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1. Introduction

Let Q@ = [0,27]" and T > 0 be an a given positive number. We consider the gradient flow of the
functionalized Cahn-Hilliard (FCH) equation with degenerate mobility,

du = div(IMWV), (66 € Qr = Q x (0,T), )
w=—Aw+Wwo —no, (2)
o =—Au+ W(u), (3)

under the imposition of period boundary condition. The mobility M(u) and double-well potential
W (u) are both smooth functions from R to R. The FCH free energy was derived from models for
interfacial energy in phase separated mixtures with an amphiphilic structure by M. Teubner, R. Strey
[1], G. Gompper, M. Schick [2], and was developed to describe nanoscale morphology changes in
functionalized polymer chains by K. Promislow and B. Wetton[3]. Generally, u represents the volume
fraction of amphiphilic material verses solvent, with u = —1 denoting pure solvent and u = 1 denoting
pure amphile. The double-well potential W has local minima at u = £1, with W(—1) =0 > W(1),
while the degenerated mobility M is taken to be zero in the u = —1 solvent phase.
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The FCH free energy can be understood informally from the following process. Denote the
Cahn-Hilliard(CH) free energy

1
E(u) =f 5|Vu|2 + W(u) dx, (4)
Q
which was introduced by J. W. Cahn and J. E. Hilliard[4] to describe a binary mixture by a phase field

function u. The critical points of E are the zeros of its variational derivative, w,

w=EY _ A ww. (5)
Su

The FCH free energy uses the square of the CH variational derivative to measure distance to criticality,
and subtracts terms that reward surface area.

[ 1(SEw)’ 1,
r = [ (5) —a(Grver+ win) a ©

where 7 is a positive constant. The minus sign in front of 1 is of considerable significance: it incor-
porates the propensity of the amphiphilic surfactant phase to drive the creation of interface. Under
this construction, the minimizers of the FCH free energy are approximate critical points of the CH,
with large surface area. The variational derivative of (6), acting on a test function ¢ € C7¢ (€2) takes
the form

SF
( S(uH)’“b) N fg (—Au+WwW) (—Ap + W' W¢) — n(=Au+ W' ()¢ dx.

Equivalently we may write

= 81;(u) =—-Aw+ W o — no, (7)
u

where p is called the chemical potential.

The minimizers of the CH free energy are generically single-layers morphologies familiar from
the phase separation of two immiscible fluids, such as oil and water, whose components form subdo-
mains that are pure in each component. Conversely the minimizers of the FCH free energy are bilayer
morphologies which separate the majority component into regions bounded by a thin layer of other
phase - like a soap bubble or surfactant. Significantly, bilayers can rupture, re-uniting the two regions
of majority phase, as when a lipid bilayer opens a pore, or tears. The well-posedness of the minimiza-
tion problem for the energy functional (6) with a more generalized form, including the existence of
global minimizers was established in [5, 6] over various natural function spaces. The problem, such
as existence of bilayer, pearled patterns, and network bifurcations, were discussed in [7-11], as well
as the review article [12].

Under uniform mobility, M = 1, the system (1)-(3) is the usual H™! gradient flow associated
with the FCH free energy. In this case the competitive evolution of bilayer and pore structures of the
FCH equation on a variety of time scales by a multi-scale analysis were studied in [13-15], and sharp
interface limits for the dynamics of bilayer structures were derived. The center-unstable spectra and
resolvent estimates to the operators associated with gradient flows of the functionalized energies are
obtained in [16]. The global-in-time Gevrey regularity solutions for the FCH equation were recently
established, see [17]. Numerical methods for the simulation of the uniform mobility system have been
presented. including the spectral-Galerkin methods[18], an implicit-explicit scheme and the spectral
method[19], and local discontinuous Galerkin method[20].

