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Abstract

Schlichting conjectured that the negative K-groups of small abelian categories vanish and proved this for
noetherian abelian categories and for all abelian categories in degree —1. The main results of this paper
are that K_;(F) vanishes when E is a small stable co-category with a bounded t¢-structure and that
K_,(FE) vanishes for all n > 1 when additionally the heart of F is noetherian. It follows that Barwick’s
theorem of the heart holds for nonconnective K-theory spectra when the heart is noetherian. We give
several applications, to non-existence results for bounded t¢-structures and stability conditions, to possible
K-theoretic obstructions to the existence of the motivic ¢-structure, and to vanishing results for the
negative K-groups of a large class of dg algebras and ring spectra.
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1 Introduction

We prove the following theorems about negative and nonconnective K-theory.
Theorem 1.1. If E is a small stable co-category' with a bounded t-structure, then K_1(E) = 0.

Theorem 1.2. If E is a small stable oco-category equipped with a bounded t-structure such that EY is
noetherian, then K_,,(E) =0 forn > 1.

Theorem 1.3 (Nonconnective theorem of the heart). If E is a small stable co-category with a bounded
t-structure such that EV is noetherian, then the natural map

K(EY) = K(E)
18 an equivalence.

The first two theorems generalize results of Schlichting from [Sch06], who proved the theorems in the
special case where E ~ D’(A), the bounded derived oco-category of a small abelian category A. Note that our
theorems are much more general than Schlichting’s results, as stable co-categories with bounded t-structures
are typically not bounded derived oo-categories. The third result follows from the first two and Barwick’s
theorem of the heart for connective K-theory [Barl5].

The proof of Theorem 1.2 is based on induction, with the base case provided by Theorem 1.1. The proof of
Schlichting’s result that K_;(A) = 0 for general abelian categories A is not hard, but the proof of Theorem 1.1
is more difficult as it is necessary to find an excisive square playing the same role for E that the square

Db(A) —— DF(A)

D= (A) — D(A)

plays for Db(A).
In the inductive step, we use stable oco-categories of endomorphisms and automorphisms of E. We

construct an exact sequence
Do} (A', ) = D(A', €)% = D(Gyp, €)*

of small idempotent complete stable oo-categories, where € = Ind(F) is the ind-completion of E, the
superscript w denotes the subcategory of compact objects, and D(A!,C) ~ Modg[q ® €, and similarly for
D(Gm,€). The subscript {0} denotes the full subcategory Dyoy (A, €) C D(AL,C) of objects killed by

1The conjectures and results of this paper apply equally well to any triangulated category with a bounded t-structure that
admits a model, either as a dg category or a stable co-category. This includes all examples of triangulated categories with
bounded ¢-structures we have found in the literature. For background on stable co-categories, see Section 2.1.
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inverting the endomorphism s. Note that the co-category D(Al, €)¥ differs from the oo-category used
in [BGT16] to define the K -theory of endomorphisms. Indeed, the K-theory of endomorphisms of E takes
as input the oo-category of endomorphisms of objects of E. But, these need not be compact in D(A!, C).
Conversely, the underlying object of a compact object of D(A!, €) need not be compact in C.

The technical input for the inductive step, proven in Corollary 3.17, is that if ' is a small stable co-category
with a bounded t-structure such that E¥ is noetherian, then the same is true for D(G,,, C)~. This allows an
inductive argument because K(E) is a summand of K(Do (A, €)¥) and this summand maps trivially to
K(D(A!,€)~).

Theorem 1.2 can be extended to the case where EY is merely stably coherent; we do so in Section 3.5.
We discuss in Sections 3.4 and 3.6 a counterexample to our approach when EY is not noetherian as well as
several possible approaches for circumventing this problem. We hope that these more speculative sections
will serve to pique the interest of readers thinking about related problems.

Conjectures. Schlichting made the following conjecture in [Sch06].
Conjecture A. If A is a small abelian category, then K_, (A) =0 forn > 1.
Motivated by this, we pose the next two conjectures.
Conjecture B. If E is a small stable co-category with a bounded t-structure, then K_,(E) =0 for n > 1.

Conjecture C. If E is a small stable co-category with a bounded t-structure, then the natural map K(EV) —
K(FE) is an equivalence of nonconnective K-theory spectra.

Conjecture A is a special case of the second conjecture by setting E = D’(A), the bounded derived
oo-category of A, and we will therefore refer to the second as the generalized Schlichting conjecture. The
connective part of Conjecture (' is Barwick’s theorem [Bar15] for connective K-theory: K (EY) ~ K (E),
which generalizes the Gillet-Waldhausen theorem [TT90, Theorem 1.11.7] in the case that £ = D*(A). So,
the open part of that conjecture may be rephrased as saying that K_,,(EY) — K_,,(F) is an isomorphism for
all n > 1. Of course, this would follow from Conjecture B together with Conjecture A. In fact, Conjecture B
holds if and only if Conjectures A and C hold.

Note that there are examples of stable co-categories E' with two different bounded ¢-structures, one having
a noetherian heart and the other having a non-noetherian heart. The standard example, due to Thomas and
written down in [AP06], is D?(P'), and was pointed out to us by Calabrese.

Applications. There are three major areas of application of the work in this paper: obstructions to the
existence of t-structures (and hence to stability conditions) on Perf(X) when X is a singular scheme, possible
obstructions to the existence of the conjectural motivic ¢t-structure, and vanishing results for the negative
K-theory of nonconnective dg algebras and ring spectra. We describe the first two areas briefly below and
leave the extensive vanishing results for ring spectra to Section 4.

Stability conditions. Bridgeland introduced in [Bri07] the notion of stability conditions on abelian and
triangulated categories. Moreover, he proved in [Bri07, Proposition 5.3] that giving a stability condition on a
triangulated category T is equivalent to giving a bounded t-structure on J together with a stability condition
on T¥. A crucial and open problem in the theory of stability conditions is when Perf(X) admits any stability
conditions at all for X a smooth scheme over C. This is open even for general smooth proper threefolds (see
for example [BMT14]).

Our methods give K-theoretic obstructions to the existence of bounded ¢-structures and hence to stability
conditions. As far as we are aware these are the first obstructions of any kind to the existence of bounded
t-structures.
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Corollary 1.4. Let X be a scheme such that K_1(X) # 0. Then, there exists no bounded t-structure (and
hence no stability condition) on Perf(X). If K_,(X) # 0 for some n > 2, then there exists no bounded
t-structure on Perf(X) with noetherian heart.

The corollary applies to a wide variety of singular schemes, even such simple examples as nodal cubic
curves, where K_;(X) 2 Z. Note that when X is noetherian and singular, it is easy to see that the canonical
bounded t-structure on D¥(X) does not restrict to one on Perf(X) C D®(X). A priori there could be other,
exotic t-structures. We propose the following conjecture, which generalizes Corollary 1.4.

Conjecture 1.5. Let X be a noetherian scheme of finite Krull dimension. If X is not regular, then Perf(X)
admits no bounded t-structure.

Based on Corollary 1.4, when X is singular, D?(X) appears more natural from the point of view of
stability conditions.

Motivic t-structures. One of the major open problems in motives (see [Kah05, Section 4.4.3]) is to
construct a bounded t¢-structure on Voevodsky’s triangulated category DMggl(k)Q of rational effective
geometric motives over a field k. The heart of this t-structure would be the abelian category of mixed
motives. Voevodsky observed in [Voe00] that there can be no integral motivic ¢-structure when there are
smooth projective conic curves over k with no rational points (thus for example when k¥ = Q), although
potentially there could be other bounded t¢-structures that do not satisfy all of the expected properties. Our
next corollary implies a possible approach to proving non-existence of any motivic ¢t-structure. Note that the
heart of the motivic t-structure is expected to be noetherian.

Corollary 1.6. If K,n(DMgn(k)Q) # 0 for some n > 1, then there is no motivic t-structure.

Using our work, Sosnilo has proved in [Sos17] that in fact a different conjecture of Voevodsky, the
nilpotence conjecture of [Voe95], would imply K,n(DMgffn(k)Q) = 0 for all n > 1. Put another way, if

K_n(DMggl(k)Q) # 0 for some n > 1, then the nilpotence conjecture would also be false.

Outline. Section 2 is dedicated to background on t-structures, proving several new inheritance results
about t-structures, K-theoretic excisive squares, and the proof of Theorem 1.1. Section 3 contains the proofs
of Theorem 1.2 and 1.3 as well as our thoughts of how one might attempt to prove Conjecture B in general.
Section 4 contains our applications to the negative K-theory of ring spectra. In Appendix A, we construct a
functorial co-categorical model of the stable category of a Frobenius category. This is needed to check that
the definition of negative K-theory we use agrees with Schlichting’s.

Notation. Throughout, unless otherwise stated, we use homological indexing for chain complexes and
objects in stable co-categories. The oco-category of small stable co-categories and exact functors is written
CatZ:, while the full subcategory of small idempotent complete stable oo-categories is written Catggrf. Given
a small stable oco-category F, we denote by E or E™ the idempotent completion of E. If £ C F is a fully
faithful inclusion such that E is idempotent complete in F', then F/E denotes the Verdier quotient (the
cofiber in Catd}).

If € is an oo-category, Mape (M, N) is the mapping space of morphisms from M to N in €. Given an
idempotent complete stable oco-category F, K(F) always denotes the nonconnective K-theory spectrum of E,
as defined in [BGT13]. We use K°*(E) for the connective cover of K(E), the connective K-theory spectrum
of E. Finally, if R is a ring spectrum, Modg, Algp, and CAlgy denote the co-categories of R-module spectra,
;- R-algebra spectra (if R is commutative), and E.-R-algebra spectra (if R is commutative), respectively
(even if R is discrete). If R is discrete, we let Modg, Algg, and CAlgE denote the ordinary categories of
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discrete right R-modules, discrete associative R-algebras (if R is commutative), and discrete commutative
R-algebras (if R is commutative), respectively; this notation reflects the fact that the abelian category of
discrete right R-modules is equivalent to the heart of the standard t¢-structure on the stable oco-category
MOdR.
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anonymous referee.

We also thank the UIC Visitors’ Fund, Purdue University, UIUC, and Lars Hesselholt for supporting
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2 t-structures

We give some background on stable co-categories in Section 2.1. After recalling ¢-structures in Section 2.2,
we study induced ¢-structures on ind-completions and localizations in Section 2.3. In some cases, our results
extend results in [BBD82] beyond the setting in which all functors admit left and right adjoints that preserve
compact objects (the main assumption in [BBD82]). The ability to construct a t-structure on a localization in
certain circumstances will be used later in the paper when we perform the inductive step in our generalization
of Schlichting’s theorem.

In Section 2.4, we study excisive squares in algebraic K-theory and their connection to adjointability. We
prove that K_;(F) = 0 when E is a small stable co-category with a bounded ¢-structure in Section 2.5.

2.1 Stable oco-categories

For the purposes of studying K-theory, it has been known for some time that triangulated categories are not
sufficient. This was the result of work of Schlichting [Sch02], which gave an example of two stable model
categories with triangulated equivalent homotopy categories but different K-theories. On the other hand,
Toén and Vezzosi [TV04] showed that K-theory is a good invariant of simplicial localizations of Waldhausen
categories in the following sense. If C' and D are good Waldhausen categories and if the simplicial localizations
LHC and LY D are equivalent simplicial categories, then K(C) ~ K(D). Thus, the simplicial localization
loses some information, like passing to the homotopy category, but not so much that K-theory is inaccessible.
These simplicial localizations are a kind of enhancement of the triangulated homotopy categories, and it is
now well-understood that K-theory requires some kind of enhancement.

Unfortunately, computations are difficult in the model categories of simplicial categories and dg categories,
and it is much easier to work in the setting of co-categories. The K-theory of co-categories is studied
in [BGT13] and [Barl6] and it agrees in all cases with Waldhausen K-theory when both are defined. So,
this setting provides a best-of-both-worlds approach to K-theory, where we can not only compute K-theory
correctly but we can also compute maps between the inputs. The theory of co-categories is not the only way
of doing this, but it is by now the most well-developed and it is the most well-suited for the problems we
study.
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A pointed oco-category is an co-category E with an object 0 that is both initial and final. It is called a
zero object of E. A cofiber sequence in a pointed oco-category is a commutative diagram

[
0 d
which is a pushout diagram in the sense of colimits in co-categories as developed in [Lur09]. It is standard
practice to abbreviate and write a — b — ¢ for a cofiber sequence. If f: a — b is a morphism in F, then a
cofiber for f is a cofiber sequence a — b — ¢. Cofibers for f are unique up to homotopy. Fiber sequences and
fibers are defined similarly.

By definition, a pointed oco-category is stable if it has all cofibers and fibers and if a triangle in E is a
fiber sequence if and only if it is a cofiber sequence. It turns out that this definition is equivalent to asking
for a pointed oo-category to have all finite colimits and for the suspension functor > : £ — FE to be an
equivalence (see [Lurl2, Corollary 1.4.2.27]).

Unlike the case of triangulated categories in which the triangulation is extra structure which must be
specified, stable oo-categories are co-categories with certain properties, and the homotopy category Ho(E)
of a stable co-categories is an ordinary category equipped with a canonical triangulation. If C is stable,
[Lurl2, Theorem 1.1.2.15] says that a sequence a — b — ¢ determines a cofiber sequence if and only

a — b — ¢ is a distinguished triangle in the triangulated homotopy category Ho(E). For additional details
and background about stable oco-categories, see [Lurl2, Chapter 1].

—

—

2.2 Definitions and first properties

The notion of a t-structure appears in Beilinson-Bernstein-Deligne [BBD82, Definition 1.3.1]. However, as we
will work with homological indexing, Lurie’s treatment in [Lurl2, Definition 1.2.1.1] is more a convenient
reference. If F is a stable co-category and x € E, we will typically write :[n] for the n-fold suspension X"z
of z. If F C FE is a full subcategory, we will also write F[n] C E for the full subcategory spanned by the
objects of the form z[n], where z is an object of F.

Definition 2.1. A t-structure on a stable co-category E consists of a pair of full subcategories E>g C E
and E¢o C E satisfying the following conditions:

(1) E}o[l] - E>0 and Ego - Ego[l];
(2) if z € B and y € E¢o, then Homg(z,y[—1]) = 0;
(3) every z € E fits into a cofiber sequence 7>ox — & — T<_12 where T>ox € Exo and 7<_12 € E¢o[—1].

An exact functor E — F between stable co-categories equipped with ¢-structures is left t-exact (resp. right
t-exact) if it sends E¢o to F¢o (resp. Exo to F»o). An exact functor is ¢-exact if is both left and right
t-exact. We set E,, = Exo[n] and Eg,, = E¢o[n].

Example 2.2. (a) If A is a small abelian category, then the bounded derived oo-category D?(A) (see
Definition 3.21) admits a canonical ¢-structure, where D?(A)s,, consists of the complexes z such that
H;(x) = 0 for i < n, and similarly for D*(A4)<,.

(b) If A is a Grothendieck abelian category, then the derived co-category D(A) admits a t-structure with
the same description as the previous example. This stable co-category and its t-structure are studied
in [Lurl2, Section 1.3.5].
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(¢) If R is a connective E1-ring spectrum, then the stable presentable co-category Modg of right R-module
spectra admits a t-structure with (Mod 3)20 ~ Mod§', the co-category of connective R-module spectra.
See for example [Lurl2, Proposition 1.4.3.6]. We call this the Postnikov t-structure.

