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ABSTRACT

The functionalized Cahn–Hilliard free energy describes phase separation
in mixtures of amphiphilic molecules in solvent. Applications to highly
amphiphilic molecules such as lipids requires degenerate diffusion that
eliminates bulk diffusion, resulting in surface driven diffusion. We study
the existence of weak solutions of a gradient flow of the functionalized
Cahn–Hilliard equation that incorporates degenerate mobility, capturing
solutions as limits of the weak solution for equations with non-degenerate
mobilities.
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1. Introduction

Let � = [0, 2π]n and T> 0 be an a given positive number. We consider the gradient flow of the
functionalized Cahn–Hilliard (FCH) equation with degenerate mobility,

∂tu = div(M(u)∇µ), (x, t) ∈ �T = � × (0,T), (1)

µ = −�ω + W′′(u)ω − ηω, (2)

ω = −�u + W′(u), (3)

under the imposition of period boundary condition. The mobility M(u) and double-well potential
W(u) are both smooth functions from R to R. The FCH free energy was derived from models for
interfacial energy in phase separated mixtures with an amphiphilic structure by M. Teubner, R. Strey
[1], G. Gompper, M. Schick [2], and was developed to describe nanoscale morphology changes in
functionalized polymer chains by K. Promislow and B.Wetton[3]. Generally, u represents the volume
fraction of amphiphilicmaterial verses solvent, with u=−1 denoting pure solvent and u= 1 denoting
pure amphile. The double-well potentialW has local minima at u = ±1, withW(−1) = 0 > W(1),
while the degenerated mobilityM is taken to be zero in the u=−1 solvent phase.
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The FCH free energy can be understood informally from the following process. Denote the
Cahn–Hilliard(CH) free energy

E(u) =
∫

�

1

2
|∇u|2 + W(u) dx, (4)

which was introduced by J. W. Cahn and J. E. Hilliard[4] to describe a binary mixture by a phase field
function u. The critical points of E are the zeros of its variational derivative, ω,

ω :=
δE(u)

δu
= −�u + W′(u). (5)

The FCH free energy uses the square of theCHvariational derivative tomeasure distance to criticality,
and subtracts terms that reward surface area.

F(u) =
∫

�

1

2

(

δE(u)

δu

)2

− η

(

1

2
|∇u|2 + W(u)

)

dx, (6)

where η is a positive constant. The minus sign in front of η is of considerable significance: it incor-
porates the propensity of the amphiphilic surfactant phase to drive the creation of interface. Under
this construction, the minimizers of the FCH free energy are approximate critical points of the CH,
with large surface area. The variational derivative of (6), acting on a test function φ ∈ C∞

per(�) takes
the form

(

δF(u)

δu
,φ

)

=
∫

�

(

−�u + W′(u)
)

(−�ϕ + W′′(u)φ) − η(−�u + W′(u))φ dx.

Equivalently we may write

µ :=
δF(u)

δu
= −�ω + W′′(u)ω − ηω, (7)

where µ is called the chemical potential.
The minimizers of the CH free energy are generically single-layers morphologies familiar from

the phase separation of two immiscible fluids, such as oil and water, whose components form subdo-
mains that are pure in each component. Conversely theminimizers of the FCH free energy are bilayer
morphologies which separate the majority component into regions bounded by a thin layer of other
phase – like a soap bubble or surfactant. Significantly, bilayers can rupture, re-uniting the two regions
of majority phase, as when a lipid bilayer opens a pore, or tears. The well-posedness of the minimiza-
tion problem for the energy functional (6) with a more generalized form, including the existence of
global minimizers was established in [5, 6] over various natural function spaces. The problem, such
as existence of bilayer, pearled patterns, and network bifurcations, were discussed in [7–11], as well
as the review article [12].

Under uniform mobility, M ≡ 1, the system (1)–(3) is the usual H−1 gradient flow associated
with the FCH free energy. In this case the competitive evolution of bilayer and pore structures of the
FCH equation on a variety of time scales by a multi-scale analysis were studied in [13–15], and sharp
interface limits for the dynamics of bilayer structures were derived. The center-unstable spectra and
resolvent estimates to the operators associated with gradient flows of the functionalized energies are
obtained in [16]. The global-in-time Gevrey regularity solutions for the FCH equation were recently
established, see [17]. Numericalmethods for the simulation of the uniformmobility systemhave been
presented. including the spectral-Galerkin methods[18], an implicit-explicit scheme and the spectral
method[19], and local discontinuous Galerkin method[20].

It is reasonable for the mobility to depend upon the concentration, and in particular for it to effec-
tively vanish in the solvent phase. This would eliminate exchange of amphiphilic molecules between
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disjoint morphologies. Such examples have been described experimentally, [21], however to the best
of our knowledge there are no results for theoretical analysis of the FCH equation with degenerate
mobility. The existences of the solutions for the CH equations with a degenerate mobility were estab-
lished in [22] in one space dimension and in [23, 24] for any dimensions. The main idea of this paper
follows the presentation of [24]. We refer [25–27] for the other forms of higher order CH equations.