It is reasonable for the mobility to depend upon the concentration, and in particular for it to effec-
tively vanish in the solvent phase. This would eliminate exchange of amphiphilic molecules between
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disjoint morphologies. Such examples have been described experimentally, [21], however to the best
of our knowledge there are no results for theoretical analysis of the FCH equation with degenerate
mobility. The existences of the solutions for the CH equations with a degenerate mobility were estab-
lished in [22] in one space dimension and in [23, 24] for any dimensions. The main idea of this paper
follows the presentation of [24]. We refer [25-27] for the other forms of higher order CH equations.

This paper is organized as follows. In Section 2, we prove the existence of weak solution with
positive mobilities for the FCH equation in any dimension by the Galerkin method. In Section 3, we
show the existence of more regular weak solutions for the equation (1)-(3) with positive mobilities in
the dimension n < 3. Finally, in Section 4 we obtain the existence of the weak solution for the FCH
equation with degenerated mobilities for the dimension n < 3.

2. Weak solution for the cases with positive mobilities

In this section, we assume the mobility M (u) is a non-degenerate continuous function Mg (1)

My (u) =

[1+ul™, if [1 4+ u| >0,
{ (8)

om, if [14+ul <0,

with0 < m < +o0ifn =1,2,3,4and0 < m < 4/(n — 4) ifn > 5. At the same time, we also assume
W(u) € C*(R,R) and forall u € R

Cilul® — C, <Ww) < Cs|ul® + Cy, (9)

W' W) < Cslul?™" + Cy, (10)
Clul?™? = C; <W"(u) < Gslul* ™% + Cy, (11)
pCslul® — Cy <W'(w)u, when |u] > 1, (12)

where 1 <p <oo,ifn=1L2and 1l <p<(n—1)/(n—2),ifn>3,C;>0,i=1,...,4 are con-
stants. The tilted double-well potential energy

2 (1 2 T
W t) = |lu+1| z|u—1| —g(u—Z) R

is a typical example, see [11].

Theorem 2.1: Let ug(x) € H2(Q2). Under the assumptions of (8) and (9)-(12), for any T > 0 is a given
constant, there exists a pair of functions (ug, jLg) that satisfies the following conditions

(1) ug € L0, T; H*(2)) N C(0, T; H>=#(Q)) N C([0, T]; X), for any 0 < & < 1, and X = C*(RQ),
O<a< % ifn=123X=L1(Qwithl <q<2n/(n—4)ifn>4
(i) dup € L*(0, T5 (H* ()
(iii) u(0) = uo;
(iv) pe € L*(0, T; H'(Q));
(v) Forallé € L*(0, T; H*(R)) and ¢ € H*(RQ), the following integral equalities hold:

T T
/ < aﬂ/lg,f;: >(H2(Q)’,H2(Q)) dt + / / M@(H())V//LQVS dxdt = 0, (13)
0 0 Q
and

/Quecbdx = /Q (—Aug + W' (ug)) (—Ap + W' (uo)g) +n (Aug — W' (up)) p dx.  (14)
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In additional, we have

T
ol 2o 0,112 (22)) + / / Mp(ug)|Vng|? dx dt
0 Q

+ llwo ll oo 0,1502(2)) + I19t1o I 120,752 (2)yy =< G (15)
where C only depends on Q, |[uollp2(q), Ci i = 1,...,4 and n.

2.1. Galerkin approximation

Let Z, be the set of nonnegative integers and {¢;}:°; be the complete orthogonal basis for H k(Q),

k > 0 as follows
{2m)™"2,  Re(mw"?eK*),  Im(x™"?eX*) . K € 2" /{(0,0,...,0)}.

