X — S as a filtered limit limgep(Xg — Sp) of equivariant curves with
good compactification. Moreover we can assume B has a minimal element 0
and Xg = Xo xs, S5 is a good compactification of Xz. Write Yz = Xg \
Xp. Under the isomorphism (4.8), the map H5"(G; X5/S5) — H3%(G; X0 /Sa)
agrees with the map Div%,(Xs,Ys) — Dive,

colimg Div% (X5, Ys). Finally, note that colimg Dive,, (X g, Ys) = Dive

rat rat rat

(X4, Y,) and so H3%(G; X/9) =
(X, Xs0).
(I

Corollary 4.11. Let F be a homotopy invariant equivariant pseudo pretheory on
Smg and X — S as in the statement of the previous lemma. Then there is a pairing
of abelian groups

HE™(G; X/S) ® F(X) = F(S).

Proposition 4.12. Let S = Spec(@{,‘v)aw) be the Henselization of a smooth affine
G-scheme W at an orbit Gw. Let p: X — S be a smooth equivariant affine curve
with an equivariant good compactification. Let Xo — Sy be the fiber over the closed
orbit So in S. Then for any n coprime to char(k), restriction induces an injection

HS™(G; X/S) /n — H5™(G; Xo/So)/n.

Proof. Let X be the equivariant good compactification of X over S such that
Y = (X \ X)red has an invariant open neighborhood in X. By Lemma 4.10(2) and
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[HVQ15, Proposition 6.8] it suffices to show that the restriction Pic®(X,Y)/n —
Pic® (X, Yy)/n is injective. This follows as in the proof of [SV96, Theorem 4.3], by
replacing étale cohomology with H(G; —) and classical proper base change with
Theorem 2.8. O

5. RIGIDITY FOR EQUIVARIANT PSEUDO PRETHEORIES

In this section we establish versions of the rigidity theorems of Suslin [Sus83],
Gabber [Gab92], and Gillet and Thomason [GT84] in the setting of equivariant
pseudo pretheories.

Theorem 5.1 (Equivariant Suslin Rigidity). Let F' be a homotopy invariant equi-
variant pseudo pretheory on SmkG which takes values in torsion abelian groups of
exponent coprime to char(k). Let S = Spec(Ofy, 4,,) be the Henselization of a
smooth affine G-scheme W at a closed orbit, and X — S a smooth affine equivari-
ant curve admitting good compactification. If i1,i0 : S — X are two equivariant
sections which coincide on the closed orbit of S, then if =i : F(X) — F(S).

Proof. For any n, F, = ker(n : F — F) is again a homotopy invariant equivari-
ant pseudo pretheory and F' = U, F,,. Thus it suffices to consider the case when
nF = 0. We may assume that X is equivariantly irreducible. The images of the
sections i; are closed subschemes W; C X which are elements of Cy(X/S)“. By
definition we have i; = Try,. By Lemma 3.12 it suffices to show that Wi — W5
becomes zero in H§"(G; X/S)/n. Proposition 4.12 shows that there is an injection
H5"(G; X/S)/n — HS™(G; Xo/So)/n, where X is the fiber over the closed orbit
Sy of S. Since i1 and is coincide on the closed orbit, we conclude that W, — Wy is
zero in H3"(G; X/S)/n.

O

Recall that we write R G for the skew group ring.

Lemma 5.2. Let X — Z be a map in SmkG, with X affine, Z = Spec(L) where L
is a field, and x € X an invariant closed point such that k(x) = L. Then there is

a commutative diagram in SmkG
X—2 vy
Z;

where V is an equivariant vector bundle over Z, ¢ is étale at z, and ¢(x) = 0.