This paper is organized as follows. In Section 2, we prove the existence of weak solution with
positive mobilities for the FCH equation in any dimension by the Galerkin method. In Section 3, we
show the existence of more regular weak solutions for the equation (1)–(3) with positive mobilities in
the dimension n ≤ 3. Finally, in Section 4 we obtain the existence of the weak solution for the FCH
equation with degenerated mobilities for the dimension n ≤ 3.

2. Weak solution for the cases with positive mobilities

In this section, we assume the mobilityM(u) is a non-degenerate continuous functionMθ (u)

Mθ (u) =
{

|1 + u|m, if |1 + u| > θ ,

θm, if |1 + u| ≤ θ ,
(8)

with 0 < m < +∞ if n = 1, 2, 3, 4 and 0 < m < 4/(n − 4) if n ≥ 5. At the same time, we also assume
W(u) ∈ C2(R,R) and for all u ∈ R

C1|u|2p − C2 ≤W(u) ≤ C3|u|2p + C4, (9)

|W′(u)| ≤ C3|u|2p−1 + C4, (10)

C1|u|2p−2 − C2 ≤W′′(u) ≤ C3|u|2p−2 + C4, (11)

pC3|u|2p − C2 ≤W′(u)u, when |u| > 1, (12)

where 1 < p < ∞, if n= 1, 2 and 1 < p ≤ (n − 1)/(n − 2), if n ≥ 3, Ci > 0, i = 1, . . . , 4 are con-
stants. The tilted double-well potential energy

W(u; τ) = |u + 1|2
(

1

2
|u − 1|2 −

τ

3
(u − 2)

)

,

is a typical example, see [11].

Theorem 2.1: Let u0(x) ∈ H2(�). Under the assumptions of (8) and (9)–(12), for any T> 0 is a given
constant, there exists a pair of functions (uθ , µθ ) that satisfies the following conditions

(i) uθ ∈ L∞(0,T;H2(�)) ∩ C(0,T;H2−ε(�)) ∩ C([0,T];X), for any 0 < ε < 1, and X = Cα(�),
0 < α < 1

2 if n= 1, 2, 3, X = Lq(�) with 1 ≤ q < 2n/(n − 4) if n ≥ 4;

(ii) ∂tuθ ∈ L2(0,T; (H2(�))′);
(iii) u(0) = u0;
(iv) µθ ∈ L2(0,T;H1(�));
(v) For all ξ ∈ L2(0,T;H2(�)) and φ ∈ H2(�), the following integral equalities hold:

∫ T

0
< ∂tuθ , ξ >(H2(�)′,H2(�)) dt +

∫ T

0

∫

�

Mθ (uθ )∇µθ∇ξ dx dt = 0, (13)

and
∫

�

µθφ dx =
∫

�

(

−�uθ + W′(uθ )
)

(−�φ + W′′(uθ )φ) + η
(

�uθ − W′(uθ )
)

φ dx. (14)
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In additional, we have

‖uθ‖L∞(0,T;H2(�)) +
∫ T

0

∫

�

Mθ (uθ )|∇µθ |2 dx dt

+ ‖ωθ‖L∞(0,T;L2(�)) + ‖∂tuθ‖L2(0,T;(H2(�))′) ≤ C, (15)

where C only depends on �, ‖u0‖H2(�), Ci, i = 1, . . . , 4 and η.

2.1. Galerkin approximation

Let Z+ be the set of nonnegative integers and {φj}∞j=1 be the complete orthogonal basis for Hk(�),
k ≥ 0 as follows

{(2π)−n/2, Re(π−n/2eiK·x), Im(π−n/2eiK·x) : K ∈ Z
n
+/{(0, 0, . . . , 0)}.

We shall find the solution of the following approximating system for the problem (1)–(3),
∫

�

∂tu
Nφj dx = −

∫

�

Mθ (u
N)∇µN∇φj dx, (16)

∫

�

µNφj dx =
∫

�

−ωN�φj + W′′(uN)ωNφj − ηωNφj dx, (17)

uN0 (x) =
N

∑

j=1

(∫

�

u0φj dx

)

φj(x), (18)

where uN and µN are the Galerkin approximations with the form

uN(x, t) =
N

∑

j=1

cNj (t)φj(x), µN(x, t) =
N

∑

j=1

dNj (t)φj(x),

and

ωN(x) = −�uN + W′(uN). (19)

Since the right hand side of (16)–(18) satisfies the Carathéodory condition, the existence of a local
solution is ensured. The global existence then follows from the following Lemma 2.2 and Lemma 2.3,
which gives uniform bounds on cNj (t) and dNj (t), for 1 ≤ j ≤ N on the interval of local existence time
and allows to prolong the local solution on the whole interval (0,T).