We shall find the solution of the following approximating system for the problem (1)-(3),

/ duNgjdx = —/ My (uN)VuN Ve, dx, (16)
Q Q
/;Z,MNq)j dx = /Q —oN Ag; + W' WMo g — noN g dx, (17)
N
uy (=) (fg Uo dx) (), (18)
j=1

where 4N and ! are the Galerkin approximations with the form
N N
Nen =) O,  uNen =) 400,
=1 =1
and
oV (x) = —AuY + W ). (19)

Since the right hand side of (16)-(18) satisfies the Carathéodory condition, the existence of a local
solution is ensured. The global existence then follows from the following Lemma 2.2 and Lemma 2.3,
which gives uniform bounds on AN (t)and dN (1), for 1 < j < N on the interval of local existence time
and allows to prolong the local solution on the whole interval (0, T').

2.2. Some prior estimates

Lemma 2.2: Let uN be the solution of (16)-(18). For all t € (0, T], we have

[uNdxzfuf)de. (20)
Q Q

Proof: Taking ¢; = (27) ™% in (16), it is easy to obtain (20). |
Lemma 2.3: Let uN be the solution of (16)-(18). We have

”uN”LOO(O,T;HZ(Q)) <G, (21)

T
/ /Mg(uN)|V,uN|2dxdt§C, (22)
0 Q
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o [l oo 0,712 (02)) < G (23)
where C only depends on Q, |[uollp2(q), Ci i = 1,...,4 and n.
Proof: Replacing ! in place of ¢; in equation (16), we have
/ AN N dx + / Mg(u™M)|[ VN> dx = 0. (24)
Q Q

Taking d¢ 4V in the place of ¢; in equation (17) and by (19), we obtain

dAUN AW’ (N aulN
/atuNy,Ndxzf _NIAY N (u )_ande
o o 3t ot ot

N0 N /o N N /o N duN
= o —(Au" +Ww") —n(—Au" + W(u"))— dx
Q at at
_4 l|wN|2—r, l|VuN|2+W(uN) dx (25)
dt Jg 2 2 '

By (24) and (25), we have

d 1 1
— | Z1NP =9 (-|wN|2 + W(uN)> dx+/ My ™) VN> dx = 0.
dt Jo 2 2 Q

Integrating with respect to t from 0 to T, we have
1 1 T
/ —|w”|2—n<—|VuN|2+w<uN>> dx+f /MewN)wNFdxdt
Q2 2 0 Je
1 1
< / Sleg 1 dx—n (5|wgv|2 + W(u{f)) dx
Q

< Cllug I2- (26)
Let us consider the first term of the left hand of (26). By (12) and (19), we have

1 1
/ A (—|WN|2 + W(uN)> dx
o2 2
1 1
=/ <—|a)N|2 —na)NuN> dx—i—/ anuN—n(—|VuN|2+ W(uN)> dx
o \2 Q 2

1 1
z/ —|a)N|2dx—f —|a)N|2dx—/ 2 1u? dx
Q2 Q4 Q

1
+ n/ IV 2 + W @N)uN — <5|wN|2 + W(uN)) dx
Q

1
z/ Z|wN|2+gIVuN|2dx+n/(W/(uN)uN—W(uN)—r/|uN|2)dx
Q Q

1
z/ VPR 4+ L v 2 dx + Cs(P—l)n/ |uN|2de—n/ n|u™|? dx.
Q4 2 Q Q

Since p > 1, we have

T
/ (|wN|2+|wN|2+/ |uN|2P) dx+/ /Me(uN)IVMNIdedtS C,
Q Q 0 Q

where C depends only on |ug||g2(q)s Ci» i =1,...,4 and 7. The estimates of (22) and (23) are
established.
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Since
/ N2 dx = f | — AuN + WeM))?Pdx < C
Q Q

and H(Q) C LY 72(Q) for 1 <p <ooifn=1,20rl <p < Z—:é if n > 3 is a continuous embed-

ding, we get
[ 1= suar <2 (/ WP+ | |wN|2dx>
Q Q Q
gc/ WN#~2dx + C
Q
gc/ |[VuN|? dx + C. (27)
Q
So the estimate (21) is obtained by (20) and (27). [ |

The Sobolev embedding theorem for the space H?(S2) yields the following corollaries.