Proof. Write X = Spec(A) and m C A for the maximal ideal corresponding to
x. Since |G| is invertible in L, the surjection of L G-modules m — m/m? has
a splitting. The resulting map of L ! G-modules m/m? — m C A induces the
equivariant ring map Sym(m/m?) — A. Applying Spec yields the desired map. [

Lemma 5.3. Let x € X be an invariant closed point, X — Spec(L), and V be as in
the previous lemma. Assume that there is an equivariant vector bundle isomorphism
VWV, where W has rank dim(X) — 1, and let p : X — W be the resulting
map. Then there are invariant open affine neighborhoods U C X and S CW of x
and 0 respectively, such that p induces a smooth equivariant curve U — S admitting
good compactification.
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Proof. First consider the case where X C V is an invariant open subscheme with
closure X = W x P(V' @ Op). For any a € X, the fiber of Xp(a) has dimension one
and so (X \ X),(,) must be finite over p(a) (where X \ X is considered as a closed
subscheme with reduced structure). Since X is projective over an affine scheme,
there is an invariant affine neighborhood A C X of the finite set of closed points
(X \ X)o- Then Z = (X ~ X) ~ ((X N~ X)N A) is closed in X and so has closed
image in WW. Now let S C W be an invariant affine neighborhood of 0 which misses
the image of Z and is contained in p(X) (we can find an affine neighborhood with
these properties and the intersection over all the translates by g € G is an invariant
neighborhood). Now let U = Xg and U’ = Xg. Then U’ \ U has an invariant
affine neighborhood. Let U be the normalization of U’. Then U inherits a G-action
from that on U’ and contains U as an invariant open subscheme. Since U — U’
is finite, U \ U is contained in an invariant affine neighborhood. Now U — S is a
smooth equivariant curve with good compactification U.

In the general case, since ¢ : X — V is étale at x, there is an open invariant
affine neighborhood on which ¢ is étale, so shrinking X, we may assume ¢ is étale.
By the previous paragraph, there are invariant affine neighborhoods M C ¢(X) of
0 and S C W such that M — S is an equivariant smooth affine curve with good
compactification M. Then U := ¢~ (M) — M is equivariant and quasi-finite and
so the equivariant version of Zariski’s main theorem (see [LMBO00, Theorem 16.5])
yields an equivariant factorization of U — M as the composition of an invariant
open immersion U < U and an equivariant finite map ¢ : U — M. Replacing U
by its normalization, we may assume U is normal. Since M is an equivariant good
compactification of M over S and ¢ is affine, it follows that U is an equivariant
good compactification of U over S.

O

Theorem 5.4 (Equivariant Gabber Rigidity). Assume that every G-representation
over k is a direct sum of one dimensional representations. Let F be a homotopy
tnvariant equivariant pseudo pretheory on SmkG with torsion values of exponent
coprime to char(k). If X is a smooth affine G-scheme over k of pure dimension
d and x € X is a closed point such that k C k(x) is separable, then there is an
isomorphism:

F(Gz) = F(Spec(O% &)

Proof. We proceed by induction on d = dim(X), the case d = 0 being clear. By
(4.5), there is an equivariant isomorphism

G xC= Spec((’);@’m)i Spec(O%Gm).
Thus we are reduced to showing there is an isomorphism
€ F(Spec(k(x))) =¢" F(Spec(O% ).

where ¢(—) = G x% (=) and ¢*F := F oe. Note that ¢*F is a homotopy invariant
equivariant pseudo pretheory on Smg" which is torsion of exponent coprime to
char(k). Replacing G by G, and F by €*F it suffices to consider the case where
Gz consists of a single point.

The projection X, — X sends equivariant étale neighborhoods of z € X, to
equivariant étale neighborhoods of x € X. If U — X is an equivariant étale
neighborhood of x € X, then U, — X is an equivariant étale neighborhood of
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x € X mapping to U. This implies that Spec(O% ) = Spec(O% ,) and so we may
replace X with X, and assume there is an equivariant map X — Spec(L), where
L = k(z) (equipped with the corresponding G-action). Furthermore, by Lemma 5.2
there is an equivariant vector bundle V over Spec(L) such that O% , = O} ; and
so it suffices to assume X =V and x = 0y, € V.

The assumption on G implies that there is a representation V'’ over k and an equi-
variant isomorphism V = A(V”), see e.g., the beginning of the proof of [HV(15,
Theorem 8.11]. In particular, V is a direct sum of equivariant line bundles. Let
7 : W CV be arank d — 1 summand. It now suffices to see that i* induces an
isomorphism F(Spec((’){ﬂ,o)) = F(Spec((’)ﬁv)o)), since 0, € W and the induction
hypothesis implies that F(W) = F(0r). The inclusion ¢ is split by the projection
p:V — W, so it suffices to see that ¢* is injective.