Condition (2) implies in fact that the mapping spaces Mapz(z, y[—1]) are contractible for x € E5o and
y € E¢o. This is not generally the case for the mapping spectra. Indeed, if A is a Grothendieck abelian
category, then moMapp (4)(z[—n], y[—1]) = Ext”!(z,y) for z,y € A. (See [Lurl2, Proposition 1.3.5.6].)

Lemma 2.3. The intersection E>og N E¢o is the full subcategory of Exo consisting of discrete objects.
Moreover, the intersection is an abelian category.

Proof. See [Lurl2, Warning 1.2.1.9] for the first statement and [BBD82, Théoreme 1.3.6] for the second. O

Definition 2.4. The abelian category E> N Egq is called the heart of the ¢-structure (Esq, E<o) on E,
and is denoted E.

Example 2.5. The hearts of the ¢-structures in Example 2.2 are A in (a), A in (b), and ModfﬂR, the abelian
category of right moR-modules, in (c).

The truncations 7>,z and 7¢,x are functorial in the sense that the inclusions EF», — F and E¢,, = E
admit right and left adjoints, respectively, by [Lurl2, Corollary 1.2.1.6]. Let 7,z = 7>, 7<n@[—n] € EY. This
functor is homological by [BBD82, Théoréme 1.3.6], meaning that there are long exact sequences

et Mpg1Z = Tp® — TRl — Tp2 — Tp_1T —> -+

in EY whenever z — y — z is a cofiber sequence in FE.

Definition 2.6. A t-structure (Exq, F<o) on a stable co-category is right separated if

() E<n=0.

nezZ

Left separated t-structures are defined similarly. Left and right separated t¢-structures are called non-
degenerate in [BBD82].

Definition 2.7. If E is a stable co-category with a t-structure (Eso, E<o), we say that the t-structure is
bounded if the inclusion
E'= |J E>-nnEcy > E

n—oo

is an equivalence. Bounded t¢-structures are left and right separated.
For example, the t-structure in Example 2.2(1) is bounded.

Lemma 2.8. If E is a stable co-category equipped with a t-structure (Exo, E<o), then the full subcategory
Eb C E is stable and the t-structure on E restricts to a bounded t-structure on E°.

Proof. Since E” C E is closed under translations (by part (1) of the definition of a t-structure), it is enough
to show that it is closed under cofibers in E. Let £ — y be a map in E® with cofiber z. We must show that z
is bounded. We can assume first that x and y are in F>¢ N Eg, for some n > 0, in which case z € E>( since
the inclusion Eo C E preserves and creates colimits. Moreover, z — z[1] — y[1] is a fiber sequence in E and
z[1] and y[1] are in Eg,41. Since the adjoint E<,4+1 — E preserves limits, it follows that z € E¢,4+1. Hence,
z is bounded. To conclude, we must show that E is closed under truncations in F, which will show that the
t-structure on E restricts to a t-structure on E®. So, suppose that w € E®, and consider T>ow in E. We have
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only to show that 7>ow is bounded above. Choose m > 0 such that 7<,,w ~ 0. Such an m exists because w
is bounded. But, we now have
T<mT>0W ~ TxoT<mW =~ 0,

since the truncation functors commute by [Lurl2, Proposition 1.2.1.10] or [BBD82, Proposition 1.3.5]. [

Lemma 2.9. Suppose that A = E® is the heart of a t-structure on a stable co-category E. If 0 — x — y —
z — 0 is an exact sequence in A, then © — y — z is a cofiber sequence in E.

Proof. Note that using Lemma 2.8 we can assume that E is bounded. Let w be the cofiber of x — y in E.
Because Es C E is a left adjoint, we can identify w with the cofiber of 2 — y in Esq. As Exg % E¥ ~ A
is a left adjoint, the sequence x — y — mow — 0 is exact. But, it is also exact on the left by hypothesis, so
that the cofiber ¢ of the natural map w — z has the property that m,c = 0 for all n € Z. Since bounded
t-structures are non-degenerate, this implies ¢ >~ 0 and hence that w ~ z, as desired. O

We leave the proof of the next lemma to the reader.

Lemma 2.10. Let E and F be stable co-categories with t-structures. If ¢ : E — F is a right (resp. left)
t-exact functor, then ¢ induces a right (resp. left) exvact functor mop : EY — F©.

Recall that if A is an abelian category, then Ko(A) is the Grothendieck group of A, which has generators
[x] for z € A and relations [y] = [z] + [z] whenever x,y, z fit into an exact sequence 0 = = — y — z — 0.
Similarly, if E is a small stable co-category, then Ko(FE) is the free abelian group on symbols [z] for x € E
modulo the relation [y] = [z] + [z] whenever  — y — z is a cofiber sequence in E.

It follows from Lemma 2.9 that there is a natural map Ko(EY) — Ko(FE) when E is equipped with a
t-structure.

Lemma 2.11. If E is a small stable co-category equipped with a bounded t-structure, then the natural map
Ko(E®) = Ko(E) is an isomorphism.

Proof. Using the boundedness of the t-structure, it is immediate that Ko(EY) — Ko(E) is surjective because
every object of E is a finite iterated extension of objects in E¥. On the other hand, by assigning to z € E

the sum
> (=1)"maz],
nezZ
we obtain a map Ko(E) — Ko(E"), which splits the surjection. O

2.3 Induced t-structures on ind-completions and localizations

We give several results about t-structures on stable co-categories. Some of these, especially the equivalence
of conditions (i) through (iv) in Proposition 2.20, have not, as far as we are aware, been proved before
either for oco-categories or for triangulated categories, so we treat the subject in greater detail than is strictly
needed for the rest of the paper. However, there is some overlap between this section and [Lur, Appendix C]
and [HPV16].

A t-structure (Eso, F<o) on a stable co-category E is bounded below if the natural map

E-=|J)E:¥m—E
nezZ
is an equivalence and right complete if the natural map

T>m+1

E—>hm<---—>E>m E>m+1—>--->



9 2.3 Induced t-structures on ind-completions and localizations

is an equivalence. Bounded above and left complete ¢-structures are defined similarly. A bounded below
t-structure is right separated as is a right complete t-structure. Neither converse is true in general.

The following definitions were introduced in [Lurl2, Section 1]. A t-structure on a stable presentable
oo-category E is accessible if E( is presentable. A t-structure on a stable presentable oco-category E is
compatible with filtered colimits if F¢q is closed under filtered colimits in E.

Example 2.12. Example 2.2(a) is bounded (above and below). It is neither left or right complete, nor is it
accessible or compatible with filtered colimits, as these notions are reserved for presentable oco-categories.
Examples 2.2(b) and (c) are right complete, accessible, and compatible with filtered colimits.

The following proposition also appears in [Lur, Lemma C.2.4.3].

Proposition 2.13. Suppose that E is a small stable co-category with a t-structure. Then, Ind(Exo) C Ind(E)
determines the non-negative part of an accessible t-structure on Ind(E) which is is compatible with filtered
colimits and such that the inclusion functor E — Ind(E) is t-exact. Moreover, if the t-structure on E is
bounded below, then Ind(E) is right complete.

Proof. The functor Ind(E>¢) — Ind(F) is fully faithful by [Lur09, Proposition 5.3.5.11], and we let Ind(E)>¢
denote the essential image. Similarly, let Ind(E)<_1 denote the essential image of the fully faithful functor
Ind(E<—_1) — Ind(E). We claim that this pair of subcategories defines a ¢-structure on Ind(E). Condition
(1) of Definition 2.1 is immediate. Suppose that x ~ colim;ey «; is in Ind(E) >, where each z; is in E, and
let y ~ colim;ecy; be in Ind(E)<_1, with each y; € E<_;. Then, by definition of the ind-completion of E,

Mapy,q(g) (@, y) ~ lim Cogim Mapg(zi,y;),

which is contractible since each Mapg(x;,y;) is contractible. Hence, (2) holds. To verify condition (3), note
that if © ~ colim;¢; x; is a filtered colimit of objects x; € E, then

colim Tox; — x — colim7¢_1x;
1 1

is a cofiber sequence since cofiber sequences commute with colimits. Hence, (3) holds.

To see that the t-structure is compatible with filtered colimits, note that y € Ind(E)<_; if and only if
Mapy, (g (7,y) ~ 0 for all x € Ind(E)>0 ~ Ind(E>o). However, this latter condition holds if and only if
Mapy,a(py(z,y) = 0 for all z € E3 since Ind(E3o) is generated by Eo under filtered colimits. Since the
objects x € E>9 C E are compact, this condition is closed under filtered colimits in y, as desired.

By construction, the functor E — Ind(F) is t-exact, and the t-structure on Ind(F) is accessible as
Ind(E)so ~ Ind(E5o) is presentable.

To finish the proof, we first show right separatedness. Suppose that y is an object of [, ., Ind(E)<n.
Since the objects of E are compact generators for Ind(E), it is enough to show that the mapping spaces
Mapy,q(py(z,y) =0 for all x € E. Fix z € E. We have for all n a natural equivalence

Mapr,q(g) (z,y) ~ Mapr,q(p) (T<n,y).

However, since the t-structure on E is bounded below, 1<,z ~ 0 for n sufficiently small. Therefore,
Mapy, (g (7, y) = 0. Hence, y =~ 0.

Since Ind(E) <o — Ind(E) is closed under finite coproducts and filtered colimits it is closed under countable
coproducts. Therefore, it follows by the right complete version of [Lurl2, Proposition 1.2.1.19] that Ind(E) is
right separated if and only if it is right complete. This completes the proof.

We will call the t-structure on Ind(E) constructed in Proposition 2.13 the induced ¢-structure. The
proof of the proposition does not extend to show that bounded above t-structures on F induce left complete
t-structures on Ind(E). The obstruction is that the inclusion of Ind(E)s, is a left adjoint rather than a right
adjoint.



2.3 Induced t-structures on ind-completions and localizations 10

Corollary 2.14. Let E be a small stable co-category with a bounded t-structure. Then, E is idempotent
complete.

Proof. Let F be the idempotent completion of E. Equivalently, F' ~ Ind(E)“, the full subcategory of compact
objects of Ind(E). We claim that the t-structure on E extends to a bounded ¢-structure on F. It is enough
to check that the truncation functors 7<p and 7¢ on Ind(E) preserve compact objects. But, if x € F is a
summand of y € F, it follows that T7¢ox is a summand of 7¢oy, and similarly for 7>¢x. This proves that
the t-structure on Ind(E) restricts to a bounded t-structure on F. The heart F'¥ must be the idempotent
completion of EY. But, since abelian categories are idempotent complete, EY — F% is an equivalence.
Hence, by Lemma 2.11, Ko(E) — Ko(F) is an isomorphism. It follows from Thomason’s classification of
dense subcategories of triangulated categories that E ~ F. See [Tho97, Theorem 2.1].

We can also avoid appealing to Thomason’s result as follows. Given an object x € F' and an integer
n > 0, we say that = has amplitude at most n if there is an interval [a,b] with b — a < n and such that
mix = 0 for i ¢ [a,b]. As the t-structure on F is bounded, every object has amplitude at most n for some
integer n > 0. Since EY ~ F¥ | if 2 has amplitude at most 0, then 2 € E. We proceed by induction on the
amplitude. Assume that for every object y of F' of amplitude at most n — 1, where n > 1, we have that y
is in the subcategory FE. Fix x € F' an object of amplitude at most n and assume, possibly by suspending,
that mz = 0 for i ¢ [0,n]. Consider the fiber sequence 7512 —  — mox. The objects 7>12 and myx have
amplitude at most n — 1 and hence they are in E. But, z is the fiber of mox — 7>12[1] and E C F' is full.
Since F is stable, x is in F, as desired. O]

In the rest of this section, we establish an important device for checking when a t-exact fully faithful

functor i : E — F of small stable oo-categories induces a t-structure on the cofiber G = F/E in Cat®"f| the
oo-category of small idempotent complete stable co-categories and exact functors. Recall that G is equivalent
to the idempotent completion of the Verdier localization of F' by E (see [BGT13, Proposition 5.13]). We
begin with a couple of easy lemmas.

Lemma 2.15. Ifi: E — F is a t-exact (resp. right t-exact, resp. left t-exact) functor of stable co-categories
equipped with t-structures, then the induced functor i* : Ind(E) — Ind(F') is t-exact (resp. right t-ezact, resp.
left t-exact) with respect to the induced t-structures on Ind(E) and Ind(F).

Proof. The exactness of i* is immediate as it preserves all small colimits and hence finite limits since Ind(E)
and Ind(F) are stable. Because Ind(E)>o ~ Ind(Ex¢) and Ind(F)so ~ Ind(F>o), it is immediate that
i* : Ind(E) — Ind(F) is right t-exact if ¢ is. The same holds for left t-exactness. O

Lemma 2.16. Let i : E — F be a t-exact fully faithful functor of stable co-categories equipped with
t-structures. Then, the natural map

Ind(F)® — Ind(F)® NInd(E)
18 an exact equivalence of abelian categories.

Proof. Let x € Ind(F') be an object of the intersection. Write x = i*y for some y € Ind(E) (which is unique
up to equivalence). The fact that ¢* is t-exact and fully faithful implies that 751y ~ 0 and 7¢<_1y >~ 0. In
particular, y is contained in Ind(E)¥. It follows that the map in the lemma is essentially surjective. That
the map is fully faithful follows from the fact that Ind(E) — Ind(F') is fully faithful, while exactness again
follows from Lemma 2.15. O

Recall from [Lurl2, Proposition 1.4.4.11] that if C is a stable presentable oco-category and €’ C € is a
full presentable subcategory closed under colimits and extensions in €, then €' ~ € for some accessible ¢-
structure on C. We will say that the ¢-structure (C>, C<o) on € is the ¢-structure generated by €’ C €. This
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provides a way for defining many t-structures on stable presentable oo-categories. Note that if € ~ Ind(FE),
where E is equipped with a t-structure (Exo, E<o), then the induced ¢-structure on Ind(FE) is a special case
of this phenomenon: it is generated by Ind(Exg).

Definition 2.17. Let A C B be an exact fully faithful functor of abelian categories. We identify A with
its essential image in B. Say that A is a weak Serre subcategory of B if A is closed under extensions in
B. We say that A is a Serre subcategory of B (or a localizing subcategory of B) if A is a weak Serre
subcategory and A is additionally closed under taking subobjects and quotient objects in B.

Example 2.18. Let R be a right coherent ring. Then, the category Modg’w of finitely presented (discrete)

right R-modules is an abelian subcategory of Modg. It is always weak Serre, but it is Serre if and only if R
is right noetherian.

Lemma 2.19. Let E — F be a t-exact fully faithful functor of stable co-categories equipped with t-structures.
Then, the induced map EY — F exhibits EY as a weak Serre subcategory of F© .

Proof. The fact that EY — F< is exact and fully faithful follows from Lemma 2.10 and the fully faithfulness of
E — F. To check that EY is closed under extensions in F'¥, consider an exact sequence 0 — & — y — z — 0
where z,2 € EY and y € F¥. Then, by Lemma 2.9, z — y — z is a cofiber sequence in F. Hence, we can
rewrite y as the fiber of z — z[1]. Since E — F' is fully faithful and preserves fibers, it follows that y is in the
essential image of E — F', as desired. We conclude by using Lemma 2.16. O

The first draft of this paper contained conditions (i) through (iv) of the next proposition. Benjamin
Hennion pointed out another condition, (v) below, which is shown to be equivalent to condition (iii)
in [HPV16, Proposition A.5].