2.2. Some prior estimates

Lemma 2.2: Let uN be the solution of (16)–(18). For all t ∈ (0,T], we have
∫

�

uN dx =
∫

�

uN0 dx. (20)

Proof: Taking φj = (2π)−n/2 in (16), it is easy to obtain (20). �

Lemma 2.3: Let uN be the solution of (16)–(18). We have

‖uN‖L∞(0,T;H2(�)) ≤ C, (21)
∫ T

0

∫

�

Mθ (u
N)|∇µN |2 dx dt ≤ C, (22)
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‖ωN‖L∞(0,T;L2(�)) ≤ C, (23)

where C only depends on �, ‖u0‖H2(�), Ci, i = 1, . . . , 4 and η.

Proof: Replacing µN in place of φj in equation (16), we have
∫

�

∂tu
NµN dx +

∫

�

Mθ (u
N)|∇µN |2 dx = 0. (24)

Taking ∂tu
N in the place of φj in equation (17) and by (19), we obtain

∫

�

∂tu
NµN dx =

∫

�

−ωN ∂�uN

∂t
+ ωN ∂W′(uN)

∂t
− ηωN ∂uN

∂t
dx

=
∫

�

ωN ∂

∂t
(−�uN + W′(uN)) − η(−�uN + W′(uN))

∂uN

∂t
dx

=
d

dt

∫

�

1

2
|ωN |2 − η

(

1

2
|∇uN |2 + W(uN)

)

dx. (25)

By (24) and (25), we have

d

dt

∫

�

1

2
|ωN |2 − η

(

1

2
|∇uN |2 + W(uN)

)

dx +
∫

�

Mθ (u
N)|∇µN |2 dx = 0.

Integrating with respect to t from 0 to T, we have
∫

�

1

2
|ωN |2 − η

(

1

2
|∇uN |2 + W(uN)

)

dx +
∫ T

0

∫

�

Mθ (u
N)|∇µN |2 dx dt

≤
∫

�

1

2
|ωN

0 |2 dx − η

(

1

2
|∇uN0 |2 + W(uN0 )

)

dx

≤ C‖uN0 ‖2
H2 . (26)

Let us consider the first term of the left hand of (26). By (12) and (19), we have
∫

�

1

2
|ωN |2 − η

(

1

2
|∇uN |2 + W(uN)

)

dx

=
∫

�

(

1

2
|ωN |2 − ηωNuN

)

dx +
∫

�

ηωNuN − η

(

1

2
|∇uN |2 + W(uN)

)

dx

≥
∫

�

1

2
|ωN |2 dx −

∫

�

1

4
|ωN |2 dx −

∫

�

η2|uN |2 dx

+ η

∫

�

|∇uN |2 + W′(uN)uN −
(

1

2
|∇uN |2 + W(uN)

)

dx

≥
∫

�

1

4
|ωN |2 +

η

2
|∇uN |2 dx + η

∫

�

(W′(uN)uN − W(uN) − η|uN |2) dx

≥
∫

�

1

4
|ωN |2 +

η

2
|∇uN |2 dx + C3(p − 1)η

∫

�

|uN |2p dx − η

∫

�

η|uN |2 dx.

Since p> 1, we have
∫

�

(

|ωN |2 + |∇uN |2 +
∫

�

|uN |2p
)

dx +
∫ T

0

∫

�

Mθ (u
N)|∇µN |2 dx dt ≤ C,

where C depends only on ‖u0‖H2(�), Ci, i = 1, . . . , 4 and η. The estimates of (22) and (23) are
established.
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Since
∫

�

|ωN |2 dx =
∫

�

| − �uN + W′(uN)|2 dx ≤ C

and H1(�) ⊂ L4p−2(�) for 1 < p < ∞ if n= 1, 2 or 1 < p ≤ n−1
n−2 if n ≥ 3 is a continuous embed-

ding, we get

∫

�

| − �uN |2 dx ≤2

(∫

�

|W′(uN)|2 dx +
∫

�

|ωN |2 dx
)

≤C

∫

�

|uN |4p−2 dx + C

≤C

∫

�

|∇uN |2 dx + C. (27)

So the estimate (21) is obtained by (20) and (27). �

The Sobolev embedding theorem for the space H2(�) yields the following corollaries.

Corollary 2.4: Let uN be the solution of (16)–(18). We have

‖uN‖L∞(0,T;X) ≤ C, if n = 1, 2, 3, (28)

where X = Cα(�) with 0 < α < 1
2 for n= 1, 2, 3, and X = Lq(�), 1 ≤ q < ∞ for n= 4, 1 ≤ q ≤

2n/(n − 4) for n> 4.