Suppose that [a] € F(Spec((’){;)o)) is such that i*([o]) = 0. By definition
F(Spec((’)\’}p)) = colimy_,y F(U), where the colimit is over equivariant étale neigh-
borhoods of 07, € V. Thus, there is a representative « € F(U) of [a] where U — V
is an affine equivariant étale neighborhood of 0. There is a canonical equivariant
map 7 : Spec(O}, ;) — U.

After shrinking U, there is a smooth affine equivariant curve U — Y, admitting a
good compactification, by Lemma 5.3, where Y C W is an invariant neighborhood
of 0. Consider the following commutative diagram of equivariant maps:

Spec((’){ﬁ’o)

o
id l
@

Spec

U
1 l

P
\}3,0) Spec(o}l}V,O) Ya
where the rectangle is a pullback. By Lemma 4.7, U — Spec((’){l,!o) is a smooth
affine equivariant curve admitting good compactification. The maps s; := 7 and
S9 := 7o i op induce equivariant sections ji,j2 : Spec(O{ﬁ’O) — U of ¢;. The
sections ji,jo agree on the closed orbit by construction and therefore j;i = j5 by
Theorem 5.1. Thus [o] = 7*a = p*i*n*a = 0.
O

6. ON THE EQUIVARIANT GERSTEN RESOLUTION

For an affine G-scheme X € Sch{, let MY(X) denote the abelian category
of G-equivariant coherent Ox-modules. For p > 0, let M%P(X) C M%(X) de-
note the Serre subcategory of coherent sheaves F whose support is a subscheme of
codimension > p in X. Since F is equivariant, the support is an invariant closed
subscheme of X. Let S®P(X) denote the set of all distinct set-theoretic G-orbits
[z] in X of codimension p points = of X. Consider the filtration of M%(X) by Serre
subcategories

ME(X) = MEO(X) D MPH(X) D ME2(X) D - D MEP(X)---.
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Since the natural exact functor M%P(X) — IT  UME(Spec(Ox.cz/JE,))
[z]eSG.P(X) N

has kernel M%P+1(X) and admits a section functor, by [Gab62, Proposition II1.2.5]

we have an equivalence of categories:

MG,p X = n
/\/lGWr(l(;() - H UMG(SPQC(OX,GI/JGz))y
[z]€eSG.P(X) n

where Jg, denotes the Jacobson radical of the semilocal ring O x ¢,. The Devissage
theorem [Qui73, Theorem 4], the Chinese remainder theorem and the equivalence
of equivariant K-theory and G-theory for regular G-schemes [Tho87, Theorem 5.7]
imply that
K (] Spec(k(y)) = GG (] Spec(k(y))) = Ko(M (Spec(Ox.ca/IE:))),
y€lz] y€[z]

for every n. This yields an isomorphism for the union along all n. Further for any
x € X, we have the Morita isomorphism [Tho87, Proposition 6.3]

K (] Spec(k(y))) ~ K¢ (Spec(k(x))).
y€(x]

Combining the above and by [Qui73, Theorem 5], for each p > 0 there is a local-
ization sequence

= K(MOPTH(X) = Ky(MOP(X)) — [1 K (Spec(k(x))) —
r]eSG P (X
[Kli_l(/\(/lcg’p“(X)) .

The above gives rise to a strongly convergent spectral sequence
; G
EPt =[] K%._,(Spec(k(x)) = G%,_,(X).
[z]€SSP(X)

For X € Sm,?, the spectral sequence yields a sequence of abelian groups
(6.1)

0 KS(X)—» [ KS(Spec(k(z))) 2 I  KS= (Spec(k(x))) L
[2]€SG0(X) [z]€SE1(X)

[1  KS=,(Spec(k(z)) L5,
[z]€SCG-2(X)

where d; is the differential on the E-terms of the spectral sequence.