Proposition 2.20. Leti: E — F be a t-exact fully faithful functor of stable co-categories equipped with
bounded t-structures, and let j : F — G be the cofiber in CatP™. Provide Ind(G) with the accessible t-structure
generated by the smallest extension-closed cocomplete subcategory of Ind(G) containing the image of Fo, and
equip Ind(E) and Ind(F') with the induced t-structures of Proposition 2.13. The following are equivalent:

(i) the essential image of the embedding i° : EY — F% is a Serre subcategory of F;
(ii) the t-structure on Ind(G) restricts to a t-structure on G such that j : F — G is t-ezact;
(iii) the induced functor j* : Ind(F) — Ind(G) is t-exact;
(iv) the essential image of the embedding Ind(E)® — Ind(F)" is a Serre subcategory of Ind(F)?;

(v) the counit map i*i,x — x induces a monomorphism mo(i*i.x) — mo(x) in Ind(F)Y for every object x
of Ind(F), where i, is the right adjoint of i* : Ind(E) — Ind(F).

If these conditions hold, then the t-structure on G in (ii) is bounded.

Proof. Assume (i). Write G’ = F/FE for the Verdier quotient of F' by E. In particular, G is the idempotent
completion of G'. We will construct a bounded ¢-structure on G’ such that the functors F' — G’ and
G’ C G C Ind(G) are t-exact. By Corollary 2.14, G’ will be idempotent complete. This will establish (ii).
Let L : F — G’ denote the quotient functor. We define 7>¢9Lz = L7soz, and similarly 7oLz = L7¢o. It
follows that (1) and (3) from Definition 2.1 hold trivially. Now, consider Home (Lz, Ly[—1]), where z € F
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and y € F¢o. Pick f € Homg/ (L, Ly[—1]). We can represent f by a zig-zag x < z — y[—1], where the
cofiber ¢ of x < z is in E. Now, consider the following diagram

T}()Z*)Z;)Tg_lz

|

T>0X — > T ——> 71T

| |

T>0C —— C——> T¢-1C

of truncation sequences. (Warning: while the horizontal sequences are always cofiber sequences, only the
central vertical sequence is a cofiber sequence in general.) The fact that y € F¢o means that the map
z — y[—1] factors through 7<_;z. Now, the fact that = is connective means that 7_,z € E for all n > 1.
This is where we use the fact that EV is a Serre subcategory of F¥, to ensure that the quotient m_;z of
moc is also in E. In particular, 759z — 702 ~ x has cofiber in E (though it is not in general 7>¢c). The

commutative diagram
z \
=

T T>0% 0 y[—1]
0

/
N A

T>0%

=

shows that f is nullhomotopic, which completes the construction of a bounded ¢-structure on G’, which after
the fact is idempotent complete, so G’ ~ G.

The inclusion G — Ind(G) is evidently right t-exact with respect to the t-structure defined above on
G’ ~ G and the given t-structure on Ind(G). Let € F¢_1. To see left t-exactness, it suffices to check that
Mapr,a(y (Y, Lx) ~ 0 for all y € Ind(G)so. But, since Ind(G)3o is generated under filtered colimits and
extensions by images of the objects z € Fx, this result follows from the computation above. Finally, by
construction, F' — G’ ~ G is t-exact. This completes the proof that (i) implies (ii).

Assume (ii). By definition of the t-structure on Ind(G), the localization functor L : Ind(F) — Ind(G) is
right -exact. Let 2 € Ind(F)<—1. We must check that Mapy,q(¢(y, Lz) >~ 0 for all y € Ind(G)z0. To do so,
it is enough to check this for y of the form Lz for some z € F>(,. However, we can write x =~ colim; z; for
a filtered co-category I and some z; € F¢_; since we use the ¢-structure on Ind(F') induced by Ind(F>o).
Hence,

Mapy, () (L2, Lz) ~ collim Mapy, (e (L2, L)

since L commutes with colimits and Lz is compact in Ind(G). As Lz € G»o and Lz; € G¢_1, (ii) shows that
each mapping space in the colimit on the right is contractible, as desired. Hence, (ii) implies (iii).

To see that (iii) implies (iv), note first that the ¢-structures on Ind(F) and Ind(F') are right complete
and hence right separated by Proposition 2.13. It follows from Lemma 2.19 that Ind(E)Y C Ind(F)" is
weak Serre. Denote by i* : Ind(E) — Ind(F) the induced functor, and let  C i*y be a subobject, where
z € Ind(F)? and y € Ind(E)®. Then, by t-exactness, j*z C j*i*y = 0, so j*z = 0 in Ind(G)¥. It follows that
j*z is in Ind(F)¥ and in Ind(E). Hence, by Lemma 2.16, z = i*z for some z € Ind(E)"¥. Thus, (iv) holds.

Now, suppose that (iv) holds, and let z C 4y for some y € EY and 2 € F¥. Then, z ~ i*z for some
z € Ind(E)" by hypothesis (iv). However, as an object z of Ind(E) is compact if and only if *z is compact,
it follows that in fact z € E. Hence, (iv) implies (i).
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The equivalence of (iii) and (v) is [HPV16, Proposition A.5].
Finally, the boundedness of the ¢-structure on G assuming that (ii) holds follows from the boundedness of
the t-structure on F, the essential surjectivity of j up to retracts, and the t-exactness of j. O

2.4 Excisive squares and adjointability

|l

G——H

Consider a commutative square
—

of small idempotent complete stable co-categories and fully faithful functors. In this section, we establish
general conditions (Lemma 2.29, Proposition 2.30, and Theorem 2.31) which guarantee that the induced map

K(E) — K(F) (2)
is a pushout square of spectra and hence gives a long exact sequence
= Ky(B) 2 K (F) 9K (G) = Ky (H) 5 Kpq (E) — -+

of K-groups. We check these conditions in two situations: for Tate objects (as studied in [Henl7]) later in
this section and for ¢-structures in the proof of Theorem 2.35. We include the former for completeness, while
the latter is what we need later in the paper. We begin with a standard lemma about pushouts and cofibers.

I

Lemma 2.21. Suppose that

f
—

is a commulative diagram in a stable co-category. Then, the induced map cofib(f) — cofib(g) is an equivalence
if and only if the square is a pushout square.

Proof. If the square is a pushout square, then the horizontal cofibers are equivalent (see [Lur09, Lemma 4.4.2.1]).
This is true in any co-category with pushouts and a terminal object. So, assume that cofib(f) — cofib(g) is
an equivalence. Let S be the pushout of P and N over M, and let T" be an arbitrary spectrum. Consider the
commutative diagram

Map(cofib(g),T) —— Map(Q,T) —— Map(P, T

| | |

Map(cofib(f),T) —— Map(S,T) —— Map(P, T)

of fiber sequences of mapping spaces. The outer vertical arrows are equivalences by hypothesis. In general,
this does not in general let us conclude that the middle vertical arrow is an equivalence. However, because
these are fiber sequences of infinite loop spaces, the long exact sequence in homotopy groups shows that
Mapsp(Q, T)— Mapsp(S, T) is an equivalence for all T. Hence, S — @ is an equivalence. O
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Let 1% and ﬁ\/—é denote the cofibers in CatP™™" of the horizontal maps in (1). Then, by localization in
K-theory, there is a commutative diagram

K(E) —— K(F) —— K(F/E) (3)

T

K(GQ) —— K(H) —— K(H/G)

in which the horizontal sequences are cofiber sequences. Hence, using Lemma 2.21, in order to check that (2)

is a pushout square it suffices (and is necessary) to see that K(F/E) — K(H/G) is an equivalence. This
occurs in particular when F/E — H/G is an equivalence after idempotent completion.

Definition 2.22. Say that a square as in (1) is an excisive square if F/E — H/G is an equivalence.

Remark 2.23. Tt is easy to check using the full faithfulness of F//E — H/G that an excisive square is
cartesian, so that £ — F' N G is an equivalence.

Example 2.24. (a) If (1) is a pushout square, then it is an excisive square.

(b) Suppose that E = 0 and that H = (F,G) is a semiorthogonal decomposition of H. Recall that
this means that F' and G are full stable subcategories of H such that

(i) FNG =0,
(ii) every object € H can be written in a cofiber sequence y — x — z where y € G and z € F, and
(iii) the mapping spaces Mapy (y, z) vanish for all y € G and all z € F.

Under these conditions, it is easy to check by hand that the induced map F — H/G is an equivalence,
which induces a (split) localization sequence K(G) — K(H) — K(F'). For more details, see [BGT13].

Remark 2.25. Note that despite conditions (i) and (ii), H is not generally the coproduct in CatE! of F
and G. The coproduct is F'@ G, and in that category one has the additional criterion that Mapy(z,y) = 0 for
y € G and z € F. That is, one has an orthogonal decomposition. This is a much stronger hypothesis, but
it is rarely satisfied in situations of interest. For example, Beilinson’s decomposition of D°(P+) ~ (0, 0(1))
gives a semiorthogonal decomposition of D°(PP1) which is not orthogonal (see [Huy06, Corollary 8.29]).

In Proposition 2.30 below, we give a criterion for checking that certain squares (1) are excisive squares.
Our arguments are based on those of Benjamin Hennion [Hen17, Proposition 4.2], which in turn are based on
those of Sho Saito [Sail5]. We need some preliminaries first.

Definition 2.26 (See [Lurl2, Definition 4.7.5.13]). Consider a commutative diagram

3 5
p*l Jq*
G5

of oco-categories such that i* and j* admit right adjoints 7, and j,., respectively. Fix a natural equivalence
a: j*p* ~ ¢*i* (necessarily unique up to homotopy). The diagram is right adjointable if the natural map
Pris = Juf P gt = g

.
K2
—

.

J
—

is an equivalence.
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Remark 2.27. In general, the right adjointability of a diagram as in Definition 2.26 is not equivalent to the
adjointability of the transpose diagram.

Proposition 2.28. Consider a commutative diagram

3

EFE——F
614414>11

of fully faithful exact functors of stable idempotent complete co-categories. The following conditions are
equivalent:

(1) the induced commutative diagram

Ind(F) — s d(F/E)

/| |

Ind(H) — nd(H/G)

of stable presentable co-categories is right adjointable, where f : F — F/E and g : H — H/G are the
quotient maps and v : F/E — H/G is the induced map on the quotients;

(2) for any x € Ind(F), if isx ~ 0 in Ind(F), then j.q¢*x ~ 0 in Ind(G), where i, and j. are right adjoint
to v* and j*, respectively.

The functors f*,g*,i*,... all preserve colimits and hence admit right adjoints which we will denote
by f«, g«,ix,... For the proof and the remainder of the section, we will make use of the cofiber sequences
i*iyx — & — fof*r in Ind(F) when 2 € Ind(F) and Ind(E) * Ind(F) EAR Ind(F/E) is a localization
sequence.

Proof. Assume (1). Choose x € Ind(F) such that i,z ~ 0. Then, z ~ f,f*x. Now, consider the cofiber
sequence

F 0@ fof 0 = ¢ [ f" 0 = 9" fuf 2 = g™ [ fu [T > gur™ fr .
Adjointability means that the map ¢* fi f*x — ¢.r* f*z is an equivalence so that j*j.q* f« f*x ~ 0. Since j*
is fully faithful, this means that j.q* f. f*z ~ j.q*x ~ 0, as desired.

We prove (2) implies (1). Let y € Ind(F/E). Then, the counit map f*f.y — y is an equivalence. Set
x = f,y. Consider the commutative diagram

it —— ¢Fr —— ¢* fu ffx

L

J i@t —— ¢'r —— g.g" " x

of cofiber sequences in Ind(G). Since i,z ~ i, foy ~ 0, we have that j.q*z ~ 0 by hypothesis (3). Hence,
both terms on the left vanish, so the map ¢* f, f*x — ¢.9"¢*x is an equivalence. But, ¢g.g*¢*x ~ g.v* f*z. In
particular, g.r*y ~ ¢* fyy for all y € Ind(F/E). O
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Lemma 2.29. Suppose that a commutative diagram

%

EFE——F
o
G—1sH
of fully faithful functors of stable idempotent complete co-categories satisfies the equivalent conditions of

Proposition 2.28. Then, F/E — H/G is fully faithful.

Proof. We adopt the notation of the proof of the previous proposition. We show that the natural map
Mapr,a(r/g)(f*2, [*y) = Mapyq /) (r* f 2, r* f*y) is an equivalence for all z,y € F/E. There are natural
equivalences,

*

Maplnd(H/G) (r*fra,r fry) ~ Maplnd(H/G)(g gz, fry)
=~ Maplnd(H)(q*fUa g« f*y)
= Maplnd(H)(q*xa q" fuf"y)
= Maplnd(F)($7 [« f)
~ Mapra(r/k) (fz, fy),

where the third equivalence is via right adjointability and the fourth follows from the fact that ¢ is fully
faithful. O

Now, we come to an important test for adjointability. We include it for completeness, as it will not be used
in the rest of the paper. Rather, when needed, we will check that the equivalent conditions of Proposition 2.28
are satisfied. However, the proof is similar to one step in the proof of Theorem 2.35.

Proposition 2.30. Let

E——F
ol
G—1sH

be a commutative square of fully faithful functors in Catgsrf such that

(a) every object y of G is a cofiltered limit y ~ limp p(z3) such that jy ~ limp jpzg, and

(b) the essential image of q consists of j-cocompact objects of H, meaning that the natural map

colim Mapy; (jys, qx) — Mapy (lim jys, gz)
is an equivalence for all x € F whenever the limit limp yg exists in G and j preserves the limit.

Then, the induced map F/E — H/G is fully faithful.
Proof. By Proposition 2.28 and Lemma 2.29, it suffices to prove that j.q*x ~ 0 for all x € Ind(F') such that
x>~ 0.

So, assume that i,z ~ 0 for some x € Ind(F"). Note that j.¢*z ~ 0 if and only if Mapy,q(c) (¥, j«q*2) = 0
for all y € G. Note also that ¢* preserves filtered colimits. Pick one y € G, and use condition (a) to write
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y =~ limp pzg where j preserves this limit. If we write colimy z, >~ x for some filtered co-category A with
ZTq € F, then, using the compactness of j*y, there is a chain of equivalences

Mapr,q(g) (¥, J+¢" %) ~ Mappgcu) (57, ¢ )

~ coLim Mapy (jy, ¢Ta)
~ colim M j i

co;m apH(j %npzﬁ, q7q)
~ co}lé‘irn MapH(li]gnijB, q7q)
~ coli lim M ]

coAlm c%oll{n apy (jpzs, 4%a)
~ colim colim Map (izg, )
o~ C%ljgn Mapy,q(py (i 25, 7)

= colim Mapr,q(g) (25, i)

~ 0,
where we use condition (b) to justify the fifth equivalence. This completes the proof. O
Theorem 2.31. Let

E——F

P

G—1sH

be a commutative square of fully faithful functors in Cat®™™" such that F/E — H/G is fully faithful and such
that

(c) every object x of H is a retract of an object ' such that =’ fits in to a cofiber sequence jy — x’ — qz
for some y in G and some z in F.