Corollary 2.5: Let uN be the solution of (16)–(18). We have

‖Mθ (u
N)‖L∞(0,T;L∞(�)) ≤ C, if n = 1, 2, 3, (29)

and

‖Mθ (u
N)‖L∞(0,T;X) + ‖

√

Mθ (uN)‖L∞(0,T;Y) ≤ C, if n ≥ 4, (30)

where X = Lq1(�), Y = Lq2(�)with 1 ≤ q1, q2 < ∞, if n= 4, and 1 ≤ q1 ≤ 2n/m(n − 4), 1 ≤ q2 ≤
4n/m(n − 4) if n≥ 5.

Corollary 2.6: Let uN be the solution of (16)–(18). We have

‖W′(uN)‖L∞(0,T;X) + ‖W′′(uN)‖L∞(0,T;Y) ≤ C, (31)

where X = Y = L∞(�) if n= 1, 2, 3, and X = Lq1(�), Y = Lq2(�) with 1 ≤ q1, q2 < ∞, if n= 4,
and 1 ≤ q1 ≤ (1/(2p − 1))(2n/(n − 4)), 1 ≤ q2 ≤ (1/(p − 1))(n/(n − 4)), if n> 4.

Lemma 2.7: Let uN be the solution of (16)–(18). We have

‖µN‖L2(0,T;H1(�)) ≤ Cθ , (32)

where C depend on θ , �, ‖u0‖H2(�), Ci, i = 1, . . . , 4 and η.
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Proof: Taking φj = (2π)−n/2 in (17), and by Corollary 2.6, we have

∫

�

µN dx =
∫

�

W′′(uN)ωN − ηωN dx

≤
∫

�

|W′′(uN)|2 dx + C

∫

�

|ωN |2 dx + C

≤C.

By (8), we haveMθ (u) ≥ θm. So by (22), we have

∫ T

0

∫

�

|∇µN |2 dx dt ≤ Cθ−m.

We get (32) by Poincaré inequality. �

Lemma 2.8: Let uN be the solution of (16)–(18). We have

‖∂tuN‖L2(0,T;(H2(�))′) ≤ C, (33)

where C only depend on �, ‖u0‖H2(�), Ci, i = 1, . . . , 4 and η.

Proof: For any φ ∈ L2(0,T;H2(�)), by Hölder inequality, we have

∣

∣

∣

∣

∫

�

∂uN

∂t
φ dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

�

Mθ (u
N)∇µN∇φ dx

∣

∣

∣

∣

≤‖
√

Mθ (uN)‖Ln(�)‖
√

Mθ (uN)∇µN‖L2(�)‖∇φ‖L2n/(n−2) .

By Corollary 2.5, we get

∣

∣

∣

∣

∫ T

0

∫

�

∂uN

∂t
φ dx dt

∣

∣

∣

∣

≤C

∫ T

0
‖
√

Mθ (uN)∇µN‖L2(�)‖φ‖H2 dt

≤‖
√

Mθ (uN)∇µN‖L2(0,T;L2(�))‖φ‖L2(0,T;H2(�))

≤C.

The lemma is proved. �

2.3. Proof of theorem 2.1

By Aubin-Lions Lemma, there exists a subsequence of uN (not relabeled) and a function uθ such that
as N → ∞

uN ⇀ uθ , weak−∗ in L∞(0,T;H2(�)), (34)

uN → uθ , strongly in C(0,T;H2−ε(�)) for any 0 < ε < 1, (35)

uN → uθ , strongly in C(0,T;X) and a.e. in QT , (36)

∂tu
N ⇀ ∂tuθ , weakly in L2(0,T; (H2(�))′), (37)

where X = Cα(�) with 0 < α < 1
2 for n= 1, 2, 3, and X = Lq(�), 1 ≤ q < ∞ if n= 4, q <

(2n/(n − 4)) for n> 4. In addition, we obtain the following bound for uθ ,

‖uθ‖L∞(0,T;H2(�)) + ‖∂tuθ‖L2(0,T;(H2(�))′) ≤ C.
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By (32), there exist a subsequence of µN (not relabeled) and a function µθ such that as N → ∞

µN → µθ , weakly in L2(0,T;H1(�)). (38)

By (36), when n ≤ 4,Mθ (u
N) → Mθ (uθ ), strongly in C([0,T]; Ln(�)). So we have

Mθ (u
N)∇µN ⇀ Mθ (uθ )∇µθ , weakly in L2(0,T; L2n/(n+2)(�)). (39)

When n ≥ 5, by (36) again, we have

Mθ (u
N) → Mθ (uθ ), strongly in C([0,T]; Ln/2(�)), (40)

√

Mθ (uN) →
√

Mθ (uθ ), strongly in C([0,T]; Ln(�)). (41)

By (22), there exists a subsequence of
√

Mθ (uN)∇µN (not relabeled) and a function χθ such that

√

Mθ (uN)∇µN ⇀ χθ , weakly in L2(0,T; L2(�)).

