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Abstract—The security of residential networks can vary
greatly. These networks are often administrated by end-
users who may lack security expertise or the resources
to adequately defend their networks. Insecure residential
networks provide attackers with opportunities to infiltrate
systems and create a platform for launching powerful
attacks. To address these issues, we introduce a new
approach that uses software-defined networking (SDN) to
allow home users to outsource their security maintenance to
a cloud-based service provider. Using this architecture, we
show how a novel network-based two-factor authentication
approach can be used to protect Internet of Things devices.
Our approach works without requiring modifications to
end-devices. We further show how security modules can
enforce protocol messages to limit the attack surface in
vulnerable devices. Our analysis shows that the system is
effective and adds less than 50 milliseconds of delay to the
start of a connection with less than 100 microseconds of
delay for subsequent packets.

Keywords-software-defined networking; residential net-
works; two-factor authentication

I. INTRODUCTION

Most residential networks are created and managed

by end-users that may lack computer security expertise.

These users may employ weak security practices, such

as not changing default usernames and passwords on

devices, which allow attackers to easily compromise

systems on the network. Further, the end-devices them-

selves may introduce weaknesses, such as failing to

encrypt traffic or to patch vulnerabilities. This is a

particular challenge in Internet-enabled embedded de-

vices, commonly referred to as “Internet of Things”

(IoT) devices, in which only the device manufacturer

can deploy updates. As a result, residential networks

may also be home to compromised devices that enable

attackers to persist, pivot to other devices, and control

the home’s environment.

One way to combat the insecurity of residential net-

works is to outsource the security management to ex-

perts. We envision a service provider that hosts systems

outside the network, potentially in a cloud data center,

to manage the devices inside the residential network.

With recent developments in software-defined network-

ing (SDN), it is now possible for an off-site controller

to remotely manage a network’s infrastructure [12].

To capitalize on the benefits of outsourced network

management, we need new approaches to distinguish

legitimate traffic from potentially malicious activity. In

this work, we examine whether 1) the initiator is an

authorized party 2) the exchanged messages conform

to expectations (i.e., they follow protocol and historical

interactions). When properly implemented, these require-

ments could greatly reduce a network’s attack surface.

Our work revolves around two research questions:

What mechanisms can effectively authenticate client

communication without requiring changes to server or

client applications? What are the performance over-

heads associated with implementing this in consumer-

grade hardware? We explore these questions by in-

stalling OpenFlow software on an existing consumer-

grade router and install custom modules on an OpenFlow

controller to implement device-agnostic, network-level

multi-factor authentication and strict enforcement of IoT

device communication using a historically-derived rules.

We make the following contributions in this work:

1. Enable Device-Agnostic Authentication: We link

the Google Authenticator verification system with an

OpenFlow controller module so that clients that suc-

cessfully authenticate are granted temporary network

access to IoT devices. Unauthenticated devices lack

network access to reach the destination resources, thus

preventing attacks that, for example, could subvert built-

in authentication checks. For devices with their own

authentication systems, our approach essentially adds

a second factor of authentication (the possession of

a shared key). The approach is effective at blocking

attackers and, for roughly 90% of new connections, the

approach adds less than 50 ms of delay.

2. Enforce IoT Device Protocols: IoT devices are

typically purpose-built and provide a small set of ser-

vices via relatively simple protocols. As a result, we

can exhaustively enumerate the packets used by these

IoT devices during standard operation. We build a state

machine model of each protected device and only allow

packets to the device in which the payload follows

known transitions within that state machine. This pre-

vents attacks such as buffer overflows or other specially-



crafted messages that could exploit a vulnerability on the

device. The approach can detect and discard packets that

violate the protocol, preventing attacks from reaching the

device, usually with less than 200 ms of delay.

II. RELATED WORK

The security challenges of IoT devices have been

explored from many angles. Babar et al. [1] explored

the security model of IoT devices and the threats that

they face. Zhang et al. [18] explore the challenges for

IoT device research and the privacy challenges that

some devices introduce. Kolias et al. [6] investigated the

role that vulnerable IoT devices can play in large-scale

attacks, such as those enabled by the Mirai botnet. While

the topic of IoT device security is being studied by the

community, little work focuses on residential networks.

In a position paper, Feamster [3] proposed outsourc-

ing residential network security to cloud-based service

providers. He recognized the challenges of educating

all residential users on how to properly secure their

networks and proposed using OpenFlow to secure these

devices. Later work explored the potential for such func-

tionality, but focused on scenarios that require Internet

Service Provider support [5], [11]. Unfortunately, few

ISPs have offered such support for customers and the

reliance on their support may limit deployability. We use

existing consumer routers and cloud-hosted OpenFlow

controllers to eliminate a reliance on ISP support.