Then, the induced square

K(E) —— K(F)
K )

| ]
(G) — K(H

18 a pushout square of spectra.

Proof. By Lemma 2.21, it is enough to show that K(F/:]E’) — K(I%) is an equivalence, so it is enough to
show that F/E — H/G is an equivalence. By hypothesis this functor is fully faithful, so it is enough to check

essential surjectivity. Every object of H/G is a retract of the image of an object z of H, which is in turn a
retract of the image of an object 2’ of H fitting into a cofiber sequence as in (c¢). Since H — H/G Xkills jy,

it follows that every object of I% is a retract of the image of an object of F'. Since F/E is idempotent
complete by definition, F/E — H/G is essentially surjective. O

Remark 2.32. Note that conditions (a) and (b) in Proposition 2.30 can be used to check fully faithfulness
of F/E — H/G.
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Example 2.33. Conditions (a) through (c) of Proposition 2.30 and Theorem 2.31 are meant to abstract
the basic property of Tate objects. Given a stable idempotent complete co-category FE, the oo-category
Tate(E) of Tate objects in E fits into a commutative square

E——Ind(E)

| ]

Pro(E) —— Tate(FE),

and this square satisfies the properties of the theorem (for ease of exposition, we suppress set-theoretic issues
and refer the reader to [Henl7] for a careful treatment). To check condition (a), note that every object of
Pro(E) can be written as a cofiltered limit, and Pro(E) — Tate(E) preserves cofiltered limits by the universal
property of Tate objects (see [Henl7, Theorem 2.6]). Condition (b) follows from the fact that there is a
natural embedding Tate(E) — ProInd(E) which preserves cofiltered limits by definition of the mapping
spaces in a pro-category. Condition (c) follows for example from [Hen17, Corollary 3.4].

The key point about the oco-category of Tate objects is that, by the theorem, K(Tate(E)) ~ YK(FE).
Indeed, K(Ind(F)) ~ 0 ~ K(Pro(E)) because of the existence of countable (co)products, which means that

K(E) ————0

£—> K(Tate(E))

is a pushout square.

Remark 2.34. It is possible to build an co-category Tate™(E) of k-Tate objects out of Ind(E)* and "Pro(E),
the full subcategory of k-cocompact objects in Pro(F). This construction has the same properties as Tate(E)
but has the advantage that it is small and hence does not require working in a larger universe. Such an
approach is closer to the spirit of this paper and is done for exact categories in [BGW16].

2.5 Vanishing of K_;

We prove our analogue of Schlichting’s theorem [Sch06, Theorem 6] in the case of a stable co-category
admitting a bounded ¢-structure. The proof differs substantially from that of Schlichting.

Theorem 2.35. If E is a small stable co-category with a bounded t-structure, then K_1(E) = 0.

Proof. The t-structure on E extends to a t-structure on Ind(£) with nonnegative objects Ind(E>¢) ~ Ind(E)>o
by Proposition 2.13. Let A = E¥ denote the heart of E, and fix x an uncountable regular cardinal such that
E is essentially k-small. Consider the commutative diagram of fully faithful functors

T% Ind¥ (E) (4)
Ind; (E)* —— Ind 4 (E)",

where

e Ind}(E) C U, Ind(E)<, ~ U, Ind(E)<, is the full subcategory of bounded above objects = with
m,x € A for all n,
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e Ind, (E)" C U, Ind(E>,)" is the full subcategory of the s-compact bounded below objects with
mn(x) € A for all n, and

e Inds(F)" is the full subcategory of Ind(E) of objects # € Ind(E) such that <,z € Ind}(E) and
T>n® € Ind (E)" for all n.

Note that the inclusion Ind}(E) — Ind(E) factors through Inda(E)*. Indeed, for z € Ind}(E), the
truncations 7¢, are in Indj; (E) for all n. Moreover, 7>,z is bounded and has homotopy objects all in A, so
that 7>, is in fact in F; it follows that 7>, € Ind, (E)".

The objects of Ind, (E)" are in fact xk-compact in Ind(E) because Ind(F=¢) — Ind(E) preserves -
compact objects as the right adjoint preserves (w-)filtered colimits, and hence all x-filtered colimits. For
the same reason, Ind(Es,) — Ind(Ex,,_1) preserves k-compact objects. Clearly, if x € Ind4(E)”, then
every truncation 7>,z is k-compact, however we do not claim that every x-compact object x in Ind(E) with
mn(x) € A is contained in Ind 4 (E)".

We do claim that

(1) Inda(E)", Ind}(E), and Ind, (E)* are essentially small idempotent complete stable subcategories of
Ind(E) and

(2) that the t-structure on Ind(F) restricts to a t-structure on Ind 4 (E)".

After establishing these facts, we prove that we can apply Theorem 2.31 to the square (4). This gives a
pushout square of K-theory spectra which lets us prove in the end that K_;(F) = 0.

In fact Ind4(E)" is contained in Ind(E)". Since the bounded below objects of Ind 4 (F)" are x-compact,
it is enough to check that Ind}{(E) C Ind(E)*. Let = € Ind}(F), so that in particular x € Ind(E),, for
some n. There are maps

TnZ[N] X Topn® = Top_1% — Tep_2T — -+ — L. (5)

Since the induced t-structure on Ind(FE) is right complete by Proposition 2.13, the colimit of the sequence is
equivalent to x. To see this, note that it is enough to prove that colim; Map(y, T>n—;z) >~ Map(y, z) for all
y € E. However, since the ¢-structure on E is bounded, any such y is contained in Es,,_; for some ¢. Using
the two cofiber sequences

Ten—il — Ten—jT — T<n—i—1T2n—j;T

and
Ten—il — L — T<n—i—17,

for j > i, we see that
Map(y, T>n—iv) ~ Map(y, T>n—;z)

and
Map(y, T>n—ix) ~ Map(y, x)

for j > 4. This proves that the colimit of (5) is indeed z. However, each object 75,z is actually in E, so
this is a k-small colimit of compact objects and hence of k-compact objects in Ind(E). Thus, x is k-compact
by [Lur09, Corollary 5.3.4.15].

That these three co-categories are essentially small follows from the fact that Ind 4 (E)* C Ind(E)"* and
the fact that Ind(E)" is essentially small because every object is the colimit in presheaves on E of a k-small
diagram [Lur09, Proposition 5.3.4.17]. Moreover, Ind’(E) is idempotent complete because Ind(E)<o and
A are idempotent complete, while each Ind(E>,,)" is idempotent complete since it is closed under x-small
colimits, and in particular it is closed under idempotent completion because  is uncountable. It follows
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" is given by a condition on the

that Ind 4 (E)” is idempotent complete as well since inclusion in Ind4(E)
truncations.

These three co-categories are closed under suspension and desuspension in Ind(E), so to see that they
are stable, it is enough to show that they are closed under either taking fibers or cofibers in Ind(E)
by [Lurl2, Lemma 1.1.3.3] and its opposite version. We first note that if z is the cofiber of a map f: 2z — y
in Ind(FE) between two objects such that 7,x and 7,y are in A for all n, then 7,z is an extension of objects
of A, namely of ker(m, 112 — T,41y) by coker(m,z — m,y). Since A is closed under extension in Ind(E)",
by Lemma 2.19, we see that m,z € A.

Stability of Indj(E) follows from the fact the cofiber of a map of bounded above objects is bounded
above; stability of Ind, (E)" follows from the fact that Ind(Es,)" is closed under cofibers in Ind(E).

We show that Ind 4 (E)" is stable, by showing that it is closed under taking fibers in Ind(E). If z - 2 — y
is a fiber sequence in Ind(E) where x — y is in Ind 4(E)*, then 7,z € A for all n, so that 1<,z € Ind} (E)
for all n. Hence, it is enough to show that 7>,z € Ind(Es,)". However, 7>, : Ind(E) — Ind(E>,,) preserves
limits as it is a right adjoint. Hence, 7>,z is the fiber of 75,& — 7>,y in Ind(Es(). Now, as we have chosen
k to be uncountable and such that F is essentially x-small, we see by [Lur09, Proposition 5.4.7.4] that the
inclusion Ind(Es,,)" — Ind(Esy,) is closed under all finite limits in Ind(E>,,), and in particular under fibers.
Hence, z € Ind4(F)", which completes the proof of claim (1).

Suppose that € Ind4(E)". To show that the t-structure on Ind(E) restricts to Ind4(E)", we show
that 7>,z and 7¢,x are in Ind4(E)®. In fact, by stability, it is sufficient to check only one of these.
Moreover, TsmTsn® ~ T, for m > n, so that if € Ind(E)”, then so is 75,z for all m. Similarly,
T<mTsn® € E CInd}{(E). So, T € Ind (E), which proves that Ind 4 (E)* inherits the induced ¢-structure
from Ind(E). This proves (2). Note that by construction the truncation functors on Ind4(E)* preserve
Ind}(E) and Ind;(E)*, which therefore inherit compatible ¢-structures.

To complete the proof, we will show that the square (4) satisfies the hypotheses of Theorem 2.31. The
validity of condition (c) in the theorem is due to the ¢-structure, which gives cofiber sequence >0z — x —
T<_17 for every = € Inda(E)", where 7507 € Ind,(E)* and 7<_;z € Ind};(E). To prove that the induced
functor

Ind}{(E)/E — Inda(E)"/Ind; (E)"
is fully faithful, we will prove directly that the square satisfies Proposition 2.28(2) and invoke Lemma 2.29.

Let 2 € Ind(Ind}{(E)). We need to show that if i,z ~ 0 then j.¢*x ~ 0. Tt is enough to prove that
Maplnd(lnd;(E),@)(y,j*q*m) ~ 0 for y € Ind,(E)". Choose a filtered oo-category B and an equivalence
colimp g ~ = where zg € IndX(E) for all 8 in B. Using adjunctions and compactness, we get a chain of
equivalences

Mapyq(1na; (5ys) (U5 324 ) ~ Maprya(md (1)) (7Y, 47 2)
~ co}lgim Maplnd(E)n (Jy,qwp)
o~ cogm Mapr,a(g (Y; 25)
~ co}aim co}}m Maplnd(E) (Tgnlla 3?/3)
o co}lgim co}lim Mapy, 4+ () (T<ny, T3)
~ collirn co}lgim Mapy,q+ (g) (T<ny, 2p)
= colim Mapy, g (mat (m)) (i*T<ny, )
~ collim Mapr,a(p) (T<n ¥ ixT)

~ 0,
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where we use (i) the crucial fact that zg is bounded above as well as the t-structure to observe that the
colimit colimy, e Mapy, (g (T<ny, zp) stabilizes at Mapy,q(g) (v, ) and (i) that 7<,jy is in B C Ind (E)
and hence i*7¢,,jy is compact in Ind(Ind’(E)) to prove the eighth equivalence.

It follows that there is a cofiber sequence

K(E) — K(Ind; (E)") & K(Ind} (E)) — K(Ind 4(E)*).

of K-theory spectra. It is easy to see that the K-theory spectra of the idempotent complete stable co-
categories Ind’(F) and Ind(E)* are zero. Indeed, there is an endofunctor T : Ind;(E)* — Ind,(E)"
given by T' = @n>0 id[2n] since Ind(E)" is closed under countable coproducts. We have an equivalence of
endofunctors T' ~ id ¢T[2]. Hence, the identity map on K(Ind (E)") is nullhomotopic. The same argument
but with desuspensions shows that K(Ind}j (FE)) ~ 0. Hence,

Ko(Ind4(E)®) 2 K_4(E).
Given an object = of Ind4(E)", we have a canonical triangle
T>0L — & — T<—1T

coming from the ¢-structure, where 7o is in Ind (F)* and 7<_;z is in Ind};(E). But, since K of each of
the half-bounded categories is zero, it follows that the class of z in K_;(FE) is also zero. O

3 Induction

This section contains the proofs of the inductive step of our main theorem and the nonconnective theorem of
the heart in the noetherian case, their relation to the Farrell-Jones conjecture in negative K-theory for group
rings, and a discussion of the major impediments to proving the conjecture in general.

3.1 Dualizability of compactly generated stable co-categories

We discuss in this section some technical preliminaries about dualizability we will need later. The material
here is basically well-known, but we include it for the sake of completeness.

Recall that an object x in a symmetric monoidal co-category P is dualizable if there is another object,
Dz together with an evaluation map ev : z ® Dx — 1 and a coevaluation map coev : 1 — Dz ® x such that

the composites

T idz ®coev x®Dx®x evi z

and
Dz coev®idpy D.’L‘®$®DSL‘ idp, Qev D

are equivalent to the identities on x and Dz, respectively.

In a closed symmetric monoidal co-category P, the endofunctor induced by tensoring with a fixed object
x has a right adjoint taking y to y* by definition. Tensoring with x has a left adjoint if and only if x is
dualizable, in which case the unit and counit maps of the adjunction are given by tensoring with coev and ev,
respectively. Moreover, when x is a dualizable object in the closed symmetric monoidal oco-category P, there
is a natural equivalence y ® x ~ yP? for y € P.

Proposition 3.1. If C is a compactly generated stable co-category, then C is dualizable in Plrgt with dual
Fun®(€, Sp).
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Proof. We refer to [Lurl2, Section 4.8] for information about the tensor product of stable presentable
oo-categories. Because colimits in FunL(QSp) are computed pointwise, the evaluation bifunctor € x
FunL(G, Sp) — Sp preserves colimits separately in each variable, so we obtain an evaluation map C ®
FunL(C, Sp) — Sp. We must define a coevaluation map Sp — Fun®(€, Sp) ® €, which is to say an object of

FunL(G, Sp) ® € ~ Funlim((i’op7 FunL(G7 Sp)),

where Fun'™ denotes the oo-category of limit-preserving functors. Using the fact that € is stable and
compactly generated (i.e. C ~ Ind(C¥)) we have an equivalence Fun® (@, Sp) ~ Fun®(€¥, Sp). Moreover, the
(restricted) spectral co-Yoneda embedding h : €°P — Fun(C¥, Sp) preserves limits and factors through the full
subcategory Fun®(C¥, Sp) C Fun(C¥, Sp). This gives the desired limit-preserving functor € — Fun®(€, Sp).
It is then routine to verify the triangle identities, so that € is dualizable with dual FunL(G, Sp). For example,

consider the composition

ev®ide

@ e, o o Fun’(C,Sp) ® C e,

which we can write as the composition
€ — Fun'™(€°, € @ Fun®™(€, Sp)) =5 Fun"™ (€°P, Sp).

By definition of the coevaluation map, the composition is the Yoneda embedding € — Fun'™(€°P, Sp). Since
the natural equivalence Fun'™ (@ Sp) ~ @ takes the representable functor h(z) to x, we see that the
composition is equivalent to the identity. The argument for the dual is similar. O

Lemma 3.2. If C and D are compactly generated stable co-categories, then C ® D is compactly generated by
objects the @y, where x and y range over compact generators of C and D, respectively.

Proof. We show first that these objects are compact. The mapping spectrum functor
CeD)(z®y,—): C®D — Mods

preserves filtered colimits if and only if it admits a right adjoint by the adjoint functor theorem, and when
this is the case it represents an object in FunL(G ® D,Modg). By the universal property of € ® D this occurs
if and only if C(z, —) ®s D(y, —) : € x D — Modg preserves filtered colimits in each variable, using the fact
that if if z,2’ € C¥ and y,y’ € D, then

(CeD)(r@y,z' ®y') ~Clx,z") @ D(y,y').