Corollary 2.4: Let u" be the solution of (16)-(18). We have
luN|poorx) < C if n=1,2,3, (28)

where X = C*(2) with 0 < o < %for n=123and X=1L1(Q), 1 <g<ooforn=4,1<q<
2n/(n — 4) for n> 4.

Corollary 2.5: Let u" be the solution of (16)-(18). We have

Mo (™) o0, 1r0(0) < G if n=1,2,3, (29)
and
1Mo (u™)[l1020,75%) + IV Mo (M) 10,17y < C, if n > 4, (30)

where X = L1 (Q), Y = L2 (Q) with1 < q1,q2 < 00, ifn=4,and1 < q1 <2n/m(n—4),1 < gy <
dn/m(n —4) if n>5.

Corollary 2.6: Let u" be the solution of (16)-(18). We have
W @) 0,100 + IW @)l 01v) < G, (31)

where X =Y =L®(Q) ifn=1,2, 3, and X = LT"(Q), Y = L12(Q) with 1 < q1,92 < 00, if n=4,
andl < q < (1/Q2p —1)2n/(n—4)), 1 < q2 < (1/(p — 1) (n/(n —4)), if n>4.

Lemma 2.7: Let uN be the solution of (16)-(18). We have

||MN||L2(Q,T;H1 @) =< Co, (32)

where C depend on 0, Q, ||uo||p2(q) Cii=1,...,4 and n.
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Proof: Taking ¢; = (27)~"? in (17), and by Corollary 2.6, we have

/,uNdxzf W Mo — no® dx
Q Q
5/ |w”(uN)|2dx+cf |N? dx + C
Q Q
<C.

By (8), we have My (1) > 6™. So by (22), we have

T
/ / \VuN2dxdt < CO™.
0 Q

We get (32) by Poincaré inequality.
Lemma 2.8: Let uN be the solution of (16)-(18). We have

||8t”N||L2(O,T;(H2(SZ))/) =G

where C only depend on , |uollp2(q), Cii=1,...,4 and .

Proof: Forany ¢ € L2(0, T; H*(Q)), by Holder inequality, we have

/Qat dx‘ ’/Mg(uN)VpLNV¢dx'

<IIvMp (N || ) IV Mo (uN)V uN || 120 IV P || 21112 -

By Corollary 2.5, we get

—¢ dx dt

<C / IV/Mo YV 18 120 12 e

<V Mg (uN)V N 220, T2 cn 1P L2 0,132 (92))
<C.

Q

The lemma is proved.

2.3. Proof of theorem 2.1

(33)

By Aubin-Lions Lemma, there exists a subsequence of uN (not relabeled) and a function ug such that

asN — o0

uN = up, weak—x in L®(0, T; HX(Q)),

AN ug, strongly in C(0, T; HZ_S(Q)) forany0 < ¢ < 1,

AN ug, strongly in C(0, T; X) and a.e. in Qr,

gl — d;up, weakly in L>(0, T; (H*(2))"),

(34)
(35)
(36)
(37)

where X = C*(Q2) with 0 < « <% for n=1, 2, 3, and X=L1(RQ), Il <g<oo if n=4, q<

(2n/(n — 4)) for n > 4. In addition, we obtain the following bound for ug,

146 | o, 1312(02)) T 10etdo |l r20,3(H2 2y =< C-
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By (32), there exist a subsequence of uXN (not relabeled) and a function g such that as N — oo
uN — wg, weakly in L2(0, T; H (R2)). (38)
By (36), when n < 4, My(uN) = Mg (up), strongly in C([0, T]; L"(2)). So we have
My (™M)VuN — My (ug) Vg, weakly in L0, T; L2 " 12(Q)). (39)
When n > 5, by (36) again, we have

My () — My (ug), strongly in C([0, T]; L"/*(2)), (40)

\/Mg uN) — \/Mg (up), strongly in C([0, T]; L"(S2)). (41)
By (22), there exists a subsequence of /My (uN) Vi (not relabeled) and a function ygy such that

VM uN)V N — xg,  weakly in L?(0, T; L*(2)).