Other work has focused on enterprise-centric solutions

for outsourcing network management. Sherry et al. [10]

introduced APLOMB, an approach that used a special-

ized network router to redirect traffic to cloud-hosted

middleboxes. APLOMB’s need for specialized hardware,

the retransmission of each network packet received to a

middlebox, and the need for DNS modifications make

the approach infeasible in many residential networks.

With residential networks, such proxying is not needed.

The most closely related work is our own prior work

in which we introduced a mechanism for residential

users to communicate through a cloud-based server to

avoid exposing their IP addresses while using voice-

over-IP software, like Skype [15]. That approach helped

to protect users from crippling denial-of-service attacks

while engaged in other activity, such as competitive

online gaming. In our TLSDeputy project [14], we built

upon that infrastructure and focused on how to protect

communication when using the TLS protocol. That sys-

tem examined server TLS certificates and checked for

revocations, a step omitted by some browsers at the time.

In this paper, we focus on protecting IoT devices.

III. THREAT MODEL

Residential IoT devices may have unpatched vulner-

abilities, default passwords, or simply weak passwords.

These devices may have built-in authentication mecha-

nisms; however, we consider these built-in mechanisms

to be second-factor authentication which may offer only

limited security benefits in practice. Further, within the

LAN, some devices may implicitly trust all other devices

and communicate without any authentication mechanism

at all. This approach is common for IoT devices and

video players, in which physical presence and/or knowl-

edge of wireless network keys is considered sufficient

evidence of authorization.

We assume our router is directly connected to each

end-point device and there are no routes to these devices

which bypass our router. We consider our authentication

server, OpenFlow controller, and modified router to be

part of the trusted computing base (TCB). All other

devices on the network are considered untrusted and

potentially compromised.

IV. BACKGROUND

Multi-factor authentication requires two or more sepa-

rate forms of authentication information as proof of iden-

tity. Common forms of authentication include passwords,

possession of random values from previous interactions

(e.g., web browser cookies), possession of cryptographic

keys, possession of specific hardware security tokens, or

information transmitted out-of-band, such as messages to

another computing device. In our approach, the second

factor is similar to the possession of a cryptographic key

since authentication requests require appropriate keying

data to be present on the initiating client.

Our approach uses software-defined networking

(SDN), in which routing decisions can be made in

software programmatically rather than using a pre-

defined look-up table. In our scenario, each device is

connected to a consumer-grade router running Open

vSwitch (OVS) [7], a popular OpenFlow switch imple-

mentation. The OVS router locally maintains a flow table

consisting of a five-tuple (IPsrc, IPdst, Portsrc, Portdst,

and transport protocol) along with the associated action

(e.g., drop or forward to a given interface port). If a

packet arrives with fields that do not match an existing

entry, the OVS router elevates new connection requests

to a cloud-hosted OpenFlow controller. The controller

runs software modules that can be used to make the

appropriate decision and return the instructions to the

OVS router. The controller is typically involved only in

the initial packets in a given flow. However, in some

circumstances, the controller may direct the OVS router

to tunnel packets associated with a given flow through a

middlebox, which is a hardware or software system that

can perform arbitrary inspection and manipulation of a

packet while en route to the destination. For convenience,

we co-locate the middleboxes and controller in our

experiments.
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Fig. 1. The OVS router enforces two-factor authentication. A client
must send an authentication request to the authentication server before
interacting with an IoT device. The authentication server sends the
result to the SDN controller, which adds flows to the OVS router
to allow or deny the subsequent request. The traffic may traverse a
middlebox that can ask for additional flow changes.

V. APPROACH: VETTING NEW FLOWS

Our approach of vetting new flows can enhance se-

curity in multiple ways. We provide an example of

second-factor authentication for IoT devices and protocol

enforcement of IoT device communication. These ap-

proaches do not require modifications to the IoT devices,

which may be impractical in some settings.

A client must send a request and resource-specific au-

thentication token, potentially via a separate application,

before connecting to a given IoT device, as shown in

Figure 1. If the authentication server is able to verify the

client’s token, it notifies the OpenFlow controller of the

result. When the client attempts to access the IoT device,

the OVS router elevates the request to the controller. If

the controller has received an authentication notification

from the server, it orders the OVS router to cache a rule

allowing that client IP address to temporarily reach the

IoT device. Otherwise, it orders the OVS router to drop

the flow’s packets.