This happens if and only if x and y are both compact.

By definition, C® D is the universal stable presentable co-category equipped with a functor Cx D — C® D
preserving small colimits in each variable (see [Lur09, Remark 5.5.3.9]). Suppose that F: € x D — & is a
functor preserving colimits in each variable such that F(z,y) = 0 for all z € € and y € €. By definition of
F and the fact that every object of € (resp. D) can be written as a small colimit of objects of € (resp. D),
it follows that F' vanishes. It follows that the objects

{z®@y:xe” ye D}
generate C® D. O

Proposition 3.3. Let C be dualizable object of Pr;. Then for any fully faithful functor A — B in Pr", the
induced functor A® C — B ® C is fully faithful.
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Proof. Let D be a dual of €. We have a commutative diagram

A ® C —— Fun™(D, A) —— Fun(D, A)

| |

B ® € —— Fun™(D, B) —— Fun(D, B),

in which the left hand horizontal maps are equivalences and the right hand horizontal maps are fully faithful.
(Technically, Fun(D, —) lands in a higher universe, but we can restrict to the k-continuous functors for any
such that D is k-compactly generated.) Moreover, the right hand vertical map is fully faithful since A — B
is, by hypothesis, so it follows that each of the other vertical maps is fully faithful. O

Note that we did not actually use the fact that € was stable in the proof of the above proposition; the
same argument works for € dualizable in Pr". Unfortunately, there are not so many dualizable objects of
Pr’, but as soon as we pass to Prl}, we obtain a vast supply by Proposition 3.1.

A localization sequence in Prl‘t is a cofiber sequence B — € — D such that B — C is fully faithful.
The stable presentable co-category D in this case is equivalent to the usual Bousfield localization of C at the
arrows with cofiber in B by [BGT13, Proposition 5.6].

Example 3.4. The prototypical localization sequence arises from a quasi-compact and quasi-separated
scheme X together with a quasi-compact open subscheme U C X with complement Z. In this case, the
functor D(X) — D(U) is a localization with kernel Dz(X), the co-category of complexes of Ox-modules
with quasi-coherent cohomology sheaves supported set-theoretically on Z. Hence, Dz(X) — D(X) — D(U)
is a localization sequence.

Since localization sequences in Pr; are cofiber sequences and as the tensor product on Pr; preserves
small colimits in each variable by [Lurl2, Remark 4.8.1.23], the previous lemma shows that localization
sequences of stable presentable co-categories are preserved by tensoring with a given compactly generated
stable co-category €. Thus, we have proved the following.

Corollary 3.5. Let B — C — D be a localization sequence of stable presentable co-categories. Then,
BRIEFCRE-DRE

1s a localization sequence for any compactly generated stable co-category E.

3.2 Negative K-theory via oo-categories of automorphisms
In this section, we prove the following theorem, which verifies Conjecture B in many cases.

Theorem 3.6. If E is a small stable co-category equipped with a bounded t-structure such that EY is
noetherian, then K_,(E) =0 forn > 1.

Many of our arguments in the proof work in greater generality, and we take care to isolate those parts
that are truly special to the situation of a noetherian heart.

Definition 3.7. Throughout this section, $[s] = X°IN denotes the free commutative $-algebra on the
commutative monoid IN. Note that $[s] equivalent to the free E;-ring spectrum on the sphere spectrum $.
Similarly, $[s*!] = $5°Z is the free commutative $-algebra on the commutative monoid Z, or, equivalently,
the localization of $[s] obtained by inverting s € mpS[s]. These are each flat over $ and have the expected
ring of components; that is, m(S[s]) = Z[s] and mo($[sT!]) = Z[sT!], while m.(S[s]) = (7.9)[s] and

7o (S[sT1]) = (7.9)[s*!]. Warning: the commutative $-algebra $[s] is not the free commutative (or E)
algebra on a single element in degree 0.
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Notation 3.8. In general, we will use either the notation Modgr or D(R) for the stable presentable oo-
category of right R-modules for an E.-ring spectrum R. Moreover, in the special cases of S[s] and $[s*!],
we will use the suggestive notation D(A') = Modg,] and D(G,,) = Modgjs+17. Given a stable presentable
oo-category €, we write

D(A',€) = D(A") ® € = Modg,) ® C,

and similarly for D(G,,, C).

To begin, we show that D(A!, €) can be identified with the co-category of endomorphisms in €, and that
D(G,n, C) is equivalent to the co-category of automorphisms in C.

Definition 3.9. Given an oco-category C, the functor category
Fun(A'/0A*, @)

is the co-category of endomorphisms in €. An object of the co-category of endomorphisms consists of a
pair (z,e) where z is an object of € and e :  — « is an endomorphism. For example, if C is additive, then
(z,0) (the object  equipped with the zero endomorphism) and (z,id,) are functorial sections of the forgetful
functor Fun(A!/9Al, €) — €. The co-category of automorphisms in C is

Fun(S', @),

where S! ~ BZ is a Kan complex weakly equivalent to A'/OA!. The map of co-categories Al/OA! — S1
induces a fully faithful embedding

Fun(S!, @) — Fun(A'/0A!, @)
with essential image those endomorphisms (z, e) such that e :  — z is an equivalence.
Proposition 3.10. If C is a stable presentable co-category, then
(i) D(AL,C) ~ Fun(A'/OAL, @), and
(i) D(Gn,C) ~ Fun(St,C).
Proof. We prove (i), the proof of (ii) being similar. We claim that there is a natural equivalence
Fun(A'/0A', €) ~ Fun"(Modsy, C).

It suffices to show that Modg) is the free stable presentable oo-category generated by A'/OAY. This follows
from the (Mod., End) adjunction [AG14, Section 3.1] together with the fact that $[s] ~ S[IN] is the free
$-algebra on the monoid IN, and that the nerve of IN (viewed as a category with one object) is a fibrant
replacement for A'/OA! in the Joyal model structure. For any $-algebra R and any stable presentable
oo-category @, there is a natural equivalence Modger ® € ~ Fun® (Modg, €). Indeed, Modp is compactly
generated, and hence dualizable by Proposition 3.1 with dual Modger. In particular, since $[s] is an Eqo-
ring spectrum, the co-category of endomorphisms in a stable presentable co-category € is equivalent to
Mods[s] ® C. L]

We focus now on the case where € ~ Ind(FE) is compactly generated by a small stable co-category E.

Lemma 3.11. If € ~ Ind(E) is compactly generated, then D(A', C) is compactly generated by the objects
S[s] ® x =: x[s] and D(G,,, C) is compactly generated by the objects S[sT!] @ x =: x[sT'] as x ranges over the
objects of F.
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Proof. This is a special case of Lemma 3.2. O

Lemma 3.12. If € ~ Ind(FE) is compactly generated, then the natural functor D(A', C) — D(G,,,C) is a
localization with kernel a compactly generated stable presentable co-category which we will denote Doy (AL C).
Moreover, D gy (A1, C) is compactly generated by the compact objects (x,0) in D(AL, €C) as x ranges over the
objects of E.

The fact that D{O}(Al, @) is generated by compact objects that are compact in D(A!, €) implies that the
right adjoint D(G,,, €) — D(AL,€) to the localization preserves filtered colimits.

Proof. By [Lurl2, Proposition 7.2.4.17] or [AG14, Proposition 6.9], we have a localization sequence
MOdAI,{O} — Modg1 — NIOd(grm

of stable presentable oo-categories, where Mod g1 oy is the full subcategory of Mody: consisting of $[s]-
modules M such that for every = € 7,,,(M) there exists a positive integer N such that sV - z = 0. Moreover,
by [AG14, Proposition 6.9], Moda1 (o} is compactly generated by the object $ when viewed as an $[s]-module;

in particular, since $ ~ cofib (S[s] N S[s}) is compact as an $[s]-module, Mody1 {0y is compactly generated

by compact objects of Mods:. By tensoring with Ind(E), we obtain the localization sequence we want by
Corollary 3.5. The object S ® x is by definition = with the zero endomorphism. O

We turn to the problem of constructing ¢-structures on co-categories of endomorphisms and automorphisms.

Lemma 3.13. Let C = Ind(E) be a compactly generated stable presentable oco-category with a t-structure
(C>0,Cc0). The full subcategory D(AL,€)so C D(AL,C) of endomorphisms (x,e) where x € Cs9 C €
defines the non-negative part of a t-structure on D(AL,€), where (y, f) € D(AL, €) <o if and only if y € Cco.
Moreover, the truncation functors induced by the t-structure on D(AY,C) preserve the full subcategory
D(AL, €) D D(G, €).

Proof. Requirement (1) of Definition 2.1 is inherited from €. Since the truncations 7oz and 7¢ox are
functorial, there is a cofiber sequence

(T207,720(e)) = (2, ) = (<12, 7<—1(€)).

This verifies requirement (3). As for (2), note that the forgetful functor D(A!, €) — € detects nullhomotopic
maps. This means that if x € C» and y € C<_1, then

Map’D(Al,G)((aj7 6)7 (yv f)) ~0

for any endomorphisms e of z and f of y. The first claim follows.
If (z,e) is an object of D(Gyy,, C), then e is an automorphism of z, and hence 75¢(e) is an automorphism
of T>0z. So, the truncation functors preserve D(G,,,C) C D(A', €). This proves the second claim. O

Proposition 3.14. Let C = Ind(E) be a compactly generated stable presentable oo-category with the t-
structure induced (in the sense of Proposition 2.13) by a bounded t-structure on E such that E is noetherian.
The t-structure on D(AL, €) of the previous lemma restricts to a bounded t-structure with noetherian heart on
the full subcategory D(AL, C)* of compact objects.

Proof. Let F' C D(A', C)* be the full subcategory of objects = such that 7,z is compact for all n. It follows
immediately that F' is idempotent complete. Moreover, F' contains all objects of the form (x[s], s) for x € E
since 7>y, (x[8], 8) = (T>n®, T>n(s)) and since 75,2 is in E if  is in E. Therefore, if F is stable, the inclusion
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F — D(A',€)¥ is an equivalence. By definition, F is closed under suspension and desuspension. Hence,
by [Lurl2, Lemma 1.1.3.3], it is enough to show that F' is closed under taking cofibers.

Hence, given a cofiber sequence z — y — ¢ in D(A!, C)* with x,y € F, we must show that 7>gc is
compact. Let d be the cofiber of 7>y — 7>0y, so that d fits into a second cofiber sequence d — T>9c — m,
where 7 € D(A, €)% is the image of moc — 7_1x. As d is compact by the hypothesis on 2 and v, it is enough
to show that 7 is compact in D(A!, ).

Let A = EY, and let A[s] be the full subcategory of compact objects in D(A!, €)¥. Note that this is

o
well-defined because (Modg[‘s] ® 620) o~ Modg[s] ® € by definition of the tensor product of Grothendieck

abelian categories in [Lur]. In general, there is no reason for A[s] to be an abelian category. However, this
is implied by the fact that A is noetherian in our case, as this ensures that the kernel of a map between
finitely presented objects is again finitely presented. Moreover, it is a consequence that 7,z € A[s] whenever
xr € D(AL,@)“. Now, we claim that A[s] is noetherian. To see this, note that D(A, €) is compactly generated
by the objects (y[s],s) where y € E. Tt follows that every object of A[s] is obtained in finitely many steps
(consisting of taking kernels, cokernels, extensions, sums, and summands) from objects of the form (z[s], s),
where z € A. Since A is noetherian, every such x is noetherian and [Swa68, Theorem 3.5] implies that (x[s], s)
is noetherian. This is effectively an easy generalization of the Hilbert basis theorem in algebra. Noetherianity
implies that A[s] is a Serre subcategory of D(A!, €)%, so that 7 C m_;x is in A[s]. We are reduced to proving
that if 7 is an object of A[s], then 7 is compact as an object of D(Al, @).

It is convenient for the rest of the proof to write s for the endomorphism of any object of D(A!, C). Let
Fym =ker(s' : m — 7) for i > 0. This is an increasing filtration on 7, which stabilizes at some Fy for N > 0
since A[s] is noetherian. Each F;7/F;_17 is in fact an object of A as it is a finitely presented object of
D(AY, C)? such that s acts as zero. So, inductively, Fy7 is compact. Let 7 be the quotient 7/Fy7. The
endomorphism s acts injectively on 7 by construction. To see that 7 is compact, choose a surjection a[s] — 7
such that a € A. Let o be the kernel, and let o; C a - s* be the intersection of the kernel and a - s* C als]
(viewed as an object of Ind(A)). Then, s : 0; — 0441 and 0 = P, 0i. Moreover, s : 0; — 0;41 is an
isomorphism for all 7. The injectivity follows from the fact that s acts injectively on a[s], while the surjectivity
follows (via the snake lemma) from the fact that s acts injectively on 7 and s : a - s* — a - st is surjective.
It follows that o = o¢[s]. But, since og C a, it follows that o is compact. Therefore, T is compact.

Now, to see that the t-structure is bounded, it is enough to see that each object (x[s], s) is bounded for
x € E. This is the case by construction. Finally, we have already mentioned that D(A', €)% ~ A[s] is
noetherian. O

Remark 3.15. Noetherianity is used in a couple primary locations in the proof. The first is to check that
m_1x is finitely presented and that 7 is therefore itself in A[s]. The second is to guarantee that the filtration
F,7 stabilizes. We return in the next sections to the problem of weakening the noetherian hypothesis.

Lemma 3.16. Let € = Ind(E) be a compactly generated stable presentable oo-category with a t-structure
induced (in the sense of Proposition 2.13) by a bounded t-structure on E such that EV is noetherian. Then,
the t-structure on D(A', €)% respects Doy (AL, €)~.

Proof. Note that we did not prove in general that the t-structure on D(A!, C) restricts to a t-structure on
D{O}(Al, C). But, this is true under the noetherianity condition for the compact objects. Indeed, an object x
of D(A!,€)* is contained in the subcategory Doy (A, €)* if and only if s" acts nullhomotopically on z for
some N > 0. If sV does act nullhomotopically on z, then it does so on T>0x as well, which shows that if
T € D{O}(Al, €)“, then so is T>oz. O

Corollary 3.17. Let C = Ind(E) be a compactly generated stable presentable co-category with a t-structure
induced (in the sense of Proposition 2.13) by a bounded t-structure on E such that EV is noetherian. Then,
there is a bounded t-structure on D(G,,, C)* with noetherian heart.



27 3.3 The nonconnective theorem of the heart

Proof. The subcategory
D{O}(Al, e)w,@ C D(Al, e)w,@

is in fact a Serre subcategory. Indeed, if 7 C o is a subobject where s acts nilpotently on o, then s acts
nilpotently on 7 as well. Using (i) implies (ii) in Proposition 2.20, we see that there is an induced ¢-structure
on D(G,,,C)* and that the functor D(AL, €)* — D(G,,, C)¥ is t-exact. Since every object of D(G,y, C)*
is a retract of an object in the image of the localization functor and since the t-structure on D(A', €)« is
bounded, it follows that the ¢-structure on D(G,,, C)* is bounded too. The abelian category D (G, C)*? is
noetherian because it is equivalent to the localization of the noetherian abelian category D(A', @)« by the

Serre subcategory Do) (AL, C)«Y. O
Proof of Theorem 3.0. Let C = Ind(FE). Applying K-theory to the exact sequence
Doy (A1, C)¥ = D(A', €)Y = D(Gp, €)%,

we obtain a cofiber sequence
K1 (A, €) = K(A', €) = K(Gn, ©)

of nonconnective K-theory spectra.