Combining with (40) and (41), we have

√

Mθ (uN)(
√

Mθ (uN)∇µN) ⇀
√

Mθ (uθ )χθ , weakly in L2(0,T; L2n/(n+2)(�)),

Mθ (u
N)∇µN ⇀ Mθ (uθ )∇µθ , weakly in L2(0,T; L2n/(n+4)(�)).

We also get (39) by the uniqueness of weak limits.
By (37) and (39) and letting N → ∞ in (16), we have

∫ T

0
< ∂tuθ ,φ >(H2(�)′,H2(�)) dt = −

∫ T

0

∫

�

Mθ (uθ )∇µθ∇φ dx dt,

for all φ ∈ L2(0,T;H2(�)).
By (31) and (34), we have

ωN = −�uN + W′(uN) ⇀ ωθ , weakly−∗ in L∞(0,T; L2(�)), (42)

where ωθ = −�uθ + W′(uθ ). Then for any φ ∈ H2(�), we get

ωNφ ⇀ ωθφ, weakly−∗ in L∞(0,T; Ln/(n−2)(�)). (43)

By (31), we have

W′′(uN) → W′′(uθ ), strongly in Ln/2(�) for t ∈ (0,T) a.e.. (44)

By (38), (42), (43), and (44) and taking N → ∞ in (17), we have

∫ T

0

∫

�

µθφ dx dt =
∫ T

0

∫

�

(

ωθ (−�φ + W′′(uθ )φ) + ηωθφ
)

dx dt

for all φ ∈ L2(0,T;H2(�)). Together, these results yields (14).
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3. Weak solution with positive mobilities for n=1, 2, 3

In this section, we assume n= 1, 2, 3, require the non-degenerate function Mθ (u) to satisfy (8),
and further assume that W(u) ∈ C4(R;R) satisfies the condition (9)–(12). Under these additional
conditions we obtain smoother solution to the problem (1)–(3).

Theorem 3.1: Let u0(x) ∈ H2(�). Under the assumptions of (8) and (9)–(12), for any T> 0 is a given
constant, there exists a functions uθ , such that it satisfies the following conditions

(i) uθ ∈ L2(0,T;H5(�)) ∩ C(0,T;H5−ε(�)) ∩ C([0,T];C3,α(�)), 0 < α < 1/2;
(ii) ∂tuθ ∈ L2(0,T; (H2(�))′);
(iii) u(0) = u0;
(iv) For all ξ ∈ L2(0,T;H2(�)), the following integral equality holds:

∫ T

0
< ∂tuθ , ξ >H2(�)′,H2(�) dt

= −
∫ T

0

∫

�

Mθ (uθ )
(

−∇�ωθ + W′′′(uθ )∇uθωθ + W′′(uθ )∇ωθ − η∇ωθ

)

∇ξ dx dt,

(45)

where ωθ = −�uθ + W′(uθ ).

3.1. Further estimates of uθ

Replacing φj by ωN in (17) and integrating in [0,T], we have

∫ T

0

∫

�

µNωN dx dt =
∫ T

0

∫

�

|∇ωN |2 + W′′(uN)|ωN |2 − η|ωN |2 dx dt.

By Young’s inequality and Corollary 2.6, we have

∫ T

0

∫

�

|∇ωN |2 dx dt ≤ Cθ

(∫ T

0

∫

�

|µN |2 dx dt +
∫ T

0

∫

�

|ωN |2 dx dt
)

≤ Cθ . (46)

By (19), we have

∫ T

0

∫

�

|∇�uN |2 dx dt

≤ 2

∫ T

0

∫

�

|∇ωN |2 dx dt + 2

∫ T

0

∫

�

|W′′(uN)|2|∇uN |2 dx dt

≤ Cθ . (47)

By Sobolev embedding theorem, we could also get

‖∇uN‖L2(0,T;Cα(�)) ≤ ‖uN‖L2(0,T;H3(�)) ≤ Cθ , (48)

with 0 < α < 1/2. By (17) and (19), we have

µN = −�ωN + W′′(uN)ωN − ηωN ,
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in the sense of distribution. Then by (32) and (28), we could obtain

∫ T

0

∫

�

|�ωN |2 dx dt

≤
∫ T

0

∫

�

|µN |2 + |W′′(uN)ωN |2 dx dt + η

∫ T

0

∫

�

|ωN | dx dt

≤ Cθ .