Some IoT devices have a more restricted API than

generic computing devices. This restricted API allows

us to enhance our middleboxes to implement com-

munication models for each IoT device type and use

these models to restrict the type of messages allowed

when communicating with each IoT device. We build

regular expressions for matching the packet payload

that constrain the messages to the small set that we

observed during a training phase. These expressions

allow the variability needed for session-specific values.

In Figure 2, we provide an example of this approach for

the payload between a smartphone and an IoT device.

The request orders the device to activate or deactivate.

Content-Type: text/xml; charset="utf-8"

SOAPACTION: "urn:Belkin:service:basicevent:1

#SetBinaryState"

Content-Length: 383

Host: 192.168.3.157:49153

User-Agent: CyberGarage-HTTP/1.0

<?xml version="1.0" encoding="utf-8"?>

<s:Envelope xmlns:s="http://schemas.xmlsoap.

org/soap/envelope/"

s:encodingStyle="http://schemas.xmlsoap.org/

soap/encoding/">

<s:Body>

<u:SetBinaryState xmlns:u="urn:Belkin:

service:basicevent:1">

<BinaryState>1</BinaryState>

<Duration></Duration>

<EndAction></EndAction>

<UDN></UDN>

</u:SetBinaryState>

</s:Body>

</s:Envelope>

Fig. 2. Example payload from the tested Smart Switch (some line-
wraps were added to fit within a column). The interaction is via a
SOAP request using XML encoding allowing the payload and structure
to easily be enforced programmatically.

Our regular expressions allow these two states and allows

variation in the content length associated with the packet.

The expressions require other fields to remain static. This

approach enables the middlebox to allow only authorized

messages and to easily detect unauthorized messages. In

the instance an unauthorized message is detected, the

middlebox can discard the packet and alert the OpenFlow

controller. The controller can then alter the flow entry at

the OVS router to discard subsequent packets in the flow.

VI. IMPLEMENTATION

We implement our system using a TP-LINK Archer

C7 consumer-grade router to directly connect our pro-

tected end-points. We install OpenWrt [16] with Open

vSwitch (OVS) [8] on the router. The router commu-

nicates via the OpenFlow protocol to a local controller

running the Floodlight [9] Java-based OpenFlow con-

troller software. The controller runs on Mac laptop that

is connected to one of the OVS router’s LAN ports.

The controller laptop has four 2.6GHz cores and 16

GB RAM. We add a custom module to the Floodlight

controller that subscribes to all packets processed at the

controller.

When hosts communicate within the same subnet,

the OVS router normally connects the two using its

hardware switch, bypassing the need for the packet

to be examined in software. However, our approach

requires that each flow be examined in order to provide

access control, so we needed to avoid this behavior.

We configured the router to place each of its physical

interface ports on a separate virtual LAN (VLAN) and

allowed the router’s main processor to route packets

across VLANs. We likewise use wireless isolation to

VLAN radio communication [17].



Our two-factor authentication server uses the Google

Authenticator library [4] in a C program that runs on an

Ubuntu 14.04 laptop that is connected via Ethernet to

the OVS router. That laptop has four 2GHz cores and

8GB of RAM. Using a one-way hash function based

on the current time and a pre-shared secret, the server

dynamically generates one-time use secret tokens for

each registered device. Each registered device obtains a

copy of the pre-shared secret. With this value, the client

can use the current time and pre-shared secret to compute

its own version of the hash output and send it to the

server, which can verify its authenticity by comparing

it with its own locally computed value. Upon successful

verification, the authentication server communicates with

the controller over a network socket to send the client’s

IP address and authorized destination. The controller

stores a record for the authentication result to authorize

subsequent flows to that destination for a short period.

A. Protecting IoT Devices

In our experiments on IoT devices, we focus on the

Belkin WeMo Smart Switch [2]. The Smart Switch

is a electrical power outlet adapter that plugs into a

standard electrical outlet and exposes another outlet that

devices, such as a lamp, can use. The Smart Switch can

be controlled through a smartphone application in both

the iOS and Android operating systems. Through the

smartphone application, a user can activate or deactivate

the power flow, gaining the ability to control the power

to the connected device remotely.

In testing, we use the WeMo smartphone application

and manually toggle the switch setting 1,000 times. For

the two-factor authentication system, we automated our

experiments using a Python script using Google Authen-

ticator on a wirelessly-connected Mac Mini, which had

two 2.6 GHz cores and 8 GB of RAM.