Combining with (40) and (41), we have

VMo (uN) (/Mg (uN)V Ny — /Mg (ug) xg, weakly in L*(0, T; L*" "2 (Q)),
My (uM)ViN — My (us) Vg, weakly in L2(0, T; L2 9 (Q)).

We also get (39) by the uniqueness of weak limits.
By (37) and (39) and letting N — o0 in (16), we have

T T
/ < aﬂdg,(p >(H2(Q)’,H2(Q)) dt = —f / Mg (UQ)V[L@V(i) dxdt,
0 0 Q

for all ¢ € L?(0, T; H*()).
By (31) and (34), we have

o = —AuYN + W) —~ wg, weakly—* in L®(0, T; L*(2)), (42)
where wp = —Aug + W' (up). Then for any ¢ € H*(S2), we get
N —~ wpp, weakly—* in L®(0, T; L "2 (Q)). (43)
By (31), we have
W’ Ny — W (up), strongly in L"2(Q) for t € (0, T) a.e.. (44)

By (38), (42), (43), and (44) and taking N — oo in (17), we have

T T
f f jo dxdt = / f (0p (= A+ W (up) ) + nopgp) ddr
0 Q 0 Q

for all ¢ € L(0, T; H*(R2)). Together, these results yields (14).
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3. Weak solution with positive mobilities forn=1, 2, 3

In this section, we assume n=1, 2, 3, require the non-degenerate function My (u) to satisfy (8),
and further assume that W(u) € C*(R;R) satisfies the condition (9)—(12). Under these additional

conditions we obtain smoother solution to the problem (1)-(3).

Theorem 3.1: Let uy(x) € H>(S2). Under the assumptions of (8) and (9)-(12), for any T > 0 is a given

constant, there exists a functions ug, such that it satisfies the following conditions

(i) ug € L*(0, T; H>(R2)) N C(0, T; H>~#(2)) N C([0, T]; C>*(R)), 0 < o < 1/2;
(i) Bug € L*(0, T5 (H*(R)));
(iii) u(0) = uo;
(iv) Forall & € L*(0, T; H*(Q)), the following integral equality holds:

T
/ < 8tu9,$ >H2(Q)/,H2(Q) dt
0

T
= _/ / My (up) (—VAws + W (ug)Vugws + W (ug) Vg — nVwy) VE dx dt,
0 JQ

where wg = —Aug + W' (ug).

3.1. Further estimates of uy

Replacing ¢; by o in (17) and integrating in [0, T], we have

T T
/ / uNo dxdt = / / Vo 12 + W )| oV > = n]o™ | dx dt.
0 Q 0 Q

By Young’s inequality and Corollary 2.6, we have

T T T
/ / Vo2 dxdf < Cy <f f IMN|2dxdt+/ / |a)N|2dxdt) < Gy.
0 Q 0 Q 0 Q

By (19), we have

T
/ f IVAUN|? dx dt
0 Q

T T
52/ /|VwN|2dxdt+2/ f|w”(uN)|2|wN|2dxdt
0 Q 0 Q

< Cy.
By Sobolev embedding theorem, we could also get
IVl 20 msce ) < N4 20, msm @) < Cos
with 0 < & < 1/2. By (17) and (19), we have

(45)

(46)

(47)

(48)
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in the sense of distribution. Then by (32) and (28), we could obtain

T
/ / AN |? dx dt
0 Q

T T
5/ f|;LN|2+|W”(uN)a)N|2dxdt+n/ /la)N|dxdt
0 Q 0 Q

< Cp.
By Sobolev embedding theorem, we have
||wN||L2(o,T;L°<>(Q)) =< ||(UN||L2(0,T;H2(Q)) < G. (49)
Again, by (17) and (19), we get
vl = —VALN + WM ViV oN + W V) Vol — VoV,

in the sense of distribution. So by (28), (32), (46), (48) and (49), we could obtain

T
f / VAN dx dt
0 Q

T
< c/ / VN2 + W @) ViNoN 2 + | W @N) Vol | dx dt
0 Q

T
+ Cr/Z/ f [V |? dx dt
0 Q
By (19), we have
VAN = VAN + WO @) Vi PVuN + W) v (V)
+ W @)Vl AuN + W @) v Aaul.