By Sobolev embedding theorem, we have

‖ωN‖L2(0,T;L∞(�)) ≤ ‖ωN‖L2(0,T;H2(�)) ≤ Cθ . (49)

Again, by (17) and (19), we get

∇µN = −∇�ωN + W′′′(uN)∇uNωN + W′′(uN)∇ωN − η∇ωN ,

in the sense of distribution. So by (28), (32), (46), (48) and (49), we could obtain

∫ T

0

∫

�

|∇�ωN |2 dx dt

≤ C

∫ T

0

∫

�

|∇µN |2 + |W′′′(uN)∇uNωN |2 + |W′′(uN)∇ωN |2 dx dt

+ Cη2
∫ T

0

∫

�

|∇ωN |2 dx dt

≤ Cθ . (50)

By (19), we have

∇�ωN = −∇�2uN + W(4)(uN)|∇uN |2∇uN + W′′′(uN)∇(|∇uN |2)

+ W′′′(uN)∇uN�uN + W′′(uN)∇�uN .

By (28), (50), (48), and (47), we have

∫ T

0

∫

�

|∇�2uN |2 dx dt

≤ C

∫ T

0

∫

�

|∇�ωN |2 + |∇uN |6 + |∇uN |2|∇2uN |2 + |∇�uN |2 dx dt

≤ Cθ .

3.2. Convergence of {uN}

By Aubin-Lions Lemma, there exists a subsequence of uN (not relabeled) and a function uθ such that
as N → ∞

uN ⇀ uθ , weak− ∗ in L∞(0,T;H5(�)), (51)

uN → uθ , strongly in C(0,T;H5−ε(�)) for any 0 < ε < 1, (52)

uN → uθ , strongly in C(0,T;C3,α) and a.e. in QT , (53)

∂tu
N ⇀ ∂tuθ , weakly in L2(0,T; (H2(�))′), (54)



APPLICABLE ANALYSIS 11

where 0 < α < 1
2 . In addition, we could obtain the following bound for uθ ,

‖uθ‖L∞(0,T;H5(�)) + ‖∂tuθ‖L2(0,T;(H2(�))′) ≤ C. (55)

By (53), we have

Mθ (u
N) → Mθ (uθ ), strongly in C(0,T; Lq(�)), (56)

W(k)(uN) → W(k)(uθ ), strongly in C(0,T; Lq(�)), (57)

for any 1 ≤ q < ∞, and k= 0, 1, 2, 3, 4.
By (42) and (50), we have

∇�ωN ⇀ ∇�ωθ , weakly in L2(0,T; L2(�)), (58)

where ωθ = −�uθ + W′(uθ ).
By (42) and (48), we have

∇uNωN ⇀ ∇uθωθ , weakly in L2(0,T; L2(�)). (59)

By (46), we have

∇ωN ⇀ ∇ωθ , weakly in L2(0,T; L2(�)). (60)

As the similar process of proof of theorem 2.1 in subsection 2.3, by (54), and (57)–(60), we could
obtain for any ξ ∈ L2(0,T;H2(�)),

∫ T

0
< ∂tuθ , ξ >H2(�)′,H2(�) dt

= −
∫ T

0

∫

�

Mθ (uθ )
(

−∇�ωθ + W′′′(uθ )∇uθωθ + W′′(uθ )∇ωθ − η∇ωθ

)

∇ξ dx dt,

with

ωθ = −�uθ + W′(uθ ).

4. Weak solutions with degenerate mobility

In this section, we assume n= 1, 2, 3 and consider the degenerate case for problem (1)–(3). We
assume the functionM(u) ∈ C(R,R+) and there exist δ > 0 and c0 > 0 such thatM(u) = |1 + u|m
for u ∈ Bδ(−1) := (−1 − δ,−1 + δ), while M(u) ≥ c0 > 0 for u ∈ R \ Bδ(−1). In addition, there
existM1,M2 > 0 such that

0 ≤ M(u) ≤ M1|u|m + M2, for all u ∈ R.

where m can be any positive number 0 < m < ∞. We assume that W(u) ∈ C4(R,R) satisfies the
conditions (9)–(12).

Theorem 4.1: Let u0(x) ∈ H2(�). Under the above assumptions of M(u) and (9)–(12), for any T> 0
is a given constant, there exists a function u, such that it satisfies the following conditions

(i) u ∈ L∞(0,T;H2(�)) ∩ C([0,T];H2−ε(�)) ∩ C([0,T];Cα(�)), where 0 < ε < 2 and 0 < α <

1/2;
(ii) ∂tuθ ∈ L2(0,T; (H2(�))′);
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(iii) u(0) = u0;
(iv) Letting the set P := {(x, t) ∈ �T : |1 + u| �= 0}, we have

(a) there exist a set B ⊂ �T with |�T \ B| = 0 and a function ζ : �T → R
n satisfying

χB∩PM(u)ζ ∈ L2(0,T; L2n/(n+2)(�)) such that

∫ T

0
< ∂tu,φ ><(H2(�))′,H2(�)> dt = −

∫

B∩P
M(u)ζ · ∇φ dx dt, (61)

for all φ ∈ L2(0,T;H2(�));
(b) if ∇�2u ∈ Lq(U) for some open subset U ⊂ �T and some q> 1, then we have

ζ = −∇�ω + W′′′(u)∇uω + W′′(u)∇ω − η∇ω, in U.