Consider the exact functor i : € — Doy (A, €) given by i(z) ~ (z,0). Since (zs],s) = (z[s],s) = (z,0)
is a cofiber sequence in D(A!, €), we see that (x,0) is compact if x is. Hence, i restricts to a functor
E— D{o}(Al, C)¥, also denoted i. Moreover, the additivity theorem, applied to this same cofiber sequence,
viewed as a cofiber sequence of functors E — D(A!, €)“, induces a nullhomotopic map K(E) — K(A!, €).
The underlying object functor u : Doy (A, @)¥ — E sending (x,e) to x gives uoi ~ idg. It follows that
K(E) is a summand of Ko (A, €) and that this summand maps trivially to K(A', C).

Now, suppose that K_,,(F) =0 for all 1 < m < n and all stable co-categories F' which admit bounded
t-structures with noetherian hearts. The remarks above prove that K_,,_1(FE) is a subquotient of K_,,(G,,, C).
By Corollary 3.17, there is a bounded ¢-structure on D(G,,, ) with noetherian heart. Hence, K_,,(G,,,C) =0
by the inductive hypothesis and so K_,,_1(E) = 0 as well. O

3.3 The nonconnective theorem of the heart
In this section we prove Conjecture C in the case of a noetherian heart.

Theorem 3.18 (Nonconnective theorem of the heart). If E is a small stable co-category with a bounded
t-structure such that EY is noetherian, then the natural map

K(EY) = K(E)
s an equivalence.

To give the theorem content, we must define K(A) when A is an abelian category, show that this agrees
with other definitions in the literature, and define the map K(E) — K(F). We will use the terminology and
results about prestable oo-categories of [Lur, Appendix C], which in turn follows work of Krause [Kral5] on
homotopy categories of injective complexes.

Lemma 3.19. If A is a small abelian category, then Ind(A) is a Grothendieck abelian category, the Yoneda
embedding A — Ind(A) is exact, and the natural map A — Ind(A)¥ is an equivalence.

Proof. Since A has finite colimits, Ind(A) is presentable. Moreover, it is not difficult to see that Ind(A) is
abelian. To see that filtered colimits preserve monomorphisms, use that filtered colimits preserve finite limits.
Yoneda is always right exact, and it preserves finite colimits that exist in A. This proves exactness. The last
claim follows because A is idempotent complete. O
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Definition 3.20. Let D(Ind(A)) denote the unseparated derived co-category of Ind(A) as defined in [Lur,
Section C.5.8]. It is the dg nerve of the dg category of complexes of injective objects in Ind(A). In
particular, by [Lurl2, Remark 1.3.2.3], Ho(D(Ind(A))) is the homotopy category of injectives as studied
by Krause [Kral5]. There is a right complete t-structure on D(Ind(A)), and D(Ind(A))so is anticomplete
(see [Lur, Section C.5.5]) with an important universal property: it is initial among Grothendieck prestable

oo-categories € with €% ~ Ind(A) (see [Lur, Corollary C.5.8.9]).

Definition 3.21. Let A be a small abelian category. We define the bounded derived oo-category of A to be
Db(A) = D(Ind(A))“. In particular, D?(A) is a small idempotent complete stable co-category.

Lemma 3.22. The co-category D(Ind(A)) is compactly generated by D(A).

Proof. This is the content of [Kral5, Theorem 4.9]. In the setting of [Lur, Appendix C], we invoke the fact
that D(Ind(A))s is coherent (by [Lur, Corollary C.6.5.9]) and anticomplete to conclude that D(Ind(A))so
is compactly generated by [Lur, Theorem C.6.7.1]. Since D(Ind(A)) is right complete, a compact object
of D(Ind(A))so is compact when viewed in D(Ind(A)) =~ Sp(D(Ind(A))se). Let y € D(Ind(A)). We have
to show that if Maps 1,,q(4))(z,y) for all z in @(Ind(A))“;n and all n, then y ~ 0. But, if this condition is
satisfied, then y € D(Ind(A))<, for all n. Since D(Ind(A)) is right separated, y ~ 0. O

Lemma 3.23. The canonical t-structure on D(Ind(A)) restricts to a bounded t-structure on D°(A) with
heart equivalent to A.

Proof. This follows from [Lur, Theorem C.6.7.1]. O

Lemma 3.24. Let D’ C D(Ind(A)) denote the full subcategory of objects x such that H,(z) € A C Ind(A) for
allm and such that Hy,(x) is non-zero for at most finitely many n € Z. Then, the map D(Ind(A)) — D(Ind(A))
restricts to an equivalence D(A) — D’.

Proof. The claim can be checked at the level of homotopy categories, which is the other part of [Kralb,
Theorem 4.9]. O

Definition 3.25. If A is a small abelian category, then we define K(A4) = K(D?(A)), the nonconnective
K-theory spectrum of the idempotent complete stable co-category D°(A) (defined in [BGT13]).

We want to construct “the natural map K(EY) — K(E)” of the statement of Theorem 3.18.

Proposition 3.26. Let E be a small stable co-category with a bounded t-structure. Then, there is a natural
t-ezact functor DY(EY) — E inducing an equivalence on hearts.

Proof. To define the natural map in the statement of Theorem 3.18, let ' be a small stable co-category
with a bounded t-structure, and let A = E¥. By [Lur, Corollary C.5.8.9], there is a left exact functor
D(Ind(A))s¢ — Ind(E)so inducing the equivalence Ind(A) ~ Ind(E)".

By [Lur, Proposition C.3.2.1], the induced functor F : D(Ind(A)) — Ind(E) is t-exact and induces an
equivalence on hearts. It suffices to check that F' preserves compact objects. By Lemma 3.24, every compact
object of D(Ind(E)) is a finite iterated fiber of maps between shifts of objects in A € D(Ind(E))®. Thus, it
suffices to show that F(x) € E when z € A. But, this follows from hypothesis. O

Corollary 3.27. Let E be a small stable co-category with a bounded t-structure. Then, there is a natural
map K(EY) — K(E) of nonconnective K -theory spectra.

Proof. Apply K to the exact functor D*(EY) — E. O

With this in mind, we turn to the proof of the theorem.
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Proof of Theorem 5.18. The first step is to use Barwick’s theorem of the heart to prove that the induced map
K (EY) — K (E) of connective K-theory is an equivalence. Philosophically, this is Barwick’s theorem, but
we have defined K-theory in terms of stable co-categories instead of using exact oco-categories.

Consider the commutative triangle

EQ?

PEY) — S F

of Waldhausen oco-categories in the sense of [Bar15]. For the moment, denote by KB#* the (connective) K-theory
spectrum of a Waldhausen oo-category, as constructed in [Bar16]. Then, [Barl5, Theorem 6.1] shows that
the KB (EY) — KBar(DV(EY)) and KB (EY) — KB (E) are equivalences. Hence, KB2'(EY) — KB (E)
is an equivalence.

By [Bar16, Corollary 10.6], KB (D?(EY)) and KB*' (E) are equivalent to the Waldhausen K-theory of
suitable Waldhausen categories, and these are in turn equivalent to K (D?(EY)) and K (E), respectively,
by [BGT13, Theorem 7.8]. This proves the result in connective K-theory.

Now, in the situation of the theorem, both D?(EY) and E are have bounded t-structures with noetherian
hearts. It follows from Theorem 3.6 that K_,,(E¥) = K_,,(E) = 0 for n > 1. This completes the proof. []

Remark 3.28. If E is a small stable co-category with a bounded t-structure, then K (E) ~ K (Db(E))
is equivalent to the Quillen K-theory of EY viewed as an exact category. This follows from the Gillet-
Waldhausen theorem [TT90, Theorem 1.11.7] and a theorem of Waldhausen [TT90, Theorem 1.11.2]. In the
end, the theorem of the heart is a generalization of the Gillet-Waldhausen theorem.

Remark 3.29. Note that the negative K-groups of a small abelian category A, defined in this paper as
K_,(Db(A)) for n > 1, agree with the negative K-groups of A as defined by Schlichting [Sch06]. To see this,
denote the latter by K%, (A) for the moment.

As it is not necessary for our paper, we only illustrate the argument. Recall that a Frobenius pair is a pair
(&€, &p) of small Frobenius categories where &g is a full subcategory of g such that the embedding &y — &
preserves projective (or equivalently injective) objects. A morphism of Frobenius pairs (&, &q) — (F,Fo)
consists of a functor ® : & — F such that ®(M) € Fy if M € €y. (See for example [Sch06].) Let .Z#rob denote
the co-category of Frobenius pairs. Using the functor Dgine defined in Appendix A, we obtain a functor
Dging : Frob — Catggrf defined by letting

Diing(€,€0) = (Dsing(€)/Diing(€0)) ™

the idempotent completion of the Verdier quotient. Note that Dging(E0) = Dsing(€) is fully faithful because
any map &g that factors through a projective in € also factors through a projective in €.

By the definition of an exact sequence in .Zrob given in [Sch06], Dging sends exact sequences to localization
sequences. Moreover, if (€, &q) is a flasque Frobenius pair, meaning that there is an endofunctor T' of the pair
such that T~ T @ id, then Dging(E, £p) is flasque. Using these facts, and the fact that Ky can be computed
either in .Zrob or in CatP™ it follows that K8 (A) = K_,(A).

3.4 Counterexamples using non-stably coherent rings

While our proof of Theorem 3.6 uses crucially the hypothesis that the small stable co-category F has a bounded
t-structure with noetherian heart, much of the proof works for a general F with any bounded t-structure.
In particular, the existence of the sequence K{O}(Al, C) — K(AL,C) = K(G,, €), where € = Ind(E), exists
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without any hypothesis on E except that it be small and stable, as does the fact that K(E) itself is a summand
of Kyo1 (A, €). The fact that K_y(E) = 0 whenever E admits a bounded t-structure provides additional
strength to the assertion that K_,,(F) should be zero for all n > 1.

The noetherian hypothesis is used to prove that the t-structure of Lemma 3.13 on D(G,,, C) restricts to a
(bounded) t-structure on D(G,,,, C)«. This leads to the inductive step. One may ask if this is true in general,
with a different proof. This is not the case.

Let R be an ordinary ring. A finitely presented right R-module M is coherent if every finitely generated
submodule N C M is finitely presented. The ring R is right coherent if R is coherent as a right R-module.
We say that R is right regular if every finitely presented right R-module has finite projective dimension.
Finally, we call R right regular coherent if it is both right coherent and right regular.

Theorem 3.30. If R is a right regular coherent ring, then K_;(R) = 0.

Proof. The right coherence of R means that the category Modg’w of finitely presented R-modules is abelian
and hence that D(R) = Db(Modg"") is a well-defined small stable presentable co-category. The right
regularity of R means that the natural map Mod§, — D’(R) is an equivalence. Hence, K(R) ~ K(D°(R)).
We can conclude in either of two ways. We can appeal to Theorem 2.35 using that the equivalence induces a
bounded ¢-structure on Mod%,. Or, we can use that K_1(D?(R)) = 0, as proved by Schlichting [Sch06, Theorem
6). O

Note that if R is an ordinary ring, then D(G,, Modg) ~ Modg[s+17 and the t-structure on D(G,,, Modg)
induced by that on Modg via Lemma 3.13 agrees with the standard ¢-structure on Mod g[+1].

Proposition 3.31. Suppose that R is right reqular coherent but that R[sil] is not right coherent. Then, the
t-structure on Modpg(s+1) does not restrict to a t-structure on compact objects.

Proof. Note that R[s*!] is right regular. Let I C R[s*!] be a finitely generated ideal that is not finitely
presented, and let P : R[s*1]” — R[s*!] be a chain complex in degrees 1 and 0, with d(R[s*!]") = I. By our
choice of I, H;(P) is not a finitely generated R[s*']-module. If the t-structure on Mod g1y restricted to a
t-structure on the compact objects, then H; (P) would have to be perfect, and hence finitely presented, a
contradiction. O

Example 3.32. Glaz presents an example of Soublin in [Gla89, Example 7.3.13] showing that the ring

R = H Qﬂwvyﬂ

meZ

is right regular coherent, but that R[s] is not coherent. By [G1a89, Theorem 8.2.4(2)], R[s*?] is not coherent
either.

This example implies that the strategy used in the previous section to prove Conjecture B in the case of a
noetherian heart cannot work for general small stable co-categories E equipped with bounded ¢-structures.
Another strategy is to replace D(A!, €)* by some stable co-category that does have a bounded ¢-structure.
For example, one can consider the abelian closure EJI(AI, @) in D(A, €)™ of the additive category consisting
of m,x as x ranges over all compact objects of D(A', €). Let ‘DgONh(Al, €) € D(AL,C) be the full subcategory

of bounded objects z such that m,x € ng(Al, C) for all n. This is a small stable co-category and the induced
t-structure is bounded.
Now, consider the localization sequence

~

Dioy(A1,€) N DE_(A',€) — DL_(A',€) - (Dgovh(Al, €)/Dyo (A, €) N DE_(A', e))

{0)
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Let @?0} ﬁl(A‘l’e) denote the left-hand side. For this to play the role of the localization sequence

Doy (AL, €)% — D(AY, €)% — D(Gyy, C)“, we need to guarantee two things:
(1) K(F) is a summand of K(Dl{’o} &E(Al, ©));

(2) the abelian subcategory

D?O}&(Al, €)Y C DL (A, ©)"

is Serre.

Condition (2) is easier and is in fact always true. Condition (1) would follow if z is compact when (z,e) is an

object of D?O}mwh(&l, e).

3.5 Stable coherence
The next theorem was known to Bass and Gersten.

Theorem 3.33. Suppose that R is a right reqular coherent ring such that R[s1,...,Sn] s right coherent.
Then, K_,,—1(R) = 0.
Proof. Tt is enough to note that in this case R[sT!, ..., sE!] is right coherent by [G1a89, Theorem 8.2.4(2)].

ren

Hence, K_;(R[si?,...,s%1]) = 0. As K_,,_i(R) is a subquotient of K_; (R[s{',...,sE!]), the result follows

1 n 1 n

from Theorem 3.30. O

The classical proof (due to Bass [Bas73, Section 2]) uses a specific inductive presentation of K_,_1(R),
namely as the cokernel of
K (Rls)) & K_n(Rls ™)) = K_n(Rls*)),

See [T'T90, Section 6].) In particular, K_,,_1(R) is a quotient of K_;(R st ..., s%1]), which vanishes if
1

n

R[st!, ..., s¥1] is right regular coherent.
One reason to prefer our proof is that it extends immediately to small abelian categories A such that
Alsy, ..., sy] is abelian, with notation as in the proof of Proposition 3.14. We know of no analogous general

result using Bass’ methods in the literature. We restate this result separately.
Theorem 3.34. Let A be a small abelian category such that A[sy,...,sy] is abelian. Then, K_,_1(A) =0.

It seems that Schlichting’s paper is very close to establishing a result like this. However, the proof
given of [Sch06, Lemma 8] relies on the structure of injective modules in a noetherian abelian category to
establish the long exact sequence in K-groups allowing one to conclude that that K_,_;(A) is a subquotient
of K_i(A[sf', ..., sF]). So, that paper allows one to prove the theorem for A noetherian ([Sch06, Remark
7]), but not in this stably coherent setting.