By (28), (50), (48), and (47), we have

T
/ / IVA2uN|? dx dt
0 Q

T

< c/ / VAN 2 + [VuN|® + VUl 2 V2N 2 + VAN dxdr
0 Q

< Cp.

3.2. Convergence of {u"}

By Aubin-Lions Lemma, there exists a subsequence of uN (not relabeled) and a function ug such that
asN — o0

N = up, weak— x in L%°(0, T; H> (), (51)
N = up, strongly in C(0, T; H>~¢()) for any0 < ¢ < 1, (52)
N = up, strongly in C(0, T; C>*) and a.e. in Qr, (53)

g — d;up, weakly in L>(0, T; (H*(2))"), (54)
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where 0 < o < % In addition, we could obtain the following bound for uyg,

146 | Lo 0,315 (2)) T 10etdo |l 220, 3(H2 (2))y < C- (55)

By (53), we have
Mp(uN) — My (ug), strongly in C(0, T; L1(2)), (56)
WO Ny = wh (), strongly in C(0, T; L1(2)), (57)

forany 1 < g < oo,and k=0, 1,2, 3, 4.
By (42) and (50), we have

VAo — VAwg, weaklyin L*(0, T; L*(R)), (58)

where wg = —Aug + W (up).
By (42) and (48), we have

VuNo — Vugwg, weakly in L*(0, T; L*(2)). (59)
By (46), we have
Vo — Vay, weakly in L?(0, T; L*(2)). (60)

As the similar process of proof of theorem 2.1 in subsection 2.3, by (54), and (57)-(60), we could
obtain for any £ € L?(0, T; H*(R)),

T
/ < Btug,é >H2(Q)/,H2(Q) dt
0

T
= —f / My (up) (—VAwg + W (up)Vugwg + W (ug) Vs — nVawy) VE dxdt,
0 Q

with

wp = —Aug + W (up).

4. Weak solutions with degenerate mobility

In this section, we assume n=1, 2, 3 and consider the degenerate case for problem (1)-(3). We
assume the function M(u) € C(R,RT) and there exist § > 0 and ¢y > 0 such that M(u) = |1 + u|™
for u € Bs(—1) := (=1 — 8, —1 4 4), while M(u) > ¢y > 0 for u € R\ Bs(—1). In addition, there
exist My, M, > 0 such that

0 < M(u) < M|u|™+ My, forallu € R.

where m can be any positive number 0 < m < co. We assume that W(u) € C*(R, R) satisfies the
conditions (9)-(12).

Theorem 4.1: Let uy(x) € H*(2). Under the above assumptions of M(u) and (9)-(12), for any T> 0
is a given constant, there exists a function u, such that it satisfies the following conditions

(i) u e L0, T; H2(R)) N C([0, T]; H27¢()) N C([0, T]; C¥(S2)), where0 < & < 2and0 < a0 <
1/2;
(i) dsug € L*(0, T; (H*()));
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(iii) u(0) = up;
(iv) Letting the set P := {(x,t) € Q1 : |1 + u| # 0}, we have
(a) there exist a set B C Qr with |Q7\ Bl =0 and a function ¢ : Qr — R" satisfying
xBrpM(u)C € L*(0, T; L2/ "2 (Q)) such that

T
/ < Btu,d) ><(H2(Q))’,H2(Q)> dt = — M(u){ . Vd)dxdt, (61)
0 BNP

forall ¢ € L*(0, T; HX(Q));
(b) if VA%u € LI(U) for some open subset U C Qr and some q > 1, then we have

{ =—-VAw+ W'"w)Vuw + W @)Vo — nVo, in U.