In additional, the following energy inequality is satisfied for all t ≥ 0.
∫

�

(

|∇u(x, t)|2 + W(u(x, t))
)

dx +
∫

�t∩B∩P
M(u(x, t))|ζ(x, τ)|2 dx dτ ≤

∫

�

|∇u0|2 + W(u0) dx.

4.1. Proof of theorem 4.1

Taking θi = 1
i , ui = uiθi ,µi = µi

θi
, and Mi = Mθi . By Lemma 2.3, Lemma 2.8, there exist a subse-

quence of ui (not relabeled) and a function u such that

ui → u strongly in C([0,T];Cα(�)) ∩ C(0,T;H2−ε(�)) and a.e. in � × (0,T), (62)

as i → ∞ for any 0 < α < 1/2. By the continuity ofM(u), we have

Mi(ui) → M(u) strongly in C([0,T]; Ln/2(�)), (63)
√

Mi(ui) →
√

M(u) strongly in C([0,T]; Ln(�)). (64)

By (22), there exist a subsequence of
√
Mi(ui)∇µi (not relabeled) and a function ξ such that as i →

∞,
√

Mi(ui)∇µi ⇀ ξ , weakly in L2(0,T; L2(�)), (65)

Then by (63), (65), we have

lim
i→∞

∫∫

�T

Mi(ui)∇µiφ dx dt =
∫∫

�T

√

M(u)ξφ dx dt,

for any φ ∈ L2(0,T; L2n/(n−2)(�T ;R
n)).

By (62), we could choose a sequence of positive numbers δj that monotonically decreases to 0 and
by Egorov’s theorem, for every δj > 0, there exists a subset Bj ⊂ �T with |�T \ Bj| < δj such that
ui → u uniformly in Bj with

B1 ⊂ B2 ⊂ · · · ⊂ Bj ⊂ Bj+1 ⊂ · · · �T .

Define B = ∪∞
j=1Bj, then |�T \ B| = 0. Let Pj = {(x, t) ∈ �T : |1 + u| > δj}. Then

P1 ⊂ P2 ⊂ · · · ⊂ Pj ⊂ Pj+1 ⊂ · · · �T .

We set P = ∪∞
j=1Pj. For any φ ∈ L2(0,T; L2n/(n−2)(�T ;R

n)), we have

∫∫

�T

Mi(ui)∇µiφ dx dt =
∫∫

�T\Bj
+

∫∫

Bj∩Pj
+

∫∫

Bj\Pj
Mi(ui)∇µiφ dx dt. (66)
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For the first term of (66), we have

lim
j→∞

lim
i→∞

∫∫

�T\Bj
Mi(ui)∇µiφ dx dt = lim

j→∞

∫∫

�T\Bj

√

M(u)ξφ dx dt = 0. (67)

By the uniform convergence of ui → u in B1, there exists an integer N1 such that for all i ≥ N1, we
have

|1 + ui| >
δ1

2
in B1 ∩ P1, |1 + ui| ≤ 2δ1 in B1 \ P1.

By (22), for any i ≥ N1, we get

(

δj

2

)m ∫∫

B1∩P1
|∇µi|2 dx dt ≤

∫∫

B1∩P1
Mi(ui)|∇µi|2 dx dt

≤
∫∫

�T

Mi(ui)|∇µi|2 dx dt

≤ C.

So there exists a subsequence ∇µ1,k of ∇µi with k = 1, 2, . . . and i ≥ N1, that weakly converges
to some function ζ1 ∈ L2(B1 ∩ P1). At the same time, we write u1,k as the subsequence of ui cor-
respondingly. By the same process, we have the subsequence ∇µj,k of ∇µj−1,k with j = 2, 3, . . . and

k = 1, 2, . . . , such that∇µj,k weakly converges to some function ζj ∈ L2(Bj ∩ Pj). Of course, we write
uj,k as the subsequence of uj−1,k correspondingly, such that

|1 + uj,k| >
δj

2
in Bj ∩ Pj, |1 + uj,k| ≤ 2δj inBj \ Pj.

Since {Bj ∩ Pj}∞j=1 is an increasing sequence of sets with a limit B ∩ P, we have ζj = ζj−1 a.e. in Bj−1 ∩
Pj−1. So for almost every x ∈ B ∩ P, there exists a function ζ(x) such that ζ(x) = ζj(x) for almost
everywhere x ∈ Bj ∩ Pj and all j ≥ 1.