We close this section with a discussion relating these vanishing results and the K-theoretic Farrell-Jones
conjecture. None of these results are new (as they all follow from Theorem 3.33), but it serves to illustrate
the importance of Conjectures A, B, and C in the non-noetherian case.

The most interesting cases of the conjecture are when R = Z or when R is an arbitrary regular noetherian
commutative ring. Farrell and Jones [FJ95] proved that K_,(Z[V]) = 0 for n > 2. If the Farrell-Jones
conjecture holds for G, then it follows from the homotopy colimit spectral sequence that K_,(Z[G]) = 0
for n > 2 as well. In many cases it is suspected that K_,,(R[G]) = 0 for all n > 1. For example, this
follows from the Farrell-Jones conjecture when the orders of all finite subgroups of GG are invertible in R
(see [LRO5, Conjecture 79]). Our application to this problem is via a class of groups studied in this setting by
Waldhausen [Wal78]. Say that a group G is regular coherent (resp. noetherian) if R[G] is right regular
coherent (resp. noetherian) for any regular noetherian commutative ring R.
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Theorem 3.35. Let R be a regular noetherian commutative ring, and let G be a regular coherent group.
Then, K_,,(R[G]) =0 forn > 1.

Proof. The key point is that R[G][s] = (R][s])[G], so that under the hypotheses, R[G] is stably coherent. The
result follows from Theorem 3.33. O

The Farrell-Jones conjecture is known in many cases, and hence the vanishing of negative K-theory is
known in many cases over the integers by the result of Farrell and Jones. For a table of known results on the
Farrell-Jones conjecture, see [LR05, Section 2.6.3].

Example 3.36. Many groups are regular and coherent. The following list is transcribed from [Wal78]. The
group G is regular coherent if it is (1) a free group, (2) a free abelian group, (3) a polycyclic group, (4) a
torsion-free one-relator group, (5) a group of the form w1 M where M is a 2-manifold not homeomorphic to
RIP2, (6) a sufficiently large 3-manifold group, (7) a group of the form m; M where M is a submanifold of S,
(8) a subgroup of a group of one of the above types, or (9) a filtered colimit of inclusions thereof. In particular,
for all of these groups, K_,,(R[G]) = 0 for n > 1. Example (8) is particularly interesting as regular coherence
passes to subgroups by [Wal78, Theorem 19.1] even though this is not known for the Farrell-Jones conjecture.

3.6 Serre cones of abelian categories

We have seen that the straightforward generalization of Schlichting’s inductive strategy to prove vanishing of
negative K-theory of noetherian abelian categories founders because of the failure of the Serre subcategory
condition on the hearts, even though though the weak Serre subcategory condition always holds.

Part of the subtlety of Schlichting’s conjecture is that the negative K-theory of an abelian category is
defined using derived categories. To date, there is no definition internal to abelian categories. Given a small
idempotent complete stable co-category E and an uncountable regular cardinal k, let X, (E) be the cofiber in
Catggrf fitting into the exact sequence

E — Ind(E)" = S,.(E).

This allows us to define negative K-theory inductively as K_,(E) = Ko(Zgn)(E)) since K(Ind(E)*) ~ 0.
No similar construction is known for the negative K-theory of abelian categories. It would be possible
given a positive answer to the next question.

Question 3.37. Suppose that A is a small abelian category. Does there exist an exact fully faithful inclusion
of abelian categories A C B such that K(B) ~ 0 and such that A is Serre in B?

For example, B might be closed under countable coproducts, which implies the K-acyclicity condition.
One natural guess would be to take a category Ind(A)” of k-compact objects for an uncountable cardinal .
However, A C Ind(A)" is not typically Serre.

Example 3.38. Let R be a non-noetherian coherent ring, and let cohp C Modz"{ be the full subcategory of
coherent right R-modules inside all k-compact R-modules (for some regular uncountable cardinal x). Then,
R itself has subobjects (specifically, non-finitely generated ideals) in Mod%"i not contained in cohp.

Remark 3.39. Jacob Lurie informed us that the previous example extends to say that it is not generally
true that a small abelian category A admits a fully faithful exact inclusion A C B where B is closed under
countable coproducts and A is Serre inside of B. Indeed, if B has countable coproducts, then for any object
M of B, the lattice Sub(M) of subobjects of M is closed under countable joins. This property will be true for
any Serre subcategory. An example where is not true is as follows. Consider the category cohpr of coherent
modules for R = k[x1, 2, ...], the polynomial ring on countably many variables over some field k. This ring



33 4. Some applications

is coherent but not noetherian, so that cohp is abelian. However, the union of the ideals (z1) C (z1,22) C - -+
is not coherent (or even finitely generated). So, the lattice of coherent subobjects of R is not closed under
countable joins. In particular, there is no Serre embedding cohrp C B for any B closed under countable
coproducts.

Proposition 3.40. Conjecture C' and a positive answer to Question 5.57 imply Conjectures A and B.

Proof. For n > 1, let A(n) denote the statement that K_,,(A) = 0 for all small abelian categories A, and let
B(n) denote the statement that K_, (E) = 0 for every small stable co-category E with a bounded ¢-structure.
Since we are assuming Conjecture C, A(n) if and only if B(n). So, assume B(n) for some n > 1. It suffices
to prove A(n + 1).

Let A be a small abelian category, and let A C B denote the abelian category guaranteed by the hypothesis
of the proposition. Conjecture C implies that K(A) = K(D?(4)) ~ K(D%(B)). (Note that even this special
case of Conjecture C is open: see [Weil3, Open Problem V.5.3].) Consider the localization sequence

DY (B) — D*(B) — (D*(B)/D%(B))" .
By our choice of B, K(D*(B)) ~ 0, so
K_o(DY(B)/DY(B))™) = K_p 1 (DY(B)) =K 1(A)

is surjective. The quotient (D°(B)/DY(B))™ has a bounded t-structure by Proposition 2.20. Thus, by B(n),
K 1(A) = 0. 0

Remark 3.41. As a final philosophical remark, note that negative K-theory exists because of the need to
idempotent complete when constructing a localization of stable co-categories. Since abelian categories are
idempotent complete, the sequences A — B — B/A are already exact when A C B is Serre. In particular,
the induced map Ko(B) — Ko(B/A) is always surjective for such a localization sequence. It follows that, to
the extent it exists along the lines of [BGT13], the universal localizing invariant of abelian categories should
actually be connective K-theory. This does not imply Schlichting’s conjecture by itself, but it would provide
some evidence.

4 Some applications

We present here applications of the vanishing results above to the K-theory of dg algebras and of ring spectra.

4.1 Negative K-theory of dg algebras
Our first result has also been proved independently by Denis-Charles Cisinski in unpublished work.

Theorem 4.1. Let k be a commutative ring, and let A be a cohomological dg k-algebra such that H°(A)
is semisimple, H'(A) is a finitely generated right H°(A)-module for all i, and H'(A) = 0 for i < 0. Then,
K_,(4) =0 forn>1.

Proof. Keller and Nicolés prove in [KN13, Theorem 7.1] that under these hypotheses, Mod? admits a bounded
t-structure whose heart is a length category. Recall that a length category is a small abelian category in which
every object has finite length. In particular, it is noetherian. The result follows now from Theorem 3.18. [

Example 4.2. Suppose that k is a field and R is a noetherian local commutative k-algebra with maximal
ideal m. Then, the derived endomorphism algebra A of R/m, which computes Ext}(R/m, R/m) satisfies
the hypotheses of the theorem, and hence the negative K-theory of A vanishes. We can see this in another
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way. Let A C Modg’w be the full subcategory of finitely presented R-modules supported set theoretically on
Spec R/m C Spec R. Then, D¥(A) is a fully subcategory of D*(R) and R/m is a compact generator. Hence,
Mod4 =~ Db(A). So, since R is noetherian, A is noetherian, and the fact that K_,,(4) = 0 for n > 1 follows
from Schlichting’s theorem.

Example 4.3. If k is a field and X is a smooth proper k-scheme, then the algebraic de Rham complex,
which computes the algebraic de Rham cohomology H}y (X/k), satisfies the conditions of the theorem.

4.2 Negative K-theory of periodic and related ring spectra

Let R be a connective ring spectrum. A right R-module M is m,-finitely presented if @, m, M is a finitely
presented (right) mgR-module. In particular, this means that M is bounded and that each 7, M is a finitely
presented mgR-module. A discrete ring R is said to be right noetherian if every submodule of a finitely
generated R-module is finitely generated. A connective ring spectrum R is right noetherian if myR is right
noetherian and if 7, R is finitely generated as a right myR-module for all n € IN.

Following [MRO01], a discrete ring R is said to be right regular if every finitely generated discrete (right)
R-module has finite projective dimension. A connective ring spectrum R will be said to be right regular if
moR is right regular and if each m,-finitely presented (right) R-module spectrum M is compact. A connective
ring spectrum R will be called right regular noetherian if it is right noetherian and right regular.

For the purposes of this section, a map R — S of ring spectra will be called a localization if the induced
map Modr — Modg is a localization with kernel generated by a compact object, or equivalently by a finite
set of compact objects.

The next result extends those of Barwick and Lawson in [BL14].

Proposition 4.4. Let R be a right regular noetherian ring spectrum. Suppose that R — S is a localization
of R such that for a compact R-module M, S ®r M ~ 0 if and only if M is 7.-finitely presented. Then, there
s a fiber sequence

K(moR) = K(R) — K(95)

of nonconnective K-theory spectra.

Proof. Let Mod};"'fp C Mod¥ be the full subcategory of m.-finitely presented R-modules. The localization
theorem in algebraic K-theory gives a fiber sequence

K(Modpy ™) — K(R) — K(S).

Since R is connective, there is a bounded t-structure on Mod;;*'fp with noetherian heart (the category of
finitely presented discrete right R-modules). The result follows from Theorem 3.18. O

Corollary 4.5. If R is a right reqular noetherian ring spectrum and R — S is a localization of R such that
for a compact R-module M, S @z M ~ 0 if and only if M is w.-finitely presented, then K_,,(S) =0 for all
n > 1.

Proof. Indeed, K_,, (moR) = 0 for n > 1 since R is right regular noetherian. Moreover, K_,,(R) 2 K_, (moR)
for n > 1 by [BGT13, Theorem 9.53]. O

There are many examples of regular ring spectra admitting localizations satisfying the condition of the
theorem. The consequences for negative K-theory are new and require the methods of this paper.

Example 4.6. 1. If R is a ring spectrum with 7, R 2 7o R[u] where |u| = 2m > 0 and m R is right regular
noetherian, then R — R[u~!] satisfies the conditions of the theorem. In particular, if S is an even
periodic ring spectrum with 7S right regular noetherian, then K_,,(S) =0 for n > 1.
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2. In particular, K_, (KU) = 0 for n > 1. This extends the theorem of Blumberg and Mandell [BMO8].

3. Similarly, K_,,(E;,) = 0, K_,(K;,) = 0, and K_,,(K(m)) = 0 for n > 1 and m > 0, where E,, is
the Morava E-theory spectrum, K,, is the 2-periodic Morava K-theory spectrum, and K(m) is the
2(p™ — 1)-periodic Morava K-theory spectrum.

4. Barwick and Lawson show in [BL14] that ko is right regular noetherian, and that ko — KO satisfies the
hypothesis of the theorem. Hence, K_,,(KO) =0 for n > 1.

5. They also show that tmf is right regular noetherian, and that tmf — Tmf satisfies the hypothesis of
Proposition 4.4. Therefore, K_,,(Tmf) = 0 for n > 1.

Example 4.7. Not all periodic ring spectra concentrated in even degrees satisfy the hypotheses of Exam-
ple 4.6(1). For example, the Johnson-Wilson theories E(m) with m > 2 have

:I:l]
b

7T*E(Tn) = Z(p) [Ula <oy Um—1,Up,

where |v;| = 2p* — 2. Hence, they are periodic with period 2(p™ — 1), but they are not concentrated in
multiples of this degree. We do not know if K_,,(E(m)) =0 for m > 2 and n > 1.

4.3 Negative K-theory of cochain algebras

In a different direction, we consider cochain algebras.

Theorem 4.8. Let X be a compact space and R a regular noetherian discrete commutative ring. There is an
equivalence @peqn, x K(R) ~ K(C*(X, R)) of nonconnective K -theory spectra. In particular, K_,(C*(X, R)) =
0 forn > 1.

Proof. 1t is enough to consider the case when X is connected, so that X ~ BQOX. Let
Locx (Modg) ~ Fun(X“?, Modr) ~ Modc, (ax,r)

be the oo-category of local systems on X with coefficients in the stable co-category Modg of complexes of
R-modules. Since the endomorphism algebra of the constant local system on R is C*(X, R), there is a fully
faithful functor

MOdC* (X,R) — Modc*(QX7R).

As R is connective, so is C.(QX, R), and hence there is an induced ¢-structure on Locx (Modg).

If X is compact (in the oo-category of spaces), then R is compact when viewed as a C,(QX, R)-module
(for example by [DGI06, Proposition 5.3]). But, R corresponds to C*(X, R) under the functor above. It
follows that Modc-(x,ry — Locx(Modg) sends compact objects to bounded objects with respect to the
t-structure on Locx (Modg). Moreover, the t-structure restricts to a t-structure on Modc-(x,r) by Mathew’s
description [Mat16, Proposition 7.8] of the essential image as the ind-unipotent modules over C.(Q2X, R), a
condition which depends only on the action of 7 X on the homotopy groups of the R-module of the underlying
local system. Hence, Modé*( x,r) has a bounded ¢-structure, with heart easily seen to be the abelian category
of finitely presented R-modules.

The theorem now follows immediately from the nonconnective theorem of the heart (Theorem 3.18) and
the fact that K_,(R) =0 for n > 1. O
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A Frobenius nerves

We examine an oo-categorical model of the stable category of a Frobenius category. This material is used in
the main body of the paper to verify that Schlichting’s definition of the negative K-theory of a small abelian
category A agrees with the negative K-theory of the small stable co-category DY(A), as defined in [BGT13].

Let & be a small exact category in the sense of Quillen [Qui73]. We will identify & with a full subcategory
of A = Fun'(€°P, Mody,), the category of left exact additive functors €°® — Mody,. The (Yoneda)
embedding € — A is exact and reflects exactness. Moreover, € is closed under extensions in A. If]
additionally, & is idempotent complete, then € is closed under taking kernels of epimorphisms in A. See [TT90,
Proposition A.7.16]. In other words, € satisfies hypothesis [TT90, 1.11.3.1], the key assumption needed for
the Gillet-Waldhausen theorem [TT90, Theorem 1.11.7]. We refer to [TT90, Appendix A] in general for
details about the Gabriel-Quillen embedding.

Mimicking the definitions in an abelian category, we say that an object P of € is projective if for every
admissible epi M — N the induced map Home (P, M) — Home (P, N) is surjective. Dually, an object I of &
is injective if Home (N, I) — Home (M, I) is surjective for every admissible mono M — N in €.

We say that € has enough projectives if for every object M of € there is an admissible epi P — M
where P is projective. Let EP™J denote the full subcategory of projective objects of €. Similarly, € has
enough injectives if for every object M of € there is an admissible mono M ~— I where [ is injective.

A Frobenius category is an exact category which has enough injectives and projectives and an object
of € is projective if and only if it is injective.