In additional, the following energy inequality is satisfied for all t > 0.

f (IVu(x, H? + W(ulx, 1)) dx +/
Q

M, )¢ (6 )2 drde < f Viuol? + W) d.
Q;NBNP Q

4.1. Proof of theorem 4.1

Taking 6; = %, uj = uéi, Wi = ,uéi, and M; = Mp,. By Lemma 2.3, Lemma 2.8, there exist a subse-
quence of u; (not relabeled) and a function u such that

u; — u strongly in C([0, T]; C*(2)) N C(0, T; H* () and a.e. in @ x (0, T),  (62)
asi — oo forany 0 < o < 1/2. By the continuity of M(u), we have

M;i(u;) = M(u)  strongly in C([0, T]; L"/*(2)), (63)

VMi(u;)) - /M(u)  strongly in C([0, T]; L"(S2)). (64)

By (22), there exist a subsequence of /M;(u;)V 11; (not relabeled) and a function & such that as i —
oo,

VMi(u)Vu; — &, weakly in L*(0, T; L*(2)), (65)
Then by (63), (65), we have

lim/ Mi(ui)Vuiqﬁdxdt:// VMu)é ¢ dx dt,
Qr Qr

i— 00

forany ¢ € L?(0, T; L*"/ =2 (Qr; R™)).

By (62), we could choose a sequence of positive numbers §; that monotonically decreases to 0 and
by Egorov’s theorem, for every §; > 0, there exists a subset B; C Q27 with |Q \ Bj| < §; such that
u; — u uniformly in B; with

By CByC---CBjCBjy1 C---Qr.
Define B = U]QilBj’ then [Q7 \ B] = 0. Let P = {(x,t) € Qr : [1 + u| > §;}. Then
bPpcPC--- CPJ'CP]‘_H C - Q.

We set P = U, P;. For any ¢ € L2(0, T; L2/ (n=2) (Q1; R™)), we have

/ M;(u)Vuip dxdt = /f + /f +/ M;(u;)V i dx dt. (66)
Qr QT\BJ' B;jNP; Bj\Pj
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For the first term of (66), we have

lim lim M;(u)Vuip dxdt = hm // VM(u)Ep dxdt = 0. (67)
Qr\B;

j—o00i—>00 Qr\B;

By the uniform convergence of u; — u in By, there exists an integer N such that for all i > Ny, we
have

P
|1+ui|>?1 inByNP;, |l4+u| <28 inB\P;.

By (22), for any i > N, we get

5\™
<_]> // |vM|2dth5/ M;(u)|V il dx dt
2 BiNP, 0P,

< / M)V il? dx dt
Qr
<C.

So there exists a subsequence Vu;x of Vuu; with k =1,2,... and i > Nj, that weakly converges
to some function ¢; € L2(B; N Py). At the same time, we write u; x as the subsequence of u; cor-
respondingly. By the same process, we have the subsequence V;x of Vi1 withj=2,3,... and
k =1,2,...,such that V) weakly converges to some function {; € L*(Bj N P;). Of course, we write
ujk as the subsequence of u;_; x correspondingly, such that

S
1+ ujx| > E] in B; N P;, 1+ ujk| <28 inB;\P;.