Using the standard diagonal argument, we can extract a subsequence such that∇µk,Nk
⇀ ζ weakly

in L2(Bj ∩ Pj) for any j ≥ 1 and then by (64)

χBj∩Pj

√

Mk,Nk
(uk,Nk

)∇µk,Nk
⇀ χBj∩Pj

√

M(u)ζ weakly in L2(0,T; L2n/(n+2)(�)),

as k → ∞. Here χBj∩Pj is the characteristic function of Bj ∩ Pj. However, by (65), we also know
√

Mk,Nk
(uk,Nk

)∇µk,Nk
⇀ ξ weakly in L2(�T). Then we see that ξ =

√
M(u)ζ in every Bj ∩ Pj, and

hence ξ =
√
M(u)ζ in B ∩ P. Consequently, by (64) again, we have

χB∩PMk,Nk
(uk,Nk

)∇µk,Nk
⇀ χB∩PM(u)ζ weakly in L2(0,T; L2n/(n+2)(�)). (68)

For the third term of (66), we have

lim
j→∞

lim
k→∞

∣

∣

∣

∣

∣

∫∫

Bj\Pj
Mk,Nk

(uk,Nk
)∇µk,Nk

φ dx dt

∣

∣

∣

∣

∣

≤ lim
j→∞

lim
k→∞

sup
Bj\Pj

√

Mk,Nk
(uk,Nk

)

∥

∥

∥

√

Mk,Nk
(uk,Nk

)∇µk,Nk

∥

∥

∥

L2(�T)
|�|1/n‖φ‖L2(0,T;L2n/(n−2)(�))

≤ C lim
j→∞

lim
k→∞

max{(2δj)m/2, θ
m/2
k,Nk

}

= 0. (69)



14 S. DAI ET AL.

In (66), we take ui = uk,Nk
as the above subsequence and let k → ∞ and then j → ∞. By (67), (68),

and (69), we have

lim
i→∞

∫∫

�T

Mi(ui)∇µiφ dx dt =
∫∫

B∩P
M(u)ζ dx dt. (70)

At last, let us consider the relation between ζ and u for the case of n= 3. The cases of n= 1, 2 are
similar. If the interior of (Bj ∩ Pj)

◦ is not empty for some j, by

∇µk,Nk
= −∇�ωk,Nk

+ W′′′(uk,Nk
)∇uk,Nk

ωk,Nk
+ W′′(uk,Nk

)∇ωk,Nk
− η∇ωk,Nk

, (71)

and (28), (47), (48), and (50), we have

ζ = −∇�ω + W′′′(u)∇uω + W′′(u)∇ω − η∇ω, (72)

as k → ∞. At the same time, since

lim
k→∞

∫ T

0

∫

�

ωk,Nk
ϕ dx dt = lim

k→∞

∫ T

0

∫

�

−�uk,Nk
+ W′(uk,Nk

)ϕ dx dt

=
∫ T

0

∫

�

−�u + W′(u)ϕ dx dt

for any ϕ ∈ L2(0,T;H2(�)), we have ω = −�u + W′(u) in the sense of distribution.
If ∇�2u ∈ Lq(U) for some open set U and q> 1, then by (62), we have

�2u ∈ Lq(0,T;W1,q(�)),

∇�u ∈ Lq(0,T;W2,q(�)),

�u ∈ Lq(0,T;W1,q(�)) ∩ L∞(0,T; L2(�)),

∇u ∈ Lq(0,T;W4,q(�)) ∩ L∞(0,T; L6(�)),

u ∈ Lq(0,T;W5,q(�)) ∩ C(0,T;Cα(�)),

and furthermore by

∇�ω = −∇�2u + W(4)(u)|∇u|2∇u + W′′′(u)∇(|∇u|2) (73)

+ W′′′(u)∇u�u + W′′(u)∇�u, (74)

we have ∇�ω ∈ Lq(U) for r = min{q, 2}. Since ω = −�u + W′(u) ∈ L∞(0,T; L2(�)), we have
W′′′(u)∇uω ∈ L3(U). By (72), ξ ∈ Lr(U). Hence,

∇µk,Nk
⇀ −∇�ω + W′′′(u)∇uω + W′′(u)∇ω − η∇ω, (75)

weakly in Lq(U) with ω = −�u + W′(u). We may extend the definition of ζ from B ∩ P ∩ U into
U \ (B ∩ P) by letting ζ = −∇�ω + W′′′(u)∇uω + W′′(u)∇ω − η∇ω.

Define

�̃T := ∪{U ⊂ �T : ∇�u ∈ Lp(U) for some q > 1, qmay depend on U}.

Then �̃T is open and ζ = −∇�ω + W′′′(u)∇uω + W′′(u)∇ω − η∇ω in �̃T . ζ is now defined in
(B ∩ P) ∪ �̃T . Notice that

�T \ ((B ∩ P) ∪ �̃T) ⊂ (�T \ P) ∪ (�T \ B).

Since |�T \ B| = 0 and M(u) = 0 in �T \ P, the value of ζ outside of (B ∩ P) ∪ �̃T does not con-
tribute to the integral on the right hand side of (70), so we set ζ = 0 outside of (B ∩ P) ∪ �̃T . This
completes the proof of Theorem 4.1.
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