To model the types of communication between the

smartphone and IoT device, we consider a state machine.

To move from the initial state, the smartphone must send

one of a small set of valid messages. Upon receiving

such a message, we advance the state of the device

and consider the new messages available. By continually

repeating this process, we are able to block any messages

that are not valid for the given state and prevent any

malicious messages from arriving. We build our state

machine over a series of runs with an uncompromised

device and then use the state machine in a middlebox to

enforce its actions. Each path through the state machine

can be considered a packet sequence and each transition

is determined by matching the payload of a given packet

with a known regular expression for that packet.

In Figure 2, we provide an example of an initial

request with HTTP payload. It begins with the HTTP

header, followed by the envelope structure. The content-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0  20  40  60  80  100  120  140

P
e

rc
e

n
ta

g
e

 o
f 

T
ri
a

ls

Authentication Server Latency (milliseconds)

Fig. 3. Two-factor authentication request delay (1,000 trials).
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Fig. 4. Delay from the protocol enforcement module for the IoT
device traffic. These results are from 67,335 packets produced during
1,000 trials. We omitted 30 outliers (0.04% of data) for readability.

length, HOST, and BinaryState fields may vary across

devices and actions. We build regular expressions that

match these dynamic parts while requiring exact matches

for the static components. When a packet matches a

sequence, we push the packet information plus a time

stamp into a packet list. The timestamp allows us to

reset our state machine after a timeout occurs.

VII. SECURITY AND PERFORMANCE EVALUATION

To evaluate the security of our approach, we made

connections to our Smart Switch IoT device. To create

legitimate behavior, we followed the protocol of pro-

viding two-factor authentication connections and then

connected to the device. Likewise, the interactions with

the WeMo device conformed to the protocol expected for

that device. In the two-factor authentication approach,

we create malicious connections simply by initiating a

connection without completing the two-factor authenti-

cation steps. In the protocol enforcement experiment, we

send packets that contained random bytes as payload to

TABLE I
SECURITY EVALUATION RESULTS FOR EACH APPROACH

Approach Request Trials Allowed Blocked

Two-Factor
Authentication

legitimate 20 20 0
malicious 20 0 20

IoT Protocol
Enforcement

legitimate 20 20 0
malicious 20 0 20



create malicious packets. Each approach was tested in

isolation, with only one module active.

In Table I, we show the results of these experiments.

In each case, the approach allowed the authorized con-

nections and denied the connections that were malicious.

These results show that each of these approaches can

offer significant security advantages. While the IoT pro-

tocol enforcement system must be customized to each

type of IoT device, the two-factor authentication are

more generally applicable.

For our performance evaluation, we consider the per-

formance of the two-factor authentication system and

the IoT protocol enforcement module. We consider the

performance of each individually. Our results are for a

controller and middlebox in the LAN. Additional propa-

gation delays would be incurred for remote deployments.

To determine the timing overheads of the two-factor

authentication system, we used a script on the client that

recorded the results of the time.time() function in

Python, which returns the current Unix epoch time with

microsecond resolution. We measured the time before we

issued the request to the authentication server and after

we received the server’s response. By subtracting these

values, we could determine the amount of time elapsed.

In Figure 3, we see that the majority of requests are

satisfied within approximately 30 milliseconds and 90%

are satisfied within about 50 milliseconds. These delays

are unlikely to be noticeable to an end user.

For all the modules running on the controller, in-

cluding the IoT protocol enforcement, we used the

System.nanotime() function in Java to record the

timestamp when the module started and when it ended

and calculated the overhead as the difference.

For the IoT protocol enforcement, we show our results

in Figure 4. We see the system processed over 99% of

packets in less than 100 microseconds. This process is

particularly fast since there are significant static elements

to the packets that can be used to distinguish legitimacy.

VIII. DISCUSSION

Our work uses a controller and middlebox located

in the LAN. When these components are further away,

latency could become a concern. However, our prior

work has explored residential connectivity with public

cloud data centers and found that over 90% of residential

networks in the United States were within 50 millisec-

onds of a public data center [12]. That study found such

latency would have only a small impact on the user

experience, even in applications like web browsing.

The two-factor authentication system could be auto-

mated using a resource like the netfilter_queue

library which could intercept a packet, send the authen-

tication request, and requeue the packet. Prior work has

used a similar technique [13]. This would essentially

create a device-level authorization system.

Our IoT device state machine was based off of a

Smart Switch with a limited API. Other IoT devices may

have more functionality and require more involved state

machines to replicate their protocols. However, other

modern IoT devices may have constrained behavior.
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