Since {B; N P; } | is an increasing sequence of sets with a limit BN P, we have j = ¢j_j a.e.in Bj_; N
Pj_1. So for almost every x € BN P, there exists a function ¢ (x) such that ¢(x) = ¢j(x) for almost
everywhere x € BN Pjand allj > 1.
Using the standard diagonal argument, we can extract a subsequence such that Vi n, — ¢ weakly
in L*(B; N Pj) for any j > 1 and then by (64)

XB;nP Mion (N Vi, = xBinppy/ M(w)¢  weakly in L(0, T; L 2 (Q)),

as k — oo. Here XBinp; 1s the characteristic function of B; N P;. However, by (65), we also know

VM N, (N, )V kN, — & weakly in L?(S27). Then we see that & = /M) in every B; N Pj, and
hence £ = /M (u)¢ in BN P. Consequently, by (64) again, we have

XBPMiN, (N ) VIR N, — XBnpM(u)¢  weakly in L*(0, T; L/ T2 (Q)). (68)

For the third term of (66), we have

lim lim
Jj—> 00 k—00

f Mk,Nk (uk,Nk)VMk,de) dxdt
Bj\P;

< lim lim sup \/Mk,Nk(uk,Nk)

Jj—00 k—)OOB\P

‘\/Mk,Nk(uk,Nk)vﬂk,Nk @ )|Q|1/n||¢||L2(0,T;L2n/(n—2>(sz))
T

<Clim lim max{(28))"/2, 9’”/2}

]*)OO — 00

=0. (69)
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In (66), we take u; = uy n, as the above subsequence and let k — o0 and then j — oo. By (67), (68),
and (69), we have

lim / M;(uj))Vuip dxdt = / M(u)¢ dxdt. (70)
Qr BNP

i— 00
At last, let us consider the relation between ¢ and u for the case of n=3. The cases of n=1, 2 are
similar. If the interior of (B; N P})° is not empty for some j, by

V:uk,Nk = _VAa)k,Nk + W///(uk,Nk)vuk,Nkwk,Nk + W//(uk,Nk)vwk,Nk - vak,Nk, (71)
and (28), (47), (48), and (50), we have
{=—-VAw+ W w)Vuw + W' u)Vo — nVo, (72)

as k — o00. At the same time, since

T T
lim / /a)k,Nk(pdxdt: lim / /—Auk,Nk—i—W/(uk,Nk)(p dx dt
0 Ja 0 Ja

k—o00 k—00

= /T/ —Au+ W () dxdt
0o Ja
for any ¢ € L?(0, T; H*(R2)), we have = —Au + W’ (1) in the sense of distribution.
If VA2u € L4(U) for some open set U and g > 1, then by (62), we have
A*u e L0, T; WH(Q)),
VAu e LU0, T; W»(Q)),
Au € L1(0, T; WH()) N L®(0, T; L2 (),
Vu € L1(0, T; W (2)) N L™®(0, T; L°()),
u € L9(0, T; W>1(2)) N C(0, T; C* (),
and furthermore by
VAw = —VA?u+ WO @) |Vul>Vu + W w)V(Vul?) (73)
+ W) Vuru+ W' )V Au, (74)

we have VAw € LI(U) for r = min{g,2}. Since @ = —Au+ W'(u) € L*(0, T; L*(2)), we have
W (u)Vuw € L*(U). By (72), £ € L' (U). Hence,

Vurn, = —VAw + W w)Vuw + W(u)Vo — nVo, (75)

weakly in L1(U) with o = —Au + W'(u). We may extend the definition of ¢ from BN PN U into
U\ (BN P)byletting = —VAw + W (u)Vuw + W (u)Vo — nVo.
Define

Qr:=U{U C Qr:VAu e I’(U) forsomeq > 1,q may depend on U}.

Then Qr is open and ¢ = —VAw + W (w)Vuow + W u)Veo — nVo in Qr. ¢ is now defined in
(BN P) U Q. Notice that

Qr\ (BNP)UQr) C (Qr\ P)U(Qr\ B).

Since |Q7 \ B| = 0 and M(u) = 0 in Q27 \ P, the value of ¢ outside of (BN P) U Q7 does not con-
tribute to the integral on the right hand side of (70), so we set { = 0 outside of (BN P) U Q7. This
completes the proof of Theorem 4.1.
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