Construction A.1. If € is a Frobenius category, the stable category € of € has the same objects as € with
morphisms Homg (M, N) the quotient of Home (M, N) by the subgroup of morphisms f : M — N factoring
through a projective (or equivalently injective) object of €.

Remark A.2. The stable category £ of a Frobenius category € is triangulated. This was first observed by
Happel [Hap87, Theorem 9.4] following ideas of A. Heller [Hel60]. The loopspace of an object M is obtained
by taking an admissible exact sequence QM — P — M with P projective. Then, QM is isomorphic to M[—1]
in €. We will write Q,, M for the n-fold iteration Q--- QM. Note that €, M is not in general a well-defined
endofunctor of €, but that it defines an endofunctor of £.

Let € be an idempotent complete exact category. In this section, we will associate to € a stable co-category
Dsing (€), the singularity co-category of €, and show that its homotopy category is naturally equivalent to £
when € is Frobenius.

A special case of such a construction can be extracted from Hovey [Hov99, Section 2.2]. A right noetherian
ring R is quasi-Frobenius if R is injective as a right R-module. See [CR62, Section 58]. In this case, the
category Modg of right R-modules is Frobenius, and Hovey constructs a model category structure on Modg
whose homotopy category is equivalent to the stable category of Modg. Hovey’s construction does not seem
to generalize because a small Frobenius category need not embed into a Grothendieck abelian category which
is also Frobenius. Specifically, there are examples where the Gabriel-Quillen embedding &€ — A does not
preserve injectives. Hence, we take a different approach.

Example A.3. Let k be a field and let G be a locally finite group that is not finite (such as Q/Z). Then,
k[G] is not (right) self-injective by Renault [Ren71], so in particular Mod,?[G] is not Frobenius. On the other
hand, G is the filtered colimit of its finite subgroups, and hence k[G] is the filtered colimit of Frobenius
sub-algebras along flat transition maps. In particular, k[G] is coherent, for example by [G1a89, Theorem 2.3.3].
It follows that the category of finitely presented (right) k[G]-modules is abelian. It is not hard to check that
k[G] is injective in Modg[g], which shows that the category of finitely presented k[G]-modules is Frobenius.
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Let € be an exact category. Let Ch™ (&) denote the category of bounded below chain complexes of
objects in €. This is a dg category and the dg nerve Ng,(Ch™ (€)) of [Lurl2, Construction 1.3.1.6] is a stable
oo-category by [Lurl2, Proposition 1.3.2.10]. The homotopy category of Ngg(Ch™ (€)) is the category of
bounded chain complexes up to chain homotopy. For simplicity, we will write Chgg(E) for Ngg(Ch™ (€)).

Definition A.4. A complex X in Ch™ (€) is acyclic in degree n if there is a factorization of the differential
Xn — Xn+1 : dn+1 into

X~ Zp « Xnt1
where X, <~ Z,, is an admissible mono and a kernel for d,, and X,, 11 — Z, is an admissible epi and a
cokernel for d,, 2. The complex X is acyclic if it is acyclic in degree n for all n € Z.

Consider the following full stable subcategories of Chy,(€):
(1) Chgg(ﬁ), the dg nerve of the dg category of bounded complexes in €;

(i) Ac;g(E) and Acgg((‘{)7 the dg nerve of the dg category of acyclic bounded below and bounded complexes,
respectively, in &;

(iii) Ch;g’b(ﬁ) the dg nerve of the dg category of bounded below complexes in & which are acyclic in all
sufficiently high degrees.

Remark A.5. If & C JF is fully faithful, then Ch™ (&) — Ch™ (&) is fully faithful, which leads to fully faithful
maps between all of the subcategories above.

Lemma A.6. Let & be an idempotent complete exact category.

(a) The stable oco-categories Aczg(E) and Acy, (&) are idempotent complete in Chgg(ﬁ) and Chg,(€),
respectively.

(b) Any chain complex in Chd_g(E) chain homotopy equivalent to an acyclic chain complex s itself acyclic.

In other words, Acgg(é’) and Acy, are closed under equivalence in Chgg(E) and Chy, (€), respectively.

Proof. Let € — A denote the Gabriel-Quillen embedding. We prove first that if X € Chgg(E), then X is
acyclic if and only if H,(X) = 0 when X is viewed as a complex of objects in A. If X is acyclic, then
H.(X) = 0 by definition. We can suppose that X is of the form 0 + Xy < X7 < ---. Since H,(X) =0, it
follows that X, < X; is surjective. Since € is idempotent complete, it is closed under kernels of admissible
epimorphisms in A. Hence, there is a factorization X «< Z; «~ Xy where Z; is the kernel of Xy «+ X; and
the cokernel of X; < X5. By induction, the claim follows.

Now, part (a) follows immediately. Indeed, if X ~Y @ Z in Chgg(S) (resp. Chg,(€)) where X is acyclic,
then H,(X) =0, so Hy,(Y) =H.(Z) = 0. So, Y and Z are bounded (resp. bounded below) complexes with
vanishing homology. By the previous paragraph, they are acyclic.

Part (b) follows as well, since if X — Y is an equivalence in Chgg(E) with X acyclic, we find that
H.(Y)=0,s0Y is acyclic. O

Definition A.7. Let £ be an idempotent complete exact category. The bounded derived oco-category
Dgg(c‘l) of & is the Verdier quotient

Ch}, (€)/Ack,(€).
The homotopy category of Dgg(ﬁ) is equivalent to the usual bounded derived category of €. Similarly, the
bounded below derived co-category ngg(S) is the Verdier quotient

Chyy (€)/Acqy(8),
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while the homologically bounded derived oco-category @;g’b(((:) is the Verdier quotient
Chy,”(€)/Acg,(&).

A map in Chgg(c‘l) which is an equivalence in any of these derived co-categories is called a quasi-isomorphism.
By Lemma A.6(b), these are precisely the maps in Chy,(€) whose cones are acyclic.

Remark A.8. If A is a small abelian category viewed as an exact category in the usual way, then Dgg (A) ~
DY(A), where DP(A) is defined as in Section 3.3 as D(Ind(A))~.

Proposition A.9. The natural functor @gg(g) - ®5§b(8) is an equivalence and the natural functor
D (€) = Dy, (€) is fully faithful.

Proof. The second functor is trivially fully faithful since Acgg(E) - Ch;g’b(E). We prove that the composition
is fully faithful. For this, it suffices to verify Verdier’s criterion [Ver96, Proposition 11.2.3.5]. Thus, if
f+M — X is amap in Chy,(€) with M in Acg,(€) and X in Chg,(€), we show that f factors through
M — M’ where M’ is in Acgg(E). Choose n such that X; = 0 for ¢ > n. Since M is acyclic, the good

truncation 7¢, M exists in Chgg(fﬂ) and is also acyclic. The map M — X factors through M — 7¢, M since
X, =0.
To see essential surjectivity, let X be in Chgg;b(ﬁ) and choose n such that X is acyclic in degrees n and

higher. Then, the good truncation 7¢, X exists in Chgg(é’,) and X — 7¢, X is a quasi-isomorphism because
the cone has zero homology and is hence acyclic by the argument in the proof of Lemma A.G. O

Theorem A.10 (Balmer-Schlichting [BS01, Theorem 2.8]). If & is idempotent complete, then the derived
co-category Dgg(é') is idempotent complete.

Proof. This can be checked on the homotopy category, which is done in [BSO01]. O
Lemma A.11. Any complex P in Acg,(€) N Chgg(é’,p“’j) is contractible.

Proof. This follows immediately from the projectivity of the terms of P. O
Remark A.12. It follows that Chl,(EP™9) ~ D (EP) and Chg, (EP™T) ~ Dy (EP™I), since the acyclic
complexes are already equivalent to zero in Chgg(epmi).

Corollary A.13. The stable co-category Ch(’;g(epmi) is idempotent complete.

Proof. This is a special case of Theorem A.10. O

Lemma A.14. If X is in Acgg(S) and P is in Ch;g(EP“’j), then any map f: P — X is chain homotopic to
zero.

Proof. We assume that P, =0 for n < —1. Let s, : P, = X,,+1 be the zero map for n < —1. Assume that
sn has been constructed for n < N — 1 such that f; = dfg_l 08;+8j_10 le for i < N — 1. Then,

d% o (fN —SN-1° dﬁ) = dﬁ—l ofn— df OSN_10 dﬁ
= dﬁfl ofn —(fN-1—5Nn-2 Od11371) Odﬁ
=dy_1ofn—fnoaody

=0
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since f is a map of chain complexes. It follows from the acyclicity of X that fy — sny_1 o dy; factors through
the admissible mono Zy — Xy. Since Xy41 — Zy is an admissible epi, there is a lift of fy —sy_1 0dY
to sy : Py — X 41 such that dﬁﬂ osy = fny —SN_10 dﬁ. By induction, this proves the existence of a
contracting homotopy for f. O

Proposition A.15. The functors Chgg(c‘lp“’j) — @gg(ﬁ) and Chgg(ﬁpmj) — Dy, (&) are fully faithful.

Proof. We use Verdier’s criterion [Ver96, Proposition I1.2.3.5], which says in our case that if every map P — X
with P in Chg, (€P*)) and X in Acg, (&) factors through a map X' — X where X' is in Chg, (EP™)) NAcg,(€),
then

Chg, (EP™7) /Chg, (EP™7) N Acg, (&) — Dy, (€)

is fully faithful. But, Lemma A.14 says that in fact every such map factors through zero, so the criterion is
satisfied. On the other hand, Lemma A.11 says every complex in Chgg(ﬁproj) N Acgg(E) is already equivalent
to zero, so that the conclusion of Verdier’s criterion reduces to the statement of the proposition. The bounded
case is similar, or follows from the fully faithfulness of Chgg(EprOJ) — Chg, (€P*7) and @gg(ﬁ) — D, (€). O

Corollary A.16. The natural functor Ch;g(co,pmj) — Dy, () is an equivalence.

Proof. Thanks to the previous proposition it suffices to check essential surjectivity, which follows by taking
projective resolutions. O

Definition A.17. Let £ be an idempotent complete exact category. The singularity co-category Dging(€)
of & is the Verdier quotient ‘
D3t (€)/Chig (7)),

We will write Dging for the induced functor from the oco-category of exact categories and exact functors to
CatPet,

Definition A.18. Syzygys play a crucial role in the proof of the next theorem. Let X in Chg,(€) be acyclic
in degree n — 1. Then, the nth syzygy €2, X is an object of £, being the kernel of d,,_1 : X,,_1 — X,_o.
Moreover, in this case, the brutal truncation o>, X admits a canonical map to £, X [n]. When X is acyclic,
o>nX — 0, X[n] is a quasi-isomorphism. Finally, if X is a complex of projectives which is acyclic in degree ¢
fori>n—1, then ;X =2Q,_,Q,X in &.

Theorem A.19. There is a natural equivalence Ho(Dging(€)) ~ € when & is an idempotent complete
Frobenius category.

Proof. The proof of this theorem is due in spirit to Buchweitz [Buc86], though only a special case is given
there. For simplicity, we avoid the comparison with the homotopy category of acyclic complexes of projectives,
instead giving a direct argument for the equivalence.

There is an evident composition of functors N(&) — Chgg(c‘l) — ‘Dgg(E) — Dging (E), where the first is
given by viewing an object of € as a chain complex concentrated in degree zero. This first functor is evidently
fully faithful. The second and third functors are the Verdier quotient functors.

Let Ch_’b(Epmj) be the full subcategory of Ch™ (EP*)) consisting of homologically bounded complexes
of projectives, i.e., those complexes which are acyclic when viewed in Ch™ (€) in all sufficiently high degrees.
It is clear that the natural functor Chd_g’.b(EprOj) — D~ (&) induces an equivalence Chggvb(epmi) ~ D).
Hence, there are equivalences

Chy,*(EP) /Chf, (EP) ~ D1 P (€) /Chll, (EP7°F) ~ Ding (€).

We are therefore free in our arguments to replace bounded complexes in & with homologically bounded
complexes of projectives.
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We claim first that the functor € — Dging(€) is essentially surjective. Pick a complex X of Chgg(ﬁ),
and let P — X be a quasi-isomorphism where P is a bounded below complex of projectives. Choose n > 0
sufficiently large so that P is acyclic in degree ¢ for all ¢ > n. In this case, the brutal truncation o>;P admits
a quasi-isomorphism o>;P — €, P[i] for all i > n, where ;P is some object of €. Fix i > n and extend
0> P to an unbounded acyclic complex @ of projectives, by taking a projective co-resolution of Q; P (which
exists because € is Frobenius). There is a diagram of morphisms

X (—P—>0’>iP:U>Z‘Q (—0’20@—)90@

in Chgg’b(ﬁ). The outside arrows are quasi-isomorphisms and hence already equivalences in Dgéb(E). The
inside arrows have cones in Chgg(ﬁpr(’j), and hence they become equivalences in Dging(€). But, this shows
that X ~ Q0Q in D" (€)/Chl, (EP™) o Dypg (€).

To finish the proof, it is enough to prove that € — Ho(Dging(€)) is fully faithful. We check faithfulness
and fullness separately. Let M and N be objects of €. Since Chgg(ﬁpmj) — ﬂgg(ﬁ) is fully faithful, by
replacing M and N by projective resolutions, we see that Homg (M, N) — WOMapgg (&)(M, N) is a bijection.

g
Now, consider a diagram
MeEx LN
in Chgg’b(ﬁpmj) with cone(s) € Chgg(epmi). Then, Q,M + Q,X is an isomorphism up to projective
summands for n sufficiently large, so there is an induced map 2, M — Q, N. Since 2, is an autoequivalence
of &, fullness follows.

To prove faithfulness, suppose that f : M — N maps to zero in WOMapDSmg(M, N). Then, there is
X % M such that cone(s) is quasi-isomorphic to an object of Chgg(ﬁpmj) and f o s is zero in Dgg(ﬁ).
Working with bounded below complexes of projectives, we can assume in fact that f o s is nullhomotopic in
Ch;g’b(éiproj). In this case, M — N factors through X — cone(s). A sufficiently high syzygy of cone(s) is
projective, so this means that €, f factors through a projective, and hence is zero in £. Again using that €,
is an autoequivalence, we find that f =0 in &, as desired. O

Example A.20. In general Dging(€) is not idempotent complete, and hence neither is €. It is enough to find
a Gorenstein noetherian commutative ring R with K_;(R) # 0, since in this case there is an isomorphism

Ko(€)/Ko(€) = K_1(R)

(as K,l(Dgg(R)) = 0 by Schlichting’s theorem). The complete intersection R = Z[xo, z1]/(zoz1(1 — 20 — 21))
works. In this case, K_1(R) = Z, as can be checked from [Wei84].

Let R be a noetherian commutative ring. The abelian category Modz’w of finitely presented discrete
R-modules is exact, and its negative K-theory vanishes by Schlichting. Hence, K,n(DSing(Modg’w)) —
K_,_1(R) is a surjection for n > 0 and an isomorphism for n > 1. In this way, the singularity category
supports the negative K-theory of R and gives one measurement of the singularities of R itself.

When R is not noetherian, the question of whether or not this connection continues is precisely bound up
in Schlichting’s conjecture. For example, if R is merely coherent, then it is no longer known in general that
K,n('Dsing(Modg’w)) — K_,—1(R) is an isomorphism for n > 1. This would follow from Conjecture A.
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