The Gersten conjecture states that (6.1) is exact if G is trivial and X = Spec(R),
where R is a regular local ring. This is known for regular local rings containing
a field, the geometric case was proved by Quillen [Qui73, Theorem 5.11] and the
general equicharacteristic case was proved by Sherman [She78] in the 1-dimensional
case and Panin [Pan03] for higher dimensions. If X is a regular local ring containing
a field with a trivial G-action, where G is a finite diagonalizable group, then the
Gersten sequence (6.1) is simply the tensor product of the non-equivariant Gersten
sequence with the group ring Z[G] (by [Ser68, Section 3.4]), and is therefore exact.
If the action of G is non-trivial, we discuss in Example 6.2 below that the sequence
(6.1) need not be exact even for n = 0.

Example 6.2. Let G = Z/27 act on X = A} = Spec(k[t]) via the map ¢ + —t.
For the closed point x = (¢) € A}C the Henselization O&T is the ring of algebraic
formal power series in ¢t over k. We compute the G-equivariant Ky with mod-I
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coefficients of A%x) = Spec(Ox.Gaz), Spec(O?QGw), the orbit Gz, and the generic
point n € X.
By [Tho87, Proposition 6.2] there is an isomorphism

K§ (Gz) = K (Spec(k)),
where the set-theoretic stabilizer G, of z is equal to G = Z/2Z. We have
K§ (Spec(k);1) = K§ (Spec(k)) @ Z)17. = 7.)17. © 7.)17..
Thus for a field k£ of characteristic coprime to 2, I, Theorem 5.4 implies
K§ (Spec(O% )i 1) = K§ (Ga;l) 2 Z)17. & 7./1Z.

The natural map = : A\%m) — Spec(k) affords a G-equivariant factorization:

Al ——— T > Spec(k)

(z)

Here j* : K§'(A}) — KS;(A\%I)) is surjective by the localization exact sequence, and
7% K§(Spec(k)) — K§(A}) is an isomorphism [Tho87, Theorems 2.7, 5.7, 4.1]. Tt
follows that 7* : K§ (Spec(k)) — K(?(A%x)) is surjective. Since 7 : Al — Spec(k)
has an equivariant section given by ¢ +— 0, 7 : K§(Spec(k)) — K()C;(A%I)) is also
injective. Therefore K(?(A\%w); 1) = K§ (Spec(k);l) = Z/IZ. & 7. 1Z.

For the generic point n = Spec(k(t)), note that the G-action on k(¢) is free
and k(t)¢ = k(t?). Therefore, K§(n;1) = Ko(k(t?)) ® ZJIZ = Z.JIZ so that

K§ (A, l) 2 K (1)

Remark 6.3. As pointed out by the referee, the Gersten complex for A%x) with
action of the group G = Z /27 given by t — —t as in the above example can be

analyzed using the localization sequence as follows. Under the notations of example
6.2, we get an exact sequence:

o KO (Spec(h(t) 2 K§ (Spec(k)) £ K§(AL) T K (Spec(h(t))).

Now the closed point = € A%I) can be seen as the zero set of the diagonal section
of the line bundle L = A\%I) X A}c — A%z), where A}C has the above non-trivial
G-action. By a variant of the excess intersection formula for equivariant K-theory
[K6c98, Theorem 3.8], z.(1) = 1 — [L], and this class is non-zero in K(?(A\%l,)).
Thus n* is not injective. The above considerations give the geometric reason for
this: as soon as the top Chern class (in equivariant K-theory of the point) of the
normal bundle is non-trivial, then x, is non-zero and n* is not injective. In the
cases considered in other articles, the normal bundle has trivial action, so the top
Chern class is zero and the map n* is injective.

The rigidity property and the exactness of the Gersten sequence (6.1) are two
important properties of algebraic K-theory of semilocal rings. In Example 3.7 and
Theorem 5.4, we prove the rigidity theorem for equivariant K-theory of schemes
with finite group actions. Example 6.2 (see also [Ngul6, Section 5.3]) shows that
the Gersten sequence is not exact for equivariant K-theory of semilocal rings with
non-trivial Z/2Z-actions. In this respect the cases of trivial and non-trivial actions
are very